Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants and Sample Analysis
2.2. Dietary Nutrient Analysis
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rhee, K.E.; Phelan, S.; McCaffery, J. Early determinants of obesity: Genetic, epigenetic, and in utero influences. Int. J. Pediatr. 2012, 2012, 463850. [Google Scholar] [CrossRef] [PubMed]
- NCD Risk Factor Collaboration (NCD-RisC). Worldwide trends in body-mass index, underweight, overweight, and obesity from 1975 to 2016: A pooled analysis of 2416 population-based measurement studies in 128.9 million children, adolescents, and adults. Lancet 2017, 390, 2627–2642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qasim, A.; Turcotte, M.; de Souza, R.J.; Samaan, M.C.; Champredon, D.; Dushoff, J.; Speakman, J.R.; Meyre, D. On the origin of obesity: Identifying the biological, environmental and cultural drivers of genetic risk among human populations. Obes. Rev. 2018, 19, 121–149. [Google Scholar] [CrossRef] [PubMed]
- Pantalone, K.M.; Hobbs, T.M.; Chagin, K.M.; Kong, S.X.; Wells, B.J.; Kattan, M.W.; Bouchard, J.; Sakurada, B.; Milinovich, A.; Weng, W.; et al. Prevalence and recognition of obesity and its associated comorbidities: Cross-sectional analysis of electronic health record data from a large US integrated health system. BMJ Open 2017, 7, e017583. [Google Scholar] [CrossRef]
- Smith, K.B.; Smith, M.S. Obesity Statistics. Prim. Care 2016, 43, 121–135. [Google Scholar] [CrossRef]
- Simmonds, M.; Llewellyn, A.; Owen, C.G.; Woolacott, N. Predicting adult obesity from childhood obesity: A systematic review and meta-analysis. Obes. Rev. 2016, 17, 95–107. [Google Scholar] [CrossRef] [Green Version]
- Johnson, V.R.; Acholonu, N.O.; Dolan, A.C.; Krishnan, A.; Wang, E.H.; Stanford, F.C. Racial Disparities in Obesity Treatment Among Children and Adolescents. Curr. Obes. Rep. 2021, 10, 342–350. [Google Scholar] [CrossRef]
- Weinhold, B. Epigenetics: The science of change. Environ. Health Perspect. 2006, 114, A160–A167. [Google Scholar] [CrossRef] [Green Version]
- Pokrywka, M.; Kiec-Wilk, B.; Polus, A.; Wybranska, I. DNA methylation in obesity. Postepy Hig. Med. Dosw. (Online) 2014, 68, 1383–1391. [Google Scholar] [CrossRef]
- Liu, L.; Li, Y.; Tollefsbol, T.O. Gene-environment interactions and epigenetic basis of human diseases. Curr. Issues Mol. Biol. 2008, 10, 25–36. [Google Scholar]
- Giglio, R.V.; Stoian, A.P.; Patti, A.M.; Rizvi, A.A.; Sukhorukov, V.; Ciaccio, M.; Orekhov, A.; Rizzo, M. Genetic and Epigenetic Biomarkers for Diagnosis, Prognosis and Treatment of Metabolic Syndrome. Curr. Pharm. Des. 2021, 27, 3729–3740. [Google Scholar] [CrossRef]
- Sayols-Baixeras, S.; Subirana, I.; Fernandez-Sanles, A.; Senti, M.; Lluis-Ganella, C.; Marrugat, J.; Elosua, R. DNA methylation and obesity traits: An epigenome-wide association study. The REGICOR study. Epigenetics 2017, 12, 909–916. [Google Scholar] [CrossRef]
- Crujeiras, A.B.; Diaz-Lagares, A.; Sandoval, J.; Milagro, F.I.; Navas-Carretero, S.; Carreira, M.C.; Gomez, A.; Hervas, D.; Monteiro, M.P.; Casanueva, F.F.; et al. DNA methylation map in circulating leukocytes mirrors subcutaneous adipose tissue methylation pattern: A genome-wide analysis from non-obese and obese patients. Sci. Rep. 2017, 7, 41903. [Google Scholar] [CrossRef] [Green Version]
- Samblas, M.; Milagro, F.I.; Martinez, A. DNA methylation markers in obesity, metabolic syndrome, and weight loss. Epigenetics 2019, 14, 421–444. [Google Scholar] [CrossRef]
- Shen, J.; Zhu, B. Integrated analysis of the gene expression profile and DNA methylation profile of obese patients with type 2 diabetes. Mol. Med. Rep. 2018, 17, 7636–7644. [Google Scholar] [CrossRef] [Green Version]
- Castellano-Castillo, D.; Moreno-Indias, I.; Sanchez-Alcoholado, L.; Ramos-Molina, B.; Alcaide-Torres, J.; Morcillo, S.; Ocana-Wilhelmi, L.; Tinahones, F.; Queipo-Ortuno, M.I.; Cardona, F. Altered Adipose Tissue DNA Methylation Status in Metabolic Syndrome: Relationships Between Global DNA Methylation and Specific Methylation at Adipogenic, Lipid Metabolism and Inflammatory Candidate Genes and Metabolic Variables. J. Clin. Med. 2019, 8, 87. [Google Scholar] [CrossRef] [Green Version]
- Crujeiras, A.B.; Diaz-Lagares, A.; Moreno-Navarrete, J.M.; Sandoval, J.; Hervas, D.; Gomez, A.; Ricart, W.; Casanueva, F.F.; Esteller, M.; Fernandez-Real, J.M. Genome-wide DNA methylation pattern in visceral adipose tissue differentiates insulin-resistant from insulin-sensitive obese subjects. Transl. Res. 2016, 178, 13–24.e5. [Google Scholar] [CrossRef] [Green Version]
- Lorenzo, P.M.; Izquierdo, A.G.; Diaz-Lagares, A.; Carreira, M.C.; Macias-Gonzalez, M.; Sandoval, J.; Cueva, J.; Lopez-Lopez, R.; Casanueva, F.F.; Crujeiras, A.B. ZNF577 Methylation Levels in Leukocytes From Women With Breast Cancer Is Modulated by Adiposity, Menopausal State, and the Mediterranean Diet. Front. Endocrinol. 2020, 11, 245. [Google Scholar] [CrossRef]
- Waddington, C.H. The epigenotype. 1942. Int. J. Epidemiol. 2012, 41, 10–13. [Google Scholar] [CrossRef] [Green Version]
- Milagro, F.I.; Campion, J.; Cordero, P.; Goyenechea, E.; Gomez-Uriz, A.M.; Abete, I.; Zulet, M.A.; Martinez, J.A. A dual epigenomic approach for the search of obesity biomarkers: DNA methylation in relation to diet-induced weight loss. FASEB J. 2011, 25, 1378–1389. [Google Scholar] [CrossRef] [Green Version]
- Moleres, A.; Campion, J.; Milagro, F.I.; Marcos, A.; Campoy, C.; Garagorri, J.M.; Gomez-Martinez, S.; Martinez, J.A.; Azcona-Sanjulian, M.C.; Marti, A.; et al. Differential DNA methylation patterns between high and low responders to a weight loss intervention in overweight or obese adolescents: The EVASYON study. FASEB J. 2013, 27, 2504–2512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Izquierdo, A.G.; Crujeiras, A.B. Obesity-Related Epigenetic Changes After Bariatric Surgery. Front. Endocrinol. 2019, 10, 232. [Google Scholar] [CrossRef] [PubMed]
- Nicoletti, C.F.; Pinhel, M.A.S.; Diaz-Lagares, A.; Casanueva, F.F.; Jacome, A.; Pinhanelli, V.C.; de Oliveira, B.A.P.; Crujeiras, A.B.; Nonino, C.B. DNA methylation screening after roux-en Y gastric bypass reveals the epigenetic signature stems from genes related to the surgery per se. BMC Med. Genom. 2019, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Nitert, M.D.; Dayeh, T.; Volkov, P.; Elgzyri, T.; Hall, E.; Nilsson, E.; Yang, B.T.; Lang, S.; Parikh, H.; Wessman, Y.; et al. Impact of an exercise intervention on DNA methylation in skeletal muscle from first-degree relatives of patients with type 2 diabetes. Diabetes 2012, 61, 3322–3332. [Google Scholar] [CrossRef] [Green Version]
- Ronn, T.; Volkov, P.; Davegardh, C.; Dayeh, T.; Hall, E.; Olsson, A.H.; Nilsson, E.; Tornberg, A.; Dekker Nitert, M.; Eriksson, K.F.; et al. A six months exercise intervention influences the genome-wide DNA methylation pattern in human adipose tissue. PLoS Genet. 2013, 9, e1003572. [Google Scholar] [CrossRef]
- Arora, I.; Sharma, M.; Sun, L.Y.; Tollefsbol, T.O. The Epigenetic Link between Polyphenols, Aging and Age-Related Diseases. Genes 2020, 11, 1094. [Google Scholar] [CrossRef]
- Lorenzo, P.M.; Izquierdo, A.G.; Rodriguez-Carnero, G.; Fernandez-Pombo, A.; Iglesias, A.; Carreira, M.C.; Tejera, C.; Bellido, D.; Martinez-Olmos, M.A.; Leis, R.; et al. Epigenetic Effects of Healthy Foods and Lifestyle Habits from the Southern European Atlantic Diet Pattern: A Narrative Review. Adv. Nutr. 2022, 13, 1725–1747. [Google Scholar] [CrossRef]
- Lillycrop, K.A.; Hoile, S.P.; Grenfell, L.; Burdge, G.C. DNA methylation, ageing and the influence of early life nutrition. Proc. Nutr. Soc. 2014, 73, 413–421. [Google Scholar] [CrossRef] [Green Version]
- Choi, S.W.; Friso, S. Epigenetics: A New Bridge between Nutrition and Health. Adv. Nutr. 2010, 1, 8–16. [Google Scholar] [CrossRef] [Green Version]
- Davis, C.D.; Ross, S.A. Dietary components impact histone modifications and cancer risk. Nutr. Rev. 2007, 65, 88–94. [Google Scholar] [CrossRef]
- Kim, K.C.; Friso, S.; Choi, S.W. DNA methylation, an epigenetic mechanism connecting folate to healthy embryonic development and aging. J. Nutr. Biochem. 2009, 20, 917–926. [Google Scholar] [CrossRef] [Green Version]
- Alavian-Ghavanini, A.; Ruegg, J. Understanding Epigenetic Effects of Endocrine Disrupting Chemicals: From Mechanisms to Novel Test Methods. Basic Clin. Pharmacol. Toxicol. 2018, 122, 38–45. [Google Scholar] [CrossRef]
- Bokor, S.; Vass, R.A.; Funke, S.; Ertl, T.; Molnar, D. Epigenetic Effect of Maternal Methyl-Group Donor Intake on Offspring’s Health and Disease. Life 2022, 12, 609. [Google Scholar] [CrossRef]
- Patel, P.; Selvaraju, V.; Babu, J.R.; Wang, X.; Geetha, T. Racial Disparities in Methylation of NRF1, FTO, and LEPR Gene in Childhood Obesity. Genes 2022, 13, 2030. [Google Scholar] [CrossRef]
- Kuczmarski, R.J.; Ogden, C.L.; Guo, S.S.; Grummer-Strawn, L.M.; Flegal, K.M.; Mei, Z.; Wei, R.; Curtin, L.R.; Roche, A.F.; Johnson, C.L. 2000 CDC Growth Charts for the United States: Methods and Development; Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics: Atlanta, GA, USA, 2002; pp. 1–190.
- Anderson, O.S.; Sant, K.E.; Dolinoy, D.C. Nutrition and epigenetics: An interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J. Nutr. Biochem. 2012, 23, 853–859. [Google Scholar] [CrossRef] [Green Version]
- Selhub, J. Homocysteine metabolism. Annu. Rev. Nutr. 1999, 19, 217–246. [Google Scholar] [CrossRef] [Green Version]
- Crider, K.S.; Yang, T.P.; Berry, R.J.; Bailey, L.B. Folate and DNA methylation: A review of molecular mechanisms and the evidence for folate’s role. Adv. Nutr. 2012, 3, 21–38. [Google Scholar] [CrossRef] [Green Version]
- Bailey, R.L.; Mills, J.L.; Yetley, E.A.; Gahche, J.J.; Pfeiffer, C.M.; Dwyer, J.T.; Dodd, K.W.; Sempos, C.T.; Betz, J.M.; Picciano, M.F. Unmetabolized serum folic acid and its relation to folic acid intake from diet and supplements in a nationally representative sample of adults aged > or =60 y in the United States. Am. J. Clin. Nutr. 2010, 92, 383–389. [Google Scholar] [CrossRef] [Green Version]
- Stover, P.J. One-carbon metabolism-genome interactions in folate-associated pathologies. J. Nutr. 2009, 139, 2402–2405. [Google Scholar] [CrossRef] [Green Version]
- Ramos-Lopez, O.; Samblas, M.; Milagro, F.I.; Zulet, M.A.; Mansego, M.L.; Riezu-Boj, J.I.; Martinez, J.A. Association of low dietary folate intake with lower CAMKK2 gene methylation, adiposity, and insulin resistance in obese subjects. Nutr. Res. 2018, 50, 53–62. [Google Scholar] [CrossRef]
- Bartelt, A.; Widenmaier, S.B.; Schlein, C.; Johann, K.; Goncalves, R.L.S.; Eguchi, K.; Fischer, A.W.; Parlakgul, G.; Snyder, N.A.; Nguyen, T.B.; et al. Brown adipose tissue thermogenic adaptation requires Nrf1-mediated proteasomal activity. Nat. Med. 2018, 24, 292–303. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Chan, J.Y. Nrf1 is targeted to the endoplasmic reticulum membrane by an N-terminal transmembrane domain. Inhibition of nuclear translocation and transacting function. J. Biol. Chem. 2006, 281, 19676–19687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, X.; Yang, Y.; Sun, B.F.; Zhao, Y.L.; Yang, Y.G. FTO and obesity: Mechanisms of association. Curr. Diabetes Rep. 2014, 14, 486. [Google Scholar] [CrossRef] [PubMed]
- Dina, C.; Meyre, D.; Gallina, S.; Durand, E.; Korner, A.; Jacobson, P.; Carlsson, L.M.; Kiess, W.; Vatin, V.; Lecoeur, C.; et al. Variation in FTO contributes to childhood obesity and severe adult obesity. Nat. Genet. 2007, 39, 724–726. [Google Scholar] [CrossRef]
- Gunanti, I.R.; Marks, G.C.; Al-Mamun, A.; Long, K.Z. Low serum vitamin B-12 and folate concentrations and low thiamin and riboflavin intakes are inversely associated with greater adiposity in Mexican American children. J. Nutr. 2014, 144, 2027–2033. [Google Scholar] [CrossRef] [Green Version]
- Mahabir, S.; Ettinger, S.; Johnson, L.; Baer, D.J.; Clevidence, B.A.; Hartman, T.J.; Taylor, P.R. Measures of adiposity and body fat distribution in relation to serum folate levels in postmenopausal women in a feeding study. Eur. J. Clin. Nutr. 2008, 62, 644–650. [Google Scholar] [CrossRef] [Green Version]
- Kimmons, J.E.; Blanck, H.M.; Tohill, B.C.; Zhang, J.; Khan, L.K. Associations between body mass index and the prevalence of low micronutrient levels among US adults. MedGenMed 2006, 8, 59. [Google Scholar]
- Tinker, S.C.; Hamner, H.C.; Berry, R.J.; Bailey, L.B.; Pfeiffer, C.M. Does obesity modify the association of supplemental folic acid with folate status among nonpregnant women of childbearing age in the United States? Birth Defects Res. A Clin. Mol. Teratol. 2012, 94, 749–755. [Google Scholar] [CrossRef]
- Mlodzik-Czyzewska, M.A.; Malinowska, A.M.; Chmurzynska, A. Low folate intake and serum levels are associated with higher body mass index and abdominal fat accumulation: A case control study. Nutr. J. 2020, 19, 53. [Google Scholar] [CrossRef]
- Oliai Araghi, S.; Braun, K.V.E.; van der Velde, N.; van Dijk, S.C.; van Schoor, N.M.; Zillikens, M.C.; de Groot, L.; Uitterlinden, A.G.; Stricker, B.H.; Voortman, T.; et al. B-vitamins and body composition: Integrating observational and experimental evidence from the B-PROOF study. Eur. J. Nutr. 2020, 59, 1253–1262. [Google Scholar] [CrossRef] [Green Version]
- da Silva, V.R.; Hausman, D.B.; Kauwell, G.P.; Sokolow, A.; Tackett, R.L.; Rathbun, S.L.; Bailey, L.B. Obesity affects short-term folate pharmacokinetics in women of childbearing age. Int. J. Obes. 2013, 37, 1608–1610. [Google Scholar] [CrossRef] [Green Version]
- Mahmoud, A.M.; Ali, M.M. Methyl Donor Micronutrients that Modify DNA Methylation and Cancer Outcome. Nutrients 2019, 11, 608. [Google Scholar] [CrossRef] [Green Version]
- Shorter, K.R.; Felder, M.R.; Vrana, P.B. Consequences of dietary methyl donor supplements: Is more always better? Prog. Biophys. Mol. Biol. 2015, 118, 14–20. [Google Scholar] [CrossRef]
- Flores-Sierra, J.; Arredondo-Guerrero, M.; Cervantes-Paz, B.; Rodriguez-Rios, D.; Alvarado-Caudillo, Y.; Nielsen, F.C.; Wrobel, K.; Wrobel, K.; Zaina, S.; Lund, G. The trans fatty acid elaidate affects the global DNA methylation profile of cultured cells and in vivo. Lipids Health Dis. 2016, 15, 75. [Google Scholar] [CrossRef] [Green Version]
- Lai, C.Q.; Parnell, L.D.; Smith, C.E.; Guo, T.; Sayols-Baixeras, S.; Aslibekyan, S.; Tiwari, H.K.; Irvin, M.R.; Bender, C.; Fei, D.; et al. Carbohydrate and fat intake associated with risk of metabolic diseases through epigenetics of CPT1A. Am. J. Clin. Nutr. 2020, 112, 1200–1211. [Google Scholar] [CrossRef]
- Doaei, S.; Kalantari, N.; Izadi, P.; Salonurmi, T.; Jarrahi, A.M.; Rafieifar, S.; Azizi Tabesh, G.; Rahimzadeh, G.; Gholamalizadeh, M.; Goodarzi, M.O. Interactions between macro-nutrients’ intake, FTO and IRX3 gene expression, and FTO genotype in obese and overweight male adolescents. Adipocyte 2019, 8, 386–391. [Google Scholar] [CrossRef]
- Samblas, M.; Milagro, F.I.; Gomez-Abellan, P.; Martinez, J.A.; Garaulet, M. Methylation on the Circadian Gene BMAL1 Is Associated with the Effects of a Weight Loss Intervention on Serum Lipid Levels. J. Biol. Rhythm. 2016, 31, 308–317. [Google Scholar] [CrossRef] [Green Version]
- Sehgal, R.; Perfilyev, A.; Mannisto, V.; Agren, J.; Nilsson, E.; Kakela, P.; Ling, C.; de Mello, V.D.; Pihlajamaki, J. Liver saturated fat content associates with hepatic DNA methylation in obese individuals. Clin. Epigenetics 2023, 15, 21. [Google Scholar] [CrossRef]
- Bozack, A.K.; Rifas-Shiman, S.L.; Coull, B.A.; Baccarelli, A.A.; Wright, R.O.; Amarasiriwardena, C.; Gold, D.R.; Oken, E.; Hivert, M.F.; Cardenas, A. Prenatal metal exposure, cord blood DNA methylation and persistence in childhood: An epigenome-wide association study of 12 metals. Clin. Epigenetics 2021, 13, 208. [Google Scholar] [CrossRef]
- Lindner, S.; Lucchini, R.; Broberg, K. Genetics and Epigenetics of Manganese Toxicity. Curr. Environ. Health Rep. 2022, 9, 697–713. [Google Scholar] [CrossRef]
- Karnes, J.H.; Arora, A.; Feng, J.; Steiner, H.E.; Sulieman, L.; Boerwinkle, E.; Clark, C.; Cicek, M.; Cohn, E.; Gebo, K.; et al. Racial, ethnic, and gender differences in obesity and body fat distribution: An All of Us Research Program demonstration project. PLoS ONE 2021, 16, e0255583. [Google Scholar] [CrossRef] [PubMed]
- McDaniel, T.; Wilson, D.K.; Coulon, M.S.; Sweeney, A.M.; Van Horn, M.L. Interaction of Neighborhood and Genetic Risk on Waist Circumference in African-American Adults: A Longitudinal Study. Ann. Behav. Med. 2021, 55, 708–719. [Google Scholar] [CrossRef] [PubMed]
- Geetha, T. Novel Differentially Methylated Regions Identified by Genome-Wide DNA Methylation Analyses Contribute to Racial Disparities in Childhood Obesity. Genes 2023, 14, 1098. [Google Scholar] [CrossRef]
- Dinour, L.M.; Bergen, D.; Yeh, M.C. The food insecurity-obesity paradox: A review of the literature and the role food stamps may play. J. Am. Diet. Assoc. 2007, 107, 1952–1961. [Google Scholar] [CrossRef]
- Crawford, P.B.; Webb, K.L. Unraveling the paradox of concurrent food insecurity and obesity. Am. J. Prev. Med. 2011, 40, 274–275. [Google Scholar] [CrossRef]
- Larson, N.I.; Story, M.T. Food insecurity and weight status among U.S. children and families: A review of the literature. Am. J. Prev. Med. 2011, 40, 166–173. [Google Scholar] [CrossRef]
- Leung, C.W.; Epel, E.S.; Ritchie, L.D.; Crawford, P.B.; Laraia, B.A. Food insecurity is inversely associated with diet quality of lower-income adults. J. Acad. Nutr. Diet. 2014, 114, 1943–1953.e2. [Google Scholar] [CrossRef]
- Leung, C.W.; Williams, D.R.; Villamor, E. Very low food security predicts obesity predominantly in California Hispanic men and women. Public Health Nutr. 2012, 15, 2228–2236. [Google Scholar] [CrossRef] [Green Version]
- Vedovato, G.M.; Surkan, P.J.; Jones-Smith, J.; Steeves, E.A.; Han, E.; Trude, A.C.; Kharmats, A.Y.; Gittelsohn, J. Food insecurity, overweight and obesity among low-income African-American families in Baltimore City: Associations with food-related perceptions. Public Health Nutr. 2016, 19, 1405–1416. [Google Scholar] [CrossRef] [Green Version]
Nutrients | Normal Weight | Overweight/ Obese | p Value | European American | African American | p Value |
---|---|---|---|---|---|---|
PMR of NRF1 (%) | 68.925 ± 6.45 | 102.716 ± 13.031 | 0.018 | 75.692 ± 8.857 | 96.217 ± 11.592 | 0.155 |
PMR of FTO (%) | 83.982 ± 17.499 | 168.24 ± 28.114 | 0.010 | 104.365 ± 19.412 | 147.612 ± 28.126 | 0.195 |
PMR of LEPR (%) | 121.406 ± 13.544 | 85.078 ± 7.319 | 0.025 | 62.543 ± 2.307 | 157.065 ± 15.176 | 0.000 |
Calories (kcal) | 2055.839 ± 110.41 | 2312.628 ± 118.573 | 0.116 | 2203.052 ± 113.764 | 2142.547 ± 116.239 | 0.714 |
Proteins (g) | 75.416 ± 3.906 | 88.849 ± 6.974 | 0.086 | 83.291 ± 5.881 | 79.733 ± 4.852 | 0.653 |
Carbohydrates (g) | 271.176 ± 16.539 | 303.724 ± 17.732 | 0.182 | 297.056 ± 17.906 | 273.068 ± 15.601 | 0.329 |
PUFA Fat (g) | 9.187 ± 0.953 | 10.472 ± 1.356 | 0.432 | 8.861 ± 1.096 | 10.96 ± 1.198 | 0.200 |
Trans Fat (g) | 0.214 ± 0.042 | 0.246 ± 0.056 | 0.647 | 0.216 ± 0.048 | 0.246 ± 0.049 | 0.657 |
Sugar (g) | 109.305 ± 9.27 | 137.352 ± 12.289 | 0.067 | 130.186 ± 11.862 | 112.724 ± 8.678 | 0.259 |
Added Sugar (g) | 38.791 ± 5.557 | 37.946 ± 7.282 | 0.926 | 34.928 ± 6.265 | 42.763 ± 6.403 | 0.389 |
Monosaccharide (g) | 3.12 ± 0.63 | 3.122 ± 0.822 | 0.999 | 4.511 ± 0.812 | 1.37 ± 0.415 | 0.002 |
Disaccharide (g) | 2.657 ± 0.558 | 2.867 ± 0.814 | 0.829 | 2.963 ± 0.513 | 2.493 ± 0.88 | 0.630 |
Oligosaccharides (g) | 119.66 ± 6.833 | 158.091 ± 21.668 | 0.078 | 143.503 ± 18.634 | 130.355 ± 7.553 | 0.551 |
Vitamin A-IU (IU) | 2723.929 ± 639.128 | 3116.007 ± 832.119 | 0.706 | 4133.752 ± 856.042 | 1363.155 ± 339.475 | 0.007 |
Vitamin A-RAE (mg) | 424.487 ± 33.793 | 543.855 ± 39.448 | 0.023 | 479.89 ± 37.172 | 481.208 ± 36.895 | 0.980 |
Retinol (mcg) | 334.447 ± 29.774 | 438.131 ± 33.648 | 0.022 | 350.436 ± 31.51 | 424.206 ± 32.143 | 0.108 |
Beta Carotene (mcg) | 696.732 ± 130.705 | 830.128 ± 198.743 | 0.568 | 921.153 ± 178.052 | 555.361 ± 131.361 | 0.117 |
Vitamin B1 (mg) | 1.095 ± 0.078 | 1.175 ± 0.101 | 0.527 | 1.043 ± 0.091 | 1.246 ± 0.082 | 0.108 |
Vitamin B2 (mg) | 1.453 ± 0.105 | 1.634 ± 0.1 | 0.218 | 1.422 ± 0.092 | 1.685 ± 0.116 | 0.073 |
Vitamin B3 (mg) | 15.682 ± 1.205 | 16.146 ± 1.437 | 0.804 | 13.595 ± 1.065 | 18.804 ± 1.518 | 0.005 |
Vitamin B3-NE (mg) | 17.943 ± 1.267 | 17.947 ± 1.625 | 0.998 | 15.463 ± 1.075 | 21.07 ± 1.758 | 0.005 |
Vitamin B6 (mg) | 1.315 ± 0.129 | 1.411 ± 0.141 | 0.613 | 1.147 ± 0.096 | 1.628 ± 0.17 | 0.011 |
Vitamin B12 (mcg) | 3.336 ± 0.396 | 4.144 ± 0.424 | 0.166 | 3.088 ± 0.33 | 4.504 ± 0.49 | 0.015 |
Vitamin C (mg) | 132.061 ± 32.341 | 151.565 ± 38.133 | 0.695 | 185.838 ± 43.068 | 84.976 ± 8.858 | 0.042 |
Vitamin D-IU (IU) | 165.923 ± 17.027 | 216.319 ± 19.893 | 0.056 | 175.31 ± 17.498 | 207.703 ± 19.862 | 0.223 |
Folate (mcg) | 267.393 ± 22.024 | 291.33 ± 30.814 | 0.522 | 263.297 ± 23.218 | 297.928 ± 30.041 | 0.356 |
Folate_DFE (mcg) | 317.276 ± 35.577 | 373.59 ± 47.336 | 0.337 | 310.995 ± 35.098 | 384.883 ± 48.577 | 0.209 |
Pantothenic Acid (mg) | 0.746 ± 0.092 | 0.691 ± 0.09 | 0.674 | 0.708 ± 0.091 | 0.736 ± 0.092 | 0.826 |
Fluoride (mg) | 0.051 ± 0.034 | 0.012 ± 0.005 | 0.286 | 0.044 ± 0.033 | 0.019 ± 0.007 | 0.516 |
Iron (mg) | 12.475 ± 0.739 | 14.885 ± 1.045 | 0.058 | 12.936 ± 0.861 | 14.449 ± 0.935 | 0.238 |
Manganese (mg) | 0.566 ± 0.074 | 0.988 ± 0.485 | 0.364 | 0.867 ± 0.409 | 0.633 ± 0.087 | 0.615 |
Selenium (mcg) | 45.071 ± 3.483 | 48.888 ± 5.108 | 0.530 | 44.638 ± 4.204 | 49.662 ± 4.311 | 0.411 |
Sodium (mg) | 2799.205 ± 154.008 | 3618.817 ± 365.68 | 0.033 | 3291.305 ± 327.413 | 3047.947 ± 144.326 | 0.534 |
Omega 3 (g) | 0.723 ± 0.078 | 0.745 ± 0.08 | 0.848 | 0.652 ± 0.066 | 0.835 ± 0.093 | 0.101 |
Omega 6 (g) | 7.723 ± 0.815 | 7.214 ± 0.755 | 0.651 | 6.255 ± 0.609 | 9.07 ± 0.968 | 0.012 |
Nutrients | Normal Weight | Overweight/Obese | ||||
---|---|---|---|---|---|---|
European American | African American | p Value | European American | African American | p Value | |
PMR of NRF1 (%) | 48.869 ± 4.254 | 90.364 ± 11.351 | 0.001 | 101.676 ± 15.738 | 104.3 ± 23.001 | 0.923 |
PMR of FTO (%) | 28.955 ± 1.965 | 142.805 ± 33.036 | 0.001 | 177.419 ± 33.618 | 154.252 ± 50.007 | 0.691 |
PMR of LEPR (%) | 64.074 ± 3.23 | 182.692 ± 22.981 | 0.000 | 61.061 ± 3.322 | 121.675 ± 14.647 | 0.000 |
PUFA Fat (g) | 7.176 ± 0.793 | 11.337 ± 1.71 | 0.028 | 10.493 ± 1.991 | 10.44 ± 1.643 | 0.985 |
Sugar (g) | 99.117 ± 13.414 | 120.197 ± 12.663 | 0.259 | 160.285 ± 18.053 | 102.406 ± 10.96 | 0.020 |
Added Sugar (g) | 27.617 ± 5.74 | 50.736 ± 9.33 | 0.036 | 42.01 ± 10.972 | 31.752 ± 7.773 | 0.496 |
Monosaccharide (g) | 4.625 ± 1.019 | 1.511 ± 0.604 | 0.012 | 4.399 ± 1.273 | 1.175 ± 0.542 | 0.054 |
Vitamin A-IU (IU) | 3814.841 ± 1088.595 | 1557.781 ± 574.091 | 0.077 | 4442.696 ± 1329.737 | 1094.385 ± 169.807 | 0.048 |
Vitamin B1 (mg) | 0.913 ± 0.094 | 1.29 ± 0.117 | 0.014 | 1.169 ± 0.152 | 1.186 ± 0.112 | 0.936 |
Vitamin B2 (mg) | 1.215 ± 0.124 | 1.709 ± 0.161 | 0.017 | 1.623 ± 0.126 | 1.652 ± 0.168 | 0.886 |
Vitamin B3 (mg) | 12.065 ± 1.051 | 19.549 ± 2.008 | 0.001 | 15.077 ± 1.814 | 17.775 ± 2.358 | 0.363 |
Vitamin B3-NE (mg) | 14.42 ± 1.017 | 21.708 ± 2.199 | 0.003 | 16.474 ± 1.875 | 20.19 ± 2.935 | 0.268 |
Vitamin B12 (mcg) | 2.766 ± 0.544 | 3.944 ± 0.566 | 0.139 | 3.4 ± 0.382 | 5.278 ± 0.852 | 0.029 |
Iron (mg) | 11.052 ± 0.887 | 13.996 ± 1.148 | 0.045 | 14.76 ± 1.401 | 15.076 ± 1.589 | 0.884 |
Manganese (mg) | 0.414 ± 0.089 | 0.729 ± 0.115 | 0.033 | 1.307 ± 0.799 | 0.5 ± 0.13 | 0.421 |
Omega 3 (g) | 0.571 ± 0.074 | 0.886 ± 0.135 | 0.042 | 0.731 ± 0.107 | 0.765 ± 0.121 | 0.839 |
Omega 6 (g) | 5.919 ± 0.769 | 9.652 ± 1.402 | 0.021 | 6.58 ± 0.949 | 8.227 ± 1.241 | 0.293 |
Nutrients | Normal Weight | Overweight/Obese | European American | African American | ||||
---|---|---|---|---|---|---|---|---|
r2 | p Value | r2 | p Value | r2 | p Value | r2 | p Value | |
Trans Fat (g) | −0.080 | 0.543 | 0.339 | 0.013 | 0.221 | 0.082 | 0.178 | 0.216 |
Fiber Soluble (g) | −0.090 | 0.496 | 0.155 | 0.268 | 0.156 | 0.222 | 0.288 | 0.043 |
Added Sugar (g) | 0.296 | 0.022 | −0.252 | 0.069 | −0.102 | 0.426 | −0.063 | 0.665 |
Oligosaccharide (g) | 0.273 | 0.035 | 0.050 | 0.723 | 0.197 | 0.122 | −0.007 | 0.963 |
Retinol (mcg) | 0.301 | 0.020 | −0.083 | 0.554 | 0.113 | 0.379 | 0.041 | 0.777 |
Vitamin B1 (mg) | 0.455 | 0.000 | −0.067 | 0.636 | 0.032 | 0.802 | 0.183 | 0.204 |
Vitamin B2 (mg) | 0.360 | 0.005 | −0.045 | 0.749 | 0.079 | 0.537 | 0.143 | 0.321 |
Vitamin B3 (mg) | 0.431 | 0.001 | −0.120 | 0.393 | 0.094 | 0.464 | −0.008 | 0.958 |
Vitamin B3-NE (mg) | 0.421 | 0.001 | −0.136 | 0.333 | 0.024 | 0.850 | 0.003 | 0.982 |
Vitamin B6 (mg) | 0.385 | 0.002 | −0.127 | 0.367 | 0.011 | 0.932 | 0.056 | 0.700 |
Vitamin B12 (mcg) | 0.306 | 0.017 | −0.150 | 0.283 | 0.020 | 0.877 | 0.016 | 0.915 |
Folate (mcg) | 0.363 | 0.004 | −0.069 | 0.622 | 0.048 | 0.710 | 0.083 | 0.569 |
Folate_DFE (mcg) | 0.283 | 0.029 | −0.011 | 0.935 | 0.125 | 0.329 | 0.051 | 0.727 |
Pantothenic Acid (mg) | 0.188 | 0.150 | 0.231 | 0.096 | 0.074 | 0.563 | 0.324 | 0.022 |
Fluoride (mg) | 0.015 | 0.907 | 0.450 | 0.001 | −0.015 | 0.908 | 0.457 | 0.001 |
Iron (mg) | 0.352 | 0.006 | 0.037 | 0.791 | 0.264 | 0.037 | 0.034 | 0.814 |
Manganese (mg) | 0.261 | 0.044 | 0.240 | 0.084 | 0.358 | 0.004 | 0.039 | 0.787 |
Nutrients | Normal Weight | Overweight/Obese | European American | African American | ||||
---|---|---|---|---|---|---|---|---|
r2 | p Value | r2 | p Value | r2 | p Value | r2 | p Value | |
Fiber Total (g) | 0.267 | 0.046 | −0.010 | 0.948 | 0.092 | 0.487 | 0.067 | 0.656 |
Fiber Soluble Total (g) | 0.099 | 0.470 | 0.185 | 0.204 | 0.253 | 0.053 | 0.343 | 0.020 |
Fiber Soluble (g) | 0.052 | 0.705 | 0.169 | 0.245 | 0.242 | 0.065 | 0.363 | 0.013 |
Vitamin B1 (mg) | 0.347 | 0.009 | −0.011 | 0.942 | 0.004 | 0.974 | 0.194 | 0.195 |
Vitamin B3 (mg) | 0.305 | 0.022 | −0.070 | 0.632 | 0.094 | 0.477 | 0.000 | 0.999 |
Vitamin B3-NE (mg) | 0.306 | 0.022 | −0.085 | 0.562 | 0.030 | 0.819 | 0.009 | 0.955 |
Folate (mcg) | 0.295 | 0.027 | 0.026 | 0.860 | 0.042 | 0.751 | 0.098 | 0.516 |
Pantothenic Acid (mg) | 0.189 | 0.163 | 0.233 | 0.107 | 0.127 | 0.338 | 0.321 | 0.030 |
Fluoride (mg) | 0.064 | 0.638 | 0.439 | 0.002 | −0.055 | 0.683 | 0.392 | 0.007 |
Iron (mg) | 0.281 | 0.036 | 0.089 | 0.543 | 0.244 | 0.063 | 0.060 | 0.692 |
Manganese (mg) | 0.234 | 0.082 | 0.237 | 0.102 | 0.359 | 0.005 | 0.043 | 0.775 |
Nutrients | Normal Weight | Overweight/Obese | European American | African American | ||||
---|---|---|---|---|---|---|---|---|
r2 | p Value | r2 | p Value | r2 | p Value | r2 | p Value | |
Calories (kcal) | 0.258 | 0.046 | −0.189 | 0.175 | 0.057 | 0.658 | 0.027 | 0.851 |
Proteins (g) | 0.296 | 0.022 | −0.126 | 0.370 | 0.093 | 0.469 | −0.005 | 0.974 |
Carbohydrates (g) | 0.286 | 0.026 | −0.232 | 0.094 | −0.018 | 0.889 | 0.097 | 0.501 |
PUFA Fat (g) | 0.276 | 0.032 | −0.124 | 0.376 | 0.047 | 0.712 | −0.001 | 0.993 |
Trans Fat (g) | −0.227 | 0.081 | 0.316 | 0.021 | 0.185 | 0.146 | 0.042 | 0.773 |
Sugar (g) | 0.264 | 0.042 | −0.170 | 0.222 | 0.052 | 0.685 | 0.050 | 0.730 |
Added Sugar (g) | 0.323 | 0.012 | −0.252 | 0.069 | −0.095 | 0.461 | 0.006 | 0.969 |
Disaccharide (g) | −0.142 | 0.280 | 0.291 | 0.035 | 0.106 | 0.409 | 0.171 | 0.234 |
Vitamin B1 (mg) | 0.492 | 0.000 | −0.095 | 0.499 | 0.069 | 0.592 | 0.195 | 0.174 |
Vitamin B2 (mg) | 0.309 | 0.016 | −0.009 | 0.948 | 0.196 | 0.124 | 0.087 | 0.550 |
Vitamin B3 (mg) | 0.424 | 0.001 | −0.139 | 0.320 | 0.146 | 0.252 | −0.008 | 0.954 |
Vitamin B3-NE (mg) | 0.437 | 0.000 | −0.181 | 0.195 | 0.064 | 0.618 | −0.004 | 0.980 |
Vitamin D-IU (IU) | −0.015 | 0.911 | 0.035 | 0.801 | 0.277 | 0.029 | −0.177 | 0.219 |
Pantothenic Acid (mg) | 0.242 | 0.063 | 0.252 | 0.069 | 0.129 | 0.314 | 0.332 | 0.018 |
Fluoride (mg) | −0.043 | 0.742 | 0.295 | 0.034 | −0.061 | 0.636 | 0.249 | 0.081 |
Iron (mg) | 0.303 | 0.019 | 0.070 | 0.616 | 0.301 | 0.017 | 0.060 | 0.681 |
Manganese (mg) | −0.104 | 0.430 | 0.351 | 0.010 | 0.482 | 0.000 | −0.156 | 0.278 |
Selenium (mcg) | 0.298 | 0.021 | −0.162 | 0.247 | −0.002 | 0.988 | 0.013 | 0.928 |
Omega 3 (g) | 0.279 | 0.031 | −0.134 | 0.340 | 0.017 | 0.898 | 0.042 | 0.772 |
Omega 6 (g) | 0.295 | 0.022 | −0.063 | 0.659 | 0.084 | 0.511 | 0.040 | 0.782 |
Nutrients | Normal Weight | Overweight/Obese | European American | African American | ||||
---|---|---|---|---|---|---|---|---|
r2 | p Value | r2 | p Value | r2 | p Value | r2 | p Value | |
Proteins (g) | 0.286 | 0.033 | −0.112 | 0.443 | 0.064 | 0.629 | 0.013 | 0.933 |
Carbohydrates (g) | 0.302 | 0.024 | −0.108 | 0.461 | 0.041 | 0.756 | 0.093 | 0.539 |
Vitamin B1 (mg) | 0.456 | 0.000 | −0.053 | 0.718 | 0.041 | 0.755 | 0.233 | 0.120 |
Vitamin B3 (mg) | 0.364 | 0.006 | −0.098 | 0.504 | 0.141 | 0.286 | 0.006 | 0.971 |
Vitamin B3-NE (mg) | 0.387 | 0.003 | −0.137 | 0.349 | 0.066 | 0.621 | 0.002 | 0.991 |
Fluoride (mg) | −0.012 | 0.931 | 0.295 | 0.042 | −0.116 | 0.387 | 0.211 | 0.159 |
Iron (mg) | 0.248 | 0.066 | 0.170 | 0.244 | 0.284 | 0.029 | 0.128 | 0.395 |
Manganese (mg) | −0.155 | 0.255 | 0.336 | 0.018 | 0.495 | 0.000 | −0.156 | 0.300 |
Selenium (mcg) | 0.303 | 0.023 | −0.193 | 0.183 | −0.052 | 0.696 | 0.019 | 0.903 |
Omega 6 (g) | 0.267 | 0.046 | −0.118 | 0.425 | 0.036 | 0.787 | 0.018 | 0.908 |
Nutrients | Normal Weight | Overweight/Obese | European American | African American | ||||
---|---|---|---|---|---|---|---|---|
r2 | p Value | r2 | p Value | r2 | p Value | r2 | p Value | |
Trans Fat (g) | 0.141 | 0.282 | 0.361 | 0.008 | 0.089 | 0.487 | 0.294 | 0.038 |
Added Sugar (g) | 0.102 | 0.437 | −0.229 | 0.099 | −0.253 | 0.045 | −0.050 | 0.732 |
Monosaccharide (g) | −0.121 | 0.357 | −0.264 | 0.056 | −0.287 | 0.023 | 0.151 | 0.295 |
Beta Carotene (mcg) | −0.173 | 0.186 | −0.270 | 0.051 | −0.312 | 0.013 | −0.172 | 0.233 |
Pantothenic Acid (mg) | 0.156 | 0.232 | 0.252 | 0.068 | 0.202 | 0.112 | 0.284 | 0.046 |
Fluoride (mg) | −0.047 | 0.723 | 0.477 | 0.000 | 0.241 | 0.059 | 0.017 | 0.908 |
Manganese (mg) | 0.336 | 0.009 | 0.078 | 0.577 | 0.376 | 0.002 | 0.238 | 0.096 |
Nutrients | Normal Weight | Overweight/Obese | European American | African American | ||||
---|---|---|---|---|---|---|---|---|
r2 | p Value | r2 | p Value | r2 | p Value | r2 | p Value | |
Trans Fat (g) | 0.151 | 0.266 | 0.326 | 0.022 | 0.075 | 0.572 | 0.195 | 0.194 |
Beta Carotene (mcg) | −0.212 | 0.117 | −0.247 | 0.088 | −0.359 | 0.005 | −0.173 | 0.250 |
Fluoride (mg) | −0.017 | 0.899 | 0.468 | 0.001 | 0.218 | 0.100 | 0.022 | 0.884 |
Manganese (mg) | 0.296 | 0.027 | 0.082 | 0.575 | 0.371 | 0.004 | 0.206 | 0.170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patel, P.; Selvaraju, V.; Babu, J.R.; Geetha, T. Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients 2023, 15, 2840. https://doi.org/10.3390/nu15132840
Patel P, Selvaraju V, Babu JR, Geetha T. Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients. 2023; 15(13):2840. https://doi.org/10.3390/nu15132840
Chicago/Turabian StylePatel, Priyadarshni, Vaithinathan Selvaraju, Jeganathan Ramesh Babu, and Thangiah Geetha. 2023. "Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children" Nutrients 15, no. 13: 2840. https://doi.org/10.3390/nu15132840
APA StylePatel, P., Selvaraju, V., Babu, J. R., & Geetha, T. (2023). Association of the DNA Methylation of Obesity-Related Genes with the Dietary Nutrient Intake in Children. Nutrients, 15(13), 2840. https://doi.org/10.3390/nu15132840