Serum Anti-Aging Protein α-Klotho Mediates the Association between Diet Quality and Kidney Function
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source and Study Participants
2.2. Assessment of Diet Quality
2.3. Assessment of Kidney Function
2.4. Quantitation of Serum α-Klotho
2.5. Identification of the Covariates
2.6. Statistical Analysis
3. Results
3.1. Population Characteristics
3.2. Association between HEI-2015 Score and Kidney Function
3.3. Mediating Role of Serum α-Klotho
3.4. Subgroup Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- GBD Chronic Kidney Disease Collaboration. Global, regional, and national burden of chronic kidney disease, 1990–2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2020, 395, 709–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jha, V.; Garcia-Garcia, G.; Iseki, K.; Li, Z.; Naicker, S.; Plattner, B.; Saran, R.; Wang, A.Y.; Yang, C.W. Chronic kidney disease: Global dimension and perspectives. Lancet 2013, 382, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Coresh, J. Chronic kidney disease. Lancet 2012, 379, 165–180. [Google Scholar] [CrossRef] [PubMed]
- Kalache, A.; de Hoogh, A.I.; Howlett, S.E.; Kennedy, B.; Eggersdorfer, M.; Marsman, D.S.; Shao, A.; Griffiths, J.C. Nutrition interventions for healthy ageing across the lifespan: A conference report. Eur. J. Nutr. 2019, 58, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Le Couteur, D.G.; Raubenheimer, D.; Solon-Biet, S.; de Cabo, R.; Simpson, S.J. Does diet influence aging? Evidence from animal studies. J. Intern. Med. 2022. [Google Scholar] [CrossRef]
- Hu, E.A.; Steffen, L.M.; Grams, M.E.; Crews, D.C.; Coresh, J.; Appel, L.J.; Rebholz, C.M. Dietary patterns and risk of incident chronic kidney disease: The Atherosclerosis Risk in Communities study. Am. J. Clin. Nutr. 2019, 110, 713–721. [Google Scholar] [CrossRef]
- Khatri, M.; Moon, Y.P.; Scarmeas, N.; Gu, Y.; Gardener, H.; Cheung, K.; Wright, C.B.; Sacco, R.L.; Nickolas, T.L.; Elkind, M.S. The association between a Mediterranean-style diet and kidney function in the Northern Manhattan Study cohort. Clin. J. Am. Soc. Nephrol. 2014, 9, 1868–1875. [Google Scholar] [CrossRef] [Green Version]
- Rebholz, C.M.; Crews, D.C.; Grams, M.E.; Steffen, L.M.; Levey, A.S.; Miller, E.R., 3rd; Appel, L.J.; Coresh, J. DASH (Dietary Approaches to Stop Hypertension) Diet and Risk of Subsequent Kidney Disease. Am. J. Kidney Dis. 2016, 68, 853–861. [Google Scholar] [CrossRef] [Green Version]
- Lindberg, K.; Amin, R.; Moe, O.W.; Hu, M.C.; Erben, R.G.; Östman Wernerson, A.; Lanske, B.; Olauson, H.; Larsson, T.E. The kidney is the principal organ mediating klotho effects. J. Am. Soc. Nephrol. 2014, 25, 2169–2175. [Google Scholar] [CrossRef] [Green Version]
- Shi, M.; Flores, B.; Gillings, N.; Bian, A.; Cho, H.J.; Yan, S.; Liu, Y.; Levine, B.; Moe, O.W.; Hu, M.C. αKlotho Mitigates Progression of AKI to CKD through Activation of Autophagy. J. Am. Soc. Nephrol. 2016, 27, 2331–2345. [Google Scholar] [CrossRef] [Green Version]
- Hu, M.C.; Shi, M.; Zhang, J.; Addo, T.; Cho, H.J.; Barker, S.L.; Ravikumar, P.; Gillings, N.; Bian, A.; Sidhu, S.S.; et al. Renal Production, Uptake, and Handling of Circulating αKlotho. J. Am. Soc. Nephrol. 2016, 27, 79–90. [Google Scholar] [CrossRef] [Green Version]
- Kuro-o, M. Klotho as a regulator of oxidative stress and senescence. Biol. Chem. 2008, 389, 233–241. [Google Scholar] [CrossRef]
- Haruna, Y.; Kashihara, N.; Satoh, M.; Tomita, N.; Namikoshi, T.; Sasaki, T.; Fujimori, T.; Xie, P.; Kanwar, Y.S. Amelioration of progressive renal injury by genetic manipulation of Klotho gene. Proc. Natl. Acad. Sci. USA 2007, 104, 2331–2336. [Google Scholar] [CrossRef] [Green Version]
- Doi, S.; Zou, Y.; Togao, O.; Pastor, J.V.; John, G.B.; Wang, L.; Shiizaki, K.; Gotschall, R.; Schiavi, S.; Yorioka, N.; et al. Klotho inhibits transforming growth factor-beta1 (TGF-beta1) signaling and suppresses renal fibrosis and cancer metastasis in mice. J. Biol. Chem. 2011, 286, 8655–8665. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Q.; Ren, Q.; Li, L.; Tan, H.; Lu, M.; Tian, Y.; Huang, L.; Zhao, B.; Fu, H.; Hou, F.F.; et al. A Klotho-derived peptide protects against kidney fibrosis by targeting TGF-β signaling. Nat. Commun. 2022, 13, 438. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhou, X.; Deng, L.; Jin, K.; Xiong, X.; Su, X.; Qiu, S.; Yang, L. The association between serum soluble Klotho and chronic kidney disease among us adults ages 40 to 79 years: Cross-sectional study. Front. Public Health 2022, 10, 995314. [Google Scholar] [CrossRef]
- Ma, T.C.; Zhou, J.; Wang, C.X.; Lin, Z.Z.; Gao, F. Associations between the Healthy Eating Index-2015 and S-Klotho plasma levels: A cross-sectional analysis in middle-to-older aged adults. Front. Nutr. 2022, 9, 904745. [Google Scholar] [CrossRef]
- Zipf, G.; Chiappa, M.; Porter, K.S.; Ostchega, Y.; Lewis, B.G.; Dostal, J. National health and nutrition examination survey: Plan and operations, 1999–2010. Vital Health Stat. 1 2013, 1–37. [Google Scholar]
- National Health and Nutrition Examination Survey. NCHS Ethics Review Board (ERB) Approval. 2011. Available online: https://www.cdc.gov/nchs/nhanes/irba98.htm (accessed on 22 May 2023).
- von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. BMJ 2007, 335, 806–808. [Google Scholar] [CrossRef] [Green Version]
- Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Kirkpatrick, S.I.; Lerman, J.L.; Tooze, J.A.; Wilson, M.M.; Reedy, J. Update of the Healthy Eating Index: HEI-2015. J. Acad. Nutr. Diet. 2018, 118, 1591–1602. [Google Scholar] [CrossRef] [Green Version]
- Yin, J.; Huang, Y.; Liu, G.; Wang, L.; Shan, Z.; Liu, L. Trends in dietary macronutrient composition and diet quality among US adults with diagnosed and undiagnosed elevated glycemic status: A serial cross-sectional study. Am. J. Clin. Nutr. 2022, 115, 1602–1611. [Google Scholar] [CrossRef] [PubMed]
- Kirkpatrick, S.I.; Reedy, J.; Krebs-Smith, S.M.; Pannucci, T.E.; Subar, A.F.; Wilson, M.M.; Lerman, J.L.; Tooze, J.A. Applications of the Healthy Eating Index for Surveillance, Epidemiology, and Intervention Research: Considerations and Caveats. J. Acad. Nutr. Diet. 2018, 118, 1603–1621. [Google Scholar] [CrossRef] [PubMed]
- Levey, A.S.; Stevens, L.A.; Schmid, C.H.; Zhang, Y.L.; Castro, A.F., 3rd; Feldman, H.I.; Kusek, J.W.; Eggers, P.; Van Lente, F.; Greene, T.; et al. A new equation to estimate glomerular filtration rate. Ann. Intern. Med. 2009, 150, 604–612. [Google Scholar] [CrossRef] [PubMed]
- Yamazaki, Y.; Imura, A.; Urakawa, I.; Shimada, T.; Murakami, J.; Aono, Y.; Hasegawa, H.; Yamashita, T.; Nakatani, K.; Saito, Y.; et al. Establishment of sandwich ELISA for soluble alpha-Klotho measurement: Age-dependent change of soluble alpha-Klotho levels in healthy subjects. Biochem. Biophys. Res. Commun. 2010, 398, 513–518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, A.; Du, M.; Chen, Y.; Marks, L.A.M.; Visser, A.; Xu, S.; Tjakkes, G.E. Periodontitis and cognitive impairment in older adults: The mediating role of mitochondrial dysfunction. J. Periodontol. 2022, 93, 1302–1313. [Google Scholar] [CrossRef]
- Albert, J.M.; Nelson, S. Generalized causal mediation analysis. Biometrics 2011, 67, 1028–1038. [Google Scholar] [CrossRef] [Green Version]
- Mera-Gaona, M.; Neumann, U.; Vargas-Canas, R.; López, D.M. Evaluating the impact of multivariate imputation by MICE in feature selection. PLoS ONE 2021, 16, e0254720. [Google Scholar] [CrossRef]
- Cai, Q.; Dekker, L.H.; Vinke, P.C.; Corpeleijn, E.; Bakker, S.J.L.; de Borst, M.H.; Navis, G.J. Diet quality and incident chronic kidney disease in the general population: The Lifelines Cohort Study. Clin. Nutr. 2021, 40, 5099–5105. [Google Scholar] [CrossRef]
- Lin, J.; Fung, T.T.; Hu, F.B.; Curhan, G.C. Association of dietary patterns with albuminuria and kidney function decline in older white women: A subgroup analysis from the Nurses’ Health Study. Am. J. Kidney Dis. 2011, 57, 245–254. [Google Scholar] [CrossRef] [Green Version]
- Millar, S.R.; Navarro, P.; Harrington, J.M.; Perry, I.J.; Phillips, C.M. Dietary Quality Determined by the Healthy Eating Index-2015 and Biomarkers of Chronic Low-Grade Inflammation: A Cross-Sectional Analysis in Middle-to-Older Aged Adults. Nutrients 2021, 13, 222. [Google Scholar] [CrossRef]
- Zhao, Y.; Meng, C.; Wang, Y.; Huang, H.; Liu, W.; Zhang, J.F.; Zhao, H.; Feng, B.; Leung, P.S.; Xia, Y. IL-1β inhibits β-Klotho expression and FGF19 signaling in hepatocytes. Am. J. Physiol. Endocrinol. Metab. 2016, 310, E289–E300. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cao, X.; Zhang, J.; Fu, J.; Mohedaner, M.; Danzengzhuoga; Sun, X.; Yang, G.; Yang, Z.; Kuo, C.-L.; et al. Accelerated Aging Mediates the Associations of Unhealthy Lifestyles with Cardiovascular Disease, Cancer, and Mortality: Two Large Prospective Cohort Studies. medRxiv 2022. [Google Scholar] [CrossRef]
Whole Population | |
---|---|
Number | 12,817 |
HEI-2015 | 55.2 ± 13.4 |
eGFR (mL/min per 1.73 m2) | 86.8 ± 19.8 |
UACR (mg/g) | 7.6 (4.9–15.1) |
α-Klotho (pg/mL) | 855.4 ± 310.6 |
Age (years) | 57.7 ± 10.8 |
Sex (Female, %) | 51.5 |
Race (%) | |
Non-Hispanic white | 44.1 |
Non-Hispanic Black | 19.7 |
Hispanic | 27.4 |
Others | 8.7 |
Body weight | |
Normal weight | 23.7 |
Overweight | 34.7 |
Obesity | 41.6 |
Self-reported hypertension (yes, %) | 46.5 |
Self-reported diabetes (yes, %) | 18.3 |
Self-reported cardiovascular disease (yes, %) | 10.6 |
Smoking status (%) | |
Current | 19.5 |
Former | 29.4 |
Never | 51.1 |
Physical activity (%) | |
Vigorous | 13.6 |
Moderate | 21.0 |
Low | 65.4 |
Energy intake (kcal/day) | 3720 ± 1597 |
Alcohol intake (%) | |
Heavy | 16.2 |
Moderate | 35.2 |
Never | 48.6 |
Education level (%) | |
College or higher | 50.3 |
High school | 22.2 |
Less than high school | 27.5 |
Annual household income (USD, %) | |
>75,000 | 25.8 |
20,000–75,000 | 50.3 |
<20,000 | 23.8 |
Weighted β Coefficient (95% CI) for eGFR | |||
---|---|---|---|
Model 1 | Model 2 | Model 3 | |
Overall HEI-2015 | 0.86 (0.57, 1.14) * | 1.11 (0.81, 1.41) * | 0.94 (0.64, 1.23) * |
Total fruits | 0.47 (0.18, 0.76) * | 0.68 (0.39, 0.98) * | 0.55 (0.26, 0.85) * |
Whole fruits | 0.59 (0.30, 0.88) * | 0.78 (0.48, 1.08) * | 0.69 (0.40, 0.99) * |
Total vegetables | 0.47 (0.18, 0.76) * | 0.60 (0.31, 0.89) * | 0.59 (0.30, 0.88) * |
Greens and beans | 0.65 (0.36, 0.94) * | 0.72 (0.43, 1.00) * | 0.63 (0.34, 0.92) * |
Whole grain | 0.43 (0.14, 0.71) * | 0.59 (0.29, 0.88) * | 0.56 (0.27, 0.85) * |
Refined grain | −0.06 (−0.36, 0.23) | −0.01 (−0.30, 0.29) | −0.14 (−0.43, 0.16) |
Total dairy | 0.14 (−0.15, 0.44) | 0.21 (−0.09, 0.50) | 0.17 (−0.12, 0.46) |
Total protein | −0.14 (−0.42, 0.15) | −0.11 (−0.39, 0.18) | −0.02 (−0.30, 0.27) |
Seafood and plant protein | 0.62 (0.33, 0.90) * | 0.70 (0.41, 0.99) * | 0.63 (0.34, 0.92) * |
Fatty acid | 0.26 (−0.03, 0.54) | 0.31 (0.03, 0.60) * | 0.31 (0.02, 0.59) * |
Saturated fat | 0.40 (0.11, 0.69) * | 0.44 (0.15, 0.73) * | 0.31 (0.02, 0.60) * |
Sodium | 0.18 (−0.11, 0.46) | 0.08 (−0.20, 0.37) | −0.17 (−0.46, 0.12) |
Added sugar | 0.49 (0.20, 0.78) * | 0.64 (0.34, 0.93) * | 0.76 (0.47, 1.06) * |
Weighted β Coefficient (95% CI) for eGFR | ||||
---|---|---|---|---|
Mediator: α-Klotho | Total Effect | Direct Effect | Indirect Effect | Proportion Mediated, % (95%CI) |
Overall HEI-2015 | 0.94 (0.64, 1.23) * | 0.88 (0.59, 1.19) * | 0.05 (0.02, 0.08) * | 5.8 (2.6, 10.0) * |
Total fruits | 0.55 (0.26, 0.85) * | 0.49 (0.20, 0.82) * | 0.06 (0.03, 0.09) * | 10.5 (4.3, 23.0) * |
Whole fruits | 0.69 (0.40, 0.99) * | 0.62 (0.31, 0.90) * | 0.07 (0.04, 0.10) * | 9.6 (5.1, 19.0) * |
Total vegetables | 0.59 (0.30, 0.88) * | 0.57 (0.27, 0.87) * | 0.02 (−0.01, 0.06) | - |
Greens and beans | 0.63 (0.34, 0.92) * | 0.60 (0.33, 0.88) * | 0.04 (0.01, 0.07) * | 5.6 (1.2, 13.0) * |
Whole grain | 0.56 (0.27, 0.85) * | 0.51 (0.21, 0.82) * | 0.05 (0.02, 0.08) * | 8.4 (3.3, 20.0) * |
Refined grain | −0.14 (−0.43, 0.16) | −0.16 (−0.45, 0.12) | 0.02 (−0.01, 0.05) | - |
Total dairy | 0.17 (−0.12, 0.46) | 0.13 (−0.15, 0.41) | 0.04 (−0.01, 0.07) | - |
Total protein | −0.02 (−0.30, 0.27) | −0.04 (−0.34, 0.23) | 0.03 (−0.01, 0.06) | - |
Seafood and plant protein | 0.63 (0.34, 0.92) * | 0.60 (0.31, 0.91) * | 0.03 (−0.01, 0.05) | - |
Fatty acid | 0.31 (0.02, 0.59) * | 0.29 (−0.01, 0.60) | 0.02 (−0.01, 0.05) | - |
Saturated fat | 0.31 (0.02, 0.60) * | 0.32 (0.02, 0.61) * | −0.01 (−0.04, 0.02) | - |
Sodium | −0.17 (−0.46, 0.12) | −0.15 (−0.45, 0.12) | −0.02 (−0.05, 0.01) | - |
Added sugar | 0.76 (0.47, 1.06) * | 0.79 (0.50, 1.08) * | −0.02 (−0.06, 0.01) | - |
Weighted β Coefficient (95%CI) for eGFR | ||||
---|---|---|---|---|
Mediator: α-Klotho | Total Effect | Direct Effect | Indirect Effect | Proportion Mediated % (95% CI) |
Age (years) | ||||
40–59 | 0.59 (0.21, 0.96) * | 0.56 (0.18, 0.93) * | 0.03 (−0.01, 0.06) | - |
60–79 | 1.30 (0.87, 1.77) * | 1.20 (0.76, 1.67) * | 0.10 (0.04, 0.16) * | 7.6 (3.2, 14.0) * |
Sex | ||||
Male | 0.92 (0.49, 1.28) * | 0.83 (0.41, 1.20) * | 0.09 (0.04, 0.14) * | 9.6 (4.5, 20.0) * |
Female | 0.90 (0.50, 1.32) * | 0.88 (0.48, 1.29) * | 0.03 (−0.01, 0.06) | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Q.; Hu, S.; Qi, C.; Yin, J.; Xu, S.; Hou, F.F.; Li, A. Serum Anti-Aging Protein α-Klotho Mediates the Association between Diet Quality and Kidney Function. Nutrients 2023, 15, 2744. https://doi.org/10.3390/nu15122744
Cai Q, Hu S, Qi C, Yin J, Xu S, Hou FF, Li A. Serum Anti-Aging Protein α-Klotho Mediates the Association between Diet Quality and Kidney Function. Nutrients. 2023; 15(12):2744. https://doi.org/10.3390/nu15122744
Chicago/Turabian StyleCai, Qingqing, Shixian Hu, Cancan Qi, Jiawei Yin, Shulan Xu, Fan Fan Hou, and An Li. 2023. "Serum Anti-Aging Protein α-Klotho Mediates the Association between Diet Quality and Kidney Function" Nutrients 15, no. 12: 2744. https://doi.org/10.3390/nu15122744
APA StyleCai, Q., Hu, S., Qi, C., Yin, J., Xu, S., Hou, F. F., & Li, A. (2023). Serum Anti-Aging Protein α-Klotho Mediates the Association between Diet Quality and Kidney Function. Nutrients, 15(12), 2744. https://doi.org/10.3390/nu15122744