Healthy Diets from Sustainable Food Systems: Calculating the WISH Scores for Women in Rural East Africa
Abstract
:1. Introduction
2. Materials and Methods
Dietary Component (Healthiness/Impact on Environment) | Non-Consumers (%) | Intakes of Food Groups for All Participants in g Mean (SD) | Recommended Intake in g/d (Lower and Upper Range of Intake) 1 | Direction of Change in Intake to Obtain Higher WISH Score 2 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Kenya (N = 445) | Tanzania (N = 292) | Uganda (N = 415) | East Africa (Pooled Data; N = 1152) | Kenya (N = 445) | Tanzania (N = 292) | Uganda (N = 415) | East Africa (Pooled Data; N = 1152) | |||
Whole grains (protective/low) | 0.2 | 1.0 | 6.3 | 2.6 | 90.0 (49.9) | 86.3 (40.6) | 84.7 (58.3) | 87.1 (51.0) | ≥125 (100–150) | Increase |
Vegetables (protective/low) | 0 | 0 | 0 | 0 | 120.7 (71.6) | 126.3 (70.5) | 161.1 (111.5) | 136.6 (89.7) | 300 (200–600) | Increase |
Fruits (protective/low) | 75.7 | 63.0 | 31.1 | 56.4 | 13.3 (33.6) | 34.0 (73.0) | 51.2 (95.2) | 32.2 (72.9) | 200 (100–300) | Increase |
Dairy foods (protective/medium) | 0.7 | 95.5 | 46.7 | 41.3 | 67.5 (39.9) | 4.1 (20.9) | 75.7 (97.1) | 54.4 (70.6) | 250 (0–500) | Increase |
Red meat (limit/high) | 69.4 | 72.9 | 68.7 | 70.1 | 17.2 (42.4) | 15.0 (37.3) | 11.8 (30.8) | 14.7 (37.3) | 14 (0–28) | Adequate |
Fish (protective/high) | 94.8 | 19.2 | 37.8 | 55.1 | 0.5 (2.8) | 30.2 (30.6) | 10.4 (21.8) | 11.6 (23.4) | 28 (0–100) | Increase |
Eggs (neutral/medium) | 97.8 | 100.0 | 94.9 | 97.3 | 0.2 (3.6) | 0.0 (0.0) | 0.6 (4.9) | 0.3 (3.7) | 13 (0–25) | Increase |
Chicken/other poultry (neutral/medium) | 98.9 | 96.6 | 96.1 | 97.3 | 0.3 (3.1) | 1.5 (8.8) | 1.3 (7.3) | 1.0 (6.5) | 29 (0–58) | Increase |
Legumes (protective/low) | 7.4 | 31.8 | 27.7 | 20.9 | 89.3 (65.2) | 58.7 (75.4) | 38.6 (55.3) | 63.3 (68.3) | 75 (0–100) | Increase |
Nuts (protective/medium) | 100 | 80.8 | 15.7 | 64.8 | 0 (0) | 3.1 (10.2) | 25.0 (35.9) | 9.8 (24.9) | 50 (0–75) | Increase |
Unsaturated oils (protective/low) | 0 | 0 | 1.9 | 0.7 | 34.1 (12.8) | 19.6 (43.8) | 8.1 (7.2) | 21.1 (26.3) | 40 (20–80) | Adequate/Increase |
Saturated oils (limit/high) | 100 | 55.5 | 89.9 | 85.1 | 0 (0) | 2.5 (4.3) | 0.4 (1.6) | 0.8 (2.6) | 11.8 (0–11.8) | Adequate |
Added sugars (limit/low) | 0 | 3.1 | 1.0 | 1.1 | 16.8 (10.8) | 13.0 (6.0) | 44.1 (20.0) | 25.7 (19.8) | 31 (0–31) | Adequate/Decrease |
Dietary Component | Intakes of Food Groups for Participants Who Consumed during the Last 24 h in g, Mean (SD) | Recommended Intake in g/d (Lower and Upper Range of Intake) 1 | Direction of Change in Intake to Obtain Higher WISH Score 2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Kenya (Total N = 445) | Tanzania (Total N = 292) | Uganda (Total N = 415) | East Africa (Pooled Data) (Total N = 1152) | |||||||
N | N | N | N | |||||||
Whole grains | 444 | 90.2 (49.8) | 289 | 87.2 (39.8) | 389 | 90.4 (55.8) | 1122 | 89.5 (49.7) | ≥125 (100–150) | Increase |
Vegetables | 445 | 120.7 (71.6) | 292 | 126.3 (70.5) | 415 | 161.1 (111.5) | 1152 | 136.6 (89.7) | 300 (200–600) | Increase |
Fruits | 108 | 54.8 (48.8) | 108 | 92.0 (95.4) | 286 | 74.3 (106.9) | 502 | 73.9 (95.4) | 200 (100–300) | Increase |
Dairy foods | 442 | 68.0 (39.6) | 13 | 91.2 (44.7) | 221 | 142.1 (90.8) | 676 | 92.7 (70.4) | 250 (0–500) | Increase |
Red meat | 136 | 61.0 (56.1) | 79 | 55.6 (53.9) | 130 | 37.8 (45.3) | 345 | 49.1 (54.5) | 14 (0–28) | Decrease |
Fish | 23 | 9.3 (8.7) | 236 | 37.3 (29.8) | 258 | 16.7 (25.7) | 517 | 25.8 (29.2) | 28 (0–100) | Increase |
Eggs | 10 | 10.0 (22.7) | 0 | 0 | 21 | 12.7 (18.5) | 31 | 11.8 (19.6) | 13 (0–25) | Increase |
Chicken and other poultry | 5 | 29.0 (0) | 10 | 44.8 (18.3) | 16 | 33.7 (17.9) | 31 | 36.5 (17.2) | 29 (0–58) | Adequate/Decrease |
Legumes | 412 | 96.5 (62.4) | 199 | 86.1 (77.3) | 300 | 53.4 (58.7) | 911 | 80.0 (67.5) | 75 (0–100) | Adequate/Increase |
Nuts | 0 | 0 | 56 | 16.2 (18.3) | 350 | 29.7 (37.3) | 406 | 27.8 (35.6) | 50 (0–75) | Increase |
Unsaturated oils | 445 | 34.1 (12.8) | 292 | 19.6 (43.8) | 407 | 8.2 (7.2) | 1144 | 21.2 (26.4) | 40 (20–80) | Adequate/Increase |
Saturated oils | 0 | 0 | 130 | 5.7 (4.9) | 42 | 4.3 (3.2) | 172 | 5.4 (4.6) | 11.8 (0–11.8) | Adequate |
Added sugars | 445 | 16.8 (10.8) | 283 | 13.4 (5.6) | 411 | 44.5 (19.6) | 1139 | 26.0 (19.7) | 31 (0–31) | Adequate/Decrease |
3. Results
3.1. Food Group Intake
3.2. The WISH Score and Sub-Scores
3.3. Other Foods and Food Groups Not Captured by the WISH
4. Discussion
4.1. Food Intake of Single Food Groups
4.2. The WISH and Sub-Score Results: Healthiness and Environmental Sustainability of East African Diets
4.3. The WISH and Food-Based Dietary Guidelines
4.4. The WISH and Dietary Diversity within Food Groups
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- European Commission; Directorate-General for Research and Innovation; Froidmont-Görtz, I.; Faure, U.; Gajdzinska, M.; Haentjens, W.; Krommer, J.; Lizaso, M.; Lutzeyer, H.; Mangan, C.; et al. Food 2030 Pathways for Action: Research and Innovation Policy as a Driver for Sustainable, Healthy and Inclusive Food Systems; Fabbri, K., Ndongosi, I., Eds.; Publications Office: Luxembourg, 2020.
- Brouwer, I.D.; van Liere, M.J.; de Brauw, A.; Dominguez-Salas, P.; Herforth, A.; Kennedy, G.; Lachat, C.; Omosa, E.B.; Talsma, E.F.; Vandevijvere, S.; et al. Reverse Thinking: Taking a Healthy Diet Perspective towards Food Systems Transformations. Food Secur. 2021, 13, 1497–1523. [Google Scholar] [CrossRef]
- Demestihas, C.; Plénet, D.; Génard, M.; Raynal, C.; Lescourret, F. Ecosystem Services in Orchards. A Review. Agron. Sustain. Dev. 2017, 37, 12. [Google Scholar] [CrossRef]
- Zinngrebe, Y.; Borasino, E.; Chiputwa, B.; Dobie, P.; Garcia, E.; Gassner, A.; Kihumuro, P.; Komarudin, H.; Liswanti, N.; Makui, P.; et al. Agroforestry Governance for Operationalising the Landscape Approach: Connecting Conservation and Farming Actors. Sustain. Sci. 2020, 15, 1417–1434. [Google Scholar] [CrossRef]
- Slavin, J.L.; Lloyd, B. Health Benefits of Fruits and Vegetables. Adv. Nutr. 2012, 3, 506–516. [Google Scholar] [CrossRef] [Green Version]
- Sibhatu, K.T.; Krishna, V.V.; Qaim, M. Production Diversity and Dietary Diversity in Smallholder Farm Households. Proc. Natl. Acad. Sci. USA 2015, 112, 10657–10662. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.-G.; Grieco, E.; Bombelli, A.; Hickman, J.E.; Sanz-Cobena, A. Challenges and Opportunities for Enhancing Food Security and Greenhouse Gas Mitigation in Smallholder Farming in Sub-Saharan Africa. A Review. Food Secur. 2021, 13, 457–476. [Google Scholar] [CrossRef]
- Springmann, M.; Wiebe, K.; Mason-D’Croz, D.; Sulser, T.B.; Rayner, M.; Scarborough, P. Health and Nutritional Aspects of Sustainable Diet Strategies and Their Association with Environmental Impacts: A Global Modelling Analysis with Country-Level Detail. Lancet Planet Health 2018, 2, e451–e461. [Google Scholar] [CrossRef] [Green Version]
- Trijsburg, L.; Talsma, E.F.; Crispim, S.P.; Garrett, J.; Kennedy, G.; de Vries, J.H.M.; Brouwer, I.D. Method for the Development of WISH, a Globally Applicable Index for Healthy Diets from Sustainable Food Systems. Nutrients 2021, 13, 93. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT-Lancet Commission on Healthy Diets from Sustainable Food Systems. Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Knuppel, A.; Papier, K.; Key, T.J.; Travis, R.C. EAT-Lancet Score and Major Health Outcomes: The EPIC-Oxford Study. Lancet 2019, 394, 213–214. [Google Scholar] [CrossRef] [Green Version]
- Cacau, L.T.; De Carli, E.; de Carvalho, A.M.; Lotufo, P.A.; Moreno, L.A.; Bensenor, I.M.; Marchioni, D.M. Development and Validation of an Index Based on EAT-Lancet Recommendations: The Planetary Health Diet Index. Nutrients 2021, 13, 1698. [Google Scholar] [CrossRef]
- Clark, M.A.; Springmann, M.; Hill, J.; Tilman, D. Multiple Health and Environmental Impacts of Foods. Proc. Natl. Acad. Sci. USA 2019, 116, 23357–23362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2017 Diet Collaborators. Health Effects of Dietary Risks in 195 Countries, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tepe, J.; Lemken, D. Improving the Nutritional Value of Conventional Food with Underutilized Leafy Vegetables—Consumers Acceptance of Combining Porridge with Cowpea Leaf Powder. Afr. J. Food Sci. 2022, 16, 45–57. [Google Scholar] [CrossRef]
- Omayio, D.G.; Abong, G.O.; Okoth, M.W.; Gachuiri, C.K.; Mwang’ombe, A.W. Current Status of Guava (Psidium Guajava L.) Production, Utilization, Processing and Preservation in Kenya: A Review. Curr. Agric. Res. J. 2019, 7, 318–331. [Google Scholar] [CrossRef]
- Owade, J.O.; Abong’, G.O.; Okoth, M.W.; Mwang’ombe, A.W.; Jobor, J.O. Comparative Profiling of Lactic Acid Bacteria Isolates in Optimized and Spontaneous Fermentation of Cowpea Leaves. Food Sci. Nutr. 2021, 9, 1651–1664. [Google Scholar] [CrossRef]
- Nansereko, S.; Muyonga, J.; Byaruhanga, Y.B. Optimization of Drying Conditions for Jackfruit Pulp Using Refractance Window Drying Technology. Food Sci. Nutr. 2022, 10, 1333–1343. [Google Scholar] [CrossRef]
- Sangija, F.; Martin, H.; Matemu, A. Effect of Lactic Acid Fermentation on the Nutritional Quality and Consumer Acceptability of African Nightshade. Food Sci. Nutr. 2022, 10, 3128–3142. [Google Scholar] [CrossRef]
- Sarfo, J.; Pawelzik, E.; Keding, G.B. Are Processed Fruits and Vegetables Able to Reduce Diet Costs and Address Micronutrient Deficiencies? Evidence from Rural Tanzania. Public Health Nutr. 2022, 25, 2637–2650. [Google Scholar] [CrossRef]
- Sarfo, J.; Pawelzik, E.; Keding, G.B. Dietary Patterns as Characterized by Food Processing Levels and Their Association with the Health Outcomes of Rural Women in East Africa. Nutrients 2021, 13, 2866. [Google Scholar] [CrossRef]
- FAO/Government of Kenya. Kenyan Food Recipes. In A Recipe Book of Common Mixed Dishes with Nutrient Value; Makao Bora: Nairobi, Kenya, 2018. Available online: https://www.fao.org/3/I9056EN/i9056en.pdf (accessed on 6 October 2019).
- Lukmanji, Z.; Hertzmark, E.; Mlingi, N.; Assey, V.; Ndossi, G.; Fawzi, W. Tanzania Food Composition Tables, 1st ed.; Harvard School of Public Health, Tanzania Food and Nutrition Center, Muhimbili University College of Health and Allied Sciences: Dar es Salaam, Tanzania, 2008. [Google Scholar]
- Ministry of Health. National Guidelines for Healthy Diets and Physical Activity; Government of Kenya: Nairobi, Kenya, 2017.
- Keding, G. Nutrition Transition in Rural Tanzania and Kenya. World Rev. Nutr. Diet. 2016, 115, 68–81. [Google Scholar] [PubMed]
- Keding, G.B.; Msuya, J.M.; Maass, B.L.; Krawinkel, M.B. Obesity as a public health problem among adult women in rural Tanzania. Glob. Health Sci. Pr. 2013, 1, 359–371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steyn, N.P.; Mchiza, Z.J. Obesity and the nutrition transition in Sub-Saharan Africa. Ann. N. Y. Acad. Sci. 2014, 1311, 88–101. [Google Scholar] [CrossRef]
- Jaacks, L.M.; Vandevijvere, S.; Pan, A.; McGowan, C.J.; Wallace, C.; Imamura, F.; Mozaffarian, D.; Swinburn, B.; Ezzati, M. The obesity transition: Stages of the global epidemic. Lancet Diabetes Endocrinol. 2019, 7, 231–240. [Google Scholar] [CrossRef] [PubMed]
- Mensah, D.O.; Nunes, A.R.; Bockarie, T.; Lillywhite, R.; Oyebode, O. Meat, Fruit, and Vegetable Consumption in Sub-Saharan Africa: A Systematic Review and Meta-Regression Analysis. Nutr. Rev. 2021, 79, 651–692. [Google Scholar] [CrossRef]
- Msungu, S.D.; Mushongi, A.A.; Venkataramana, P.B.; Mbega, E.R. A Review on the Trends of Maize Biofortification in Alleviating Hidden Hunger in Sub-Sahara Africa. Sci. Hortic. 2022, 299, 111029. [Google Scholar] [CrossRef]
- WHO. Healthy Diet Fact Sheet. Available online: https://www.who.int/news-room/fact-sheets/detail/healthy-diet (accessed on 6 October 2019).
- Yang, R.-Y.; Keding, G.B. Nutritional Contributions of Important African Indigenous Vegetables. In African Indigenous Vegetables in Urban Agriculture; Shackleton, C.M., Pasquini, M.W., Drescher, A.W., Eds.; Earthscan: London, UK, 2009; pp. 105–143. [Google Scholar]
- Keding, G.B.; Msuya, J.M.; Maass, B.L.; Krawinkel, M.B. Dietary Patterns and Nutritional Health of Women: The Nutrition Transition in Rural Tanzania. Food Nutr. Bull. 2011, 32, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Appleton, K.M.; Hemingway, A.; Saulais, L.; Dinnella, C.; Monteleone, E.; Depezay, L.; Morizet, D.; Armando Perez-Cueto, F.J.; Bevan, A.; Hartwell, H. Increasing Vegetable Intakes: Rationale and Systematic Review of Published Interventions. Eur. J. Nutr. 2016, 55, 869–896. [Google Scholar] [CrossRef] [Green Version]
- KC, K.B.; Dias, G.M.; Veeramani, A.; Swanton, C.J.; Fraser, D.; Steinke, D.; Lee, E.; Wittman, H.; Farber, J.M.; Dunfield, K.; et al. When Too Much Isn’t Enough: Does Current Food Production Meet Global Nutritional Needs? PLoS ONE 2018, 13, e0205683. [Google Scholar] [CrossRef] [Green Version]
- Mason-D’Croz, D.; Bogard, J.R.; Sulser, T.B.; Cenacchi, N.; Dunston, S.; Herrero, M.; Wiebe, K. Gaps between fruit and vegetable production, demand, and recommended consumption at global and national levels: An integrated modelling study. Lancet Planet. Heal. 2019, 3, e318–e329. [Google Scholar] [CrossRef] [Green Version]
- Machovina, B.; Feeley, K.J.; Ripple, W.J. Biodiversity Conservation: The Key Is Reducing Meat Consumption. Sci. Total Environ. 2015, 536, 419–431. [Google Scholar] [CrossRef] [PubMed]
- Falchetta, G.; Golinucci, N.; Rocco, M. V Environmental and Energy Implications of Meat Consumption Pathways in Sub-Saharan Africa. Sustainability 2021, 13, 7075. [Google Scholar] [CrossRef]
- HLPE. Agroecological and Other Innovative Approaches for Sustainable Agriculture and Food Systems that Enhance Food Security and Nutrition. In A Report by the High Level Panel of Experts on Food Security and Nutrition of the Committee on World Food Security; HLPE: Rome, Italy, 2019. [Google Scholar]
- FAO. Food-Based Dietary Guidelines. Available online: https://www.fao.org/nutrition/nutrition-education/food-dietary-guidelines/en/ (accessed on 6 October 2019).
- Du Plessis, L.M.; Job, N.; Coetzee, A.; Fischer, S.; Chikoko, M.P.; Adam, M.; Love, P. Development and Field-Testing of Proposed Food-Based Dietary Guideline Messages and Images amongst Consumers in Tanzania. Nutrients 2022, 14, 2705. [Google Scholar] [CrossRef] [PubMed]
- FAO. Food-Based Dietary Guidelines: Catalysts for Agrifood System Transformation in Uganda. Available online: https://www.fao.org/uganda/news/detail-events/en/c/1627352/ (accessed on 6 October 2019).
- McCrory, M.A.; Fuss, P.J.; McCallum, J.E.; Yao, M.; Vinken, A.G.; Hays, N.P.; Roberts, S.B. Dietary Variety within Food Groups: Association with Energy Intake and Body Fatness in Men and Women. Am. J. Clin. Nutr. 1999, 69, 440–447. [Google Scholar] [CrossRef] [Green Version]
- Wallace, T.C.; Bailey, R.L.; Blumberg, J.B.; Burton-Freeman, B.; Chen, C.O.; Crowe-White, K.M.; Drewnowski, A.; Hooshmand, S.; Johnson, E.; Lewis, R.; et al. Fruits, vegetables, and health: A comprehensive narrative, umbrella review of the science and recommendations for enhanced public policy to improve intake. Crit. Rev. Food Sci. Nutr. 2020, 60, 2174–2211. [Google Scholar] [CrossRef] [Green Version]
- Li, M.; Fan, Y.; Zhang, X.; Hou, W.; Tang, Z. Fruit and Vegetable Intake and Risk of Type 2 Diabetes Mellitus: Meta-Analysis of Prospective Cohort Studies. BMJ Open 2014, 4, e005497. [Google Scholar] [CrossRef] [Green Version]
- Alinia, S.; Hels, O.; Tetens, I. The Potential Association between Fruit Intake and Body Weight—A review. Obes. Rev. 2009, 10, 639–647. [Google Scholar] [CrossRef]
- Sharma, S.P.; Chung, H.J.; Kim, H.J.; Hong, S.T. Paradoxical Effects of Fruit on Obesity. Nutrients 2016, 8, 633. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, S. Food Environment Measurements ProToolBox: ProColor, ProDes, ProPhen. 2020. Available online: https://a4nh.cgiar.org/files/2020/03/FoodEnvironmentTools-Selena-Ahmed.pdf (accessed on 6 October 2019).
- Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Sampaio, S.L.; Ferreira, I.C.F.R.; Petropoulos, S.A. Grown to Be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part II: Leafy, Fruit, and Other Vegetables. Antioxidants 2020, 9, 97. [Google Scholar] [CrossRef] [Green Version]
- Serpeloni, J.M.; Grotto, D.; Mercadante, A.Z.; de Lourdes Pires Bianchi, M.; Antunes, L.M.G. Lutein Improves Antioxidant Defense in Vivo and Protects against DNA Damage and Chromosome Instability Induced by Cisplatin. Arch. Toxicol. 2010, 84, 811–822. [Google Scholar] [CrossRef]
- Motohashi, N.; Sakagami, H. Anthocyanins as Functional Food Colors BT—Bioactive Heterocycles VII: Flavonoids and Anthocyanins in Plants, and Latest Bioactive Heterocycles II; Motohashi, N., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 1–40. ISBN 978-3-642-00336-3. [Google Scholar]
- Petropoulos, S.A.; Sampaio, S.L.; Di Gioia, F.; Tzortzakis, N.; Rouphael, Y.; Kyriacou, M.C.; Ferreira, I. Grown to Be Blue—Antioxidant Properties and Health Effects of Colored Vegetables. Part I: Root Vegetables. Antioxidants 2019, 8, 617. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Costa-Rodrigues, J.; Pinho, O.; Monteiro, P.R.R. Can Lycopene Be Considered an Effective Protection against Cardiovascular Disease? Food Chem. 2018, 245, 1148–1153. [Google Scholar] [CrossRef] [PubMed]
- Poore, J.; Nemecek, T. Reducing Food’s Environmental Impacts through Producers and Consumers. Science 2018, 360, 987–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Captured by the WISH | Not Captured by the WISH | |
---|---|---|
Whole Grains | Refined Grains or Snacks Made from the Same Foods Plus Other Ingredients | Roots/Tubers and Snacks Made from the Same Foods |
|
|
|
Dietary Component | Non-Consumers (%) | Intakes of Food Groups for All Participants in g, Mean (SD) | Recommended Intake in g/d (Lower and Upper Range of Intake) 1 | ||||||
---|---|---|---|---|---|---|---|---|---|
Kenya (N = 445) | Tanzania (N = 292) | Uganda (N = 415) | East Africa (Pooled Data; N = 1152 | Kenya (N = 445) | Tanzania (N = 292) | Uganda (N = 415) | East Africa (Pooled Data; N = 1152) | ||
Whole grains | 0.2 | 1.0 | 6.3 | 2.6 | 119.5 (56.1) | 86.3 (40.6) | 84.7 (58.3) | 98.5 (55.9) | ≥125 (100–150) |
Refined grains (products) | 11.2 | 4.8 | 14.9 | 10.9 | 128.0 (159.7) | 185.6 (838.8) | 49.4 (46.1) | 114.3 (437.4) | limit |
Roots/tubers | 59.6 | 33.9 | 2.2 | 32.4 | 46.2 (97.6) | 81.9 (115.9) | 588.6 (440.4) | 250.6 (376.0) | 50 (0–100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Keding, G.B.; Sarfo, J.; Pawelzik, E. Healthy Diets from Sustainable Food Systems: Calculating the WISH Scores for Women in Rural East Africa. Nutrients 2023, 15, 2699. https://doi.org/10.3390/nu15122699
Keding GB, Sarfo J, Pawelzik E. Healthy Diets from Sustainable Food Systems: Calculating the WISH Scores for Women in Rural East Africa. Nutrients. 2023; 15(12):2699. https://doi.org/10.3390/nu15122699
Chicago/Turabian StyleKeding, Gudrun B., Jacob Sarfo, and Elke Pawelzik. 2023. "Healthy Diets from Sustainable Food Systems: Calculating the WISH Scores for Women in Rural East Africa" Nutrients 15, no. 12: 2699. https://doi.org/10.3390/nu15122699
APA StyleKeding, G. B., Sarfo, J., & Pawelzik, E. (2023). Healthy Diets from Sustainable Food Systems: Calculating the WISH Scores for Women in Rural East Africa. Nutrients, 15(12), 2699. https://doi.org/10.3390/nu15122699