Impact of Lung-Related Polygenic Risk Scores on Chronic Obstructive Pulmonary Disease Risk and Their Interaction with w-3 Fatty Acid Intake in Middle-Aged and Elderly Individuals
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Demographic and Anthropometric Measurement and Lifestyle History
2.3. Biochemical Assessment
2.4. Food and Nutrient Intake Assessment by a Semi-Quantitative Food Frequency Questionnaire (SQFFQ)
2.5. Definition of COPD
2.6. Genotyping and Quality Control
2.7. Selection of Interacting Genetic Variants for COPD Risk by GWAS Followed by a Generalized Multifactor Dimensionality Reduction (GMDR) Method
2.8. Statistical Analysis
3. Results
3.1. Demographic, Anthropometric, and Biochemical Characteristics of Participants
3.2. Nutrient Intake and Lifestyle Factors
3.3. Selection of the Genetic Variants Linked to COPD
3.4. Model for SNP-SNP Interactions and the Association of PRS with COPD Risk
3.5. Gene Expression of Genetic Variants in Different Tissues
3.6. Interaction of PRS and Lifestyles Related to Oxidative Stress and Inflammation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Bordoni, B.; Escher, A.; Compalati, E.; Mapelli, L.; Toccafondi, A. The Importance of the Diaphragm in Neuromotor Function in the Patient with Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 837–848. [Google Scholar] [CrossRef]
- Agustí, A.; Celli, B.R.; Criner, G.J.; Halpin, D.; Anzueto, A.; Barnes, P.; Bourbeau, J.; Han, M.K.; Martinez, F.J.; de Oca, M.M.; et al. Global Initiative for Chronic Obstructive Lung Disease 2023 Report: GOLD Executive Summary. Am. J. Respir. Crit. Care Med. 2023, 207, 819–837. [Google Scholar] [CrossRef]
- Adeloye, D.; Song, P.; Zhu, Y.; Campbell, H.; Sheikh, A.; Rudan, I. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: A systematic review and modelling analysis. Lancet Respir. Med. 2022, 10, 447–458. [Google Scholar] [CrossRef]
- Pando-Sandoval, A.; Ruano-Ravina, A.; Candal-Pedreira, C.; Rodríguez-García, C.; Represas-Represas, C.; Golpe, R.; Fernández-Villar, A.; Pérez-Ríos, M. Risk factors for chronic obstructive pulmonary disease in never-smokers: A systematic review. Clin. Respir. J. 2022, 16, 261–275. [Google Scholar] [CrossRef]
- Bhatt, S.P.; Kim, Y.-I.; Harrington, K.F.; Hokanson, J.E.; Lutz, S.M.; Cho, M.H.; DeMeo, D.L.; Wells, J.M.; Make, B.J.; Rennard, S.I.; et al. Smoking duration alone provides stronger risk estimates of chronic obstructive pulmonary disease than pack-years. Thorax 2018, 73, 414–421. [Google Scholar] [CrossRef] [Green Version]
- Arezina, R.; Chen, T.; Wang, D. Conventional, Complementary and Alternative Medicines: Mechanistic Insights into Therapeutic Landscape of Chronic Obstructive Pulmonary Disease. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 447–457. [Google Scholar] [CrossRef]
- Ambrosino, N.; Bertella, E. Lifestyle interventions in prevention and comprehensive management of COPD. Breathe 2018, 14, 186–194. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Li, S.Y.; Zhong, X.; Ren, J.; Tian, X.; Tuerxun, M.; Xie, C.; Li, F.; Zheng, A.; Aini, P.; et al. SERPINE2 rs16865421 polymorphism is associated with a lower risk of chronic obstructive pulmonary disease in the Uygur population: A case–control study. J. Gene Med. 2019, 21, e3106. [Google Scholar] [CrossRef]
- Kaur-Knudsen, D.; Nordestgaard, B.G.; Bojesen, S.E. CHRNA3 genotype, nicotine dependence, lung function and disease in the general population. Eur. Respir. J. 2012, 40, 1538–1544. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.J. Oxidative stress-based therapeutics in COPD. Redox Biol. 2020, 33, 101544. [Google Scholar] [CrossRef]
- Celedón, J.C.; Lange, C.; Raby, B.A.; Litonjua, A.A.; Palmer, L.J.; DeMeo, D.L.; Reilly, J.J.; Kwiatkowski, D.J.; Chapman, H.A.; Laird, N.; et al. The transforming growth factor-β1 (TGFB1) gene is associated with chronic obstructive pulmonary disease (COPD). Hum. Mol. Genet. 2004, 13, 1649–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Ran, R.; Li, X.; Liu, G.; Xie, X.; Li, J. Genetic Variants Associated with Chronic Obstructive Pulmonary Disease Risk: Cumulative Epidemiological Evidence from Meta-Analyses and Genome-Wide Association Studies. Can. Respir. J. 2022, 2022, 3982335. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Morales, R.; González-Zamora, A.; González-Delgado, M.F.; Calleros Rincón, E.Y.; Olivas Calderón, E.H.; Martínez-Ramírez, O.C.; Rubio, J. CHRNA3 rs1051730 and CHRNA5 rs16969968 polymorphisms are associated with heavy smoking, lung cancer, and chronic obstructive pulmonary disease in a mexican population. Ann. Hum. Genet. 2018, 82, 415–424. [Google Scholar] [CrossRef]
- Ganbold, C.; Jamiyansuren, J.; Tumurbaatar, A.; Bayarmaa, A.; Enebish, T.; Dashtseren, I.; Jav, S. The Cumulative Effect of Gene-Gene Interactions Between GSTM1, CHRNA3, CHRNA5 and SOD3 Gene Polymorphisms Combined with Smoking on COPD Risk. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 2857–2868. [Google Scholar] [CrossRef] [PubMed]
- Matsumoto, K.; Read, N.; Philip, K.E.J.; Allinson, J.P. Exacerbations in Chronic Obstructive Pulmonary Disease: Clinical, Genetic and Mycobiome Risk Factors. Am. J. Respir. Crit. Care Med. 2023. [Google Scholar] [CrossRef] [PubMed]
- Cottin, V.; Selman, M.; Inoue, Y.; Wong, A.W.; Corte, T.J.; Flaherty, K.R.; Han, M.K.; Jacob, J.; Johannson, K.A.; Kitaichi, M.; et al. Syndrome of Combined Pulmonary Fibrosis and Emphysema: An Official ATS/ERS/JRS/ALAT Research Statement. Am. J. Respir. Crit. Care Med. 2022, 206, e7–e41. [Google Scholar] [CrossRef]
- Agustí, A.; Melén, E.; DeMeo, D.L.; Breyer-Kohansal, R.; Faner, R. Pathogenesis of chronic obstructive pulmonary disease: Understanding the contributions of gene–environment interactions across the lifespan. Lancet Respir. Med. 2022, 10, 512–524. [Google Scholar] [CrossRef]
- Morales, E.; Duffy, D. Genetics and Gene-Environment Interactions in Childhood and Adult Onset Asthma. Front. Pediatr. 2019, 7, 499. [Google Scholar] [CrossRef] [Green Version]
- Shen, Q.; Lee, K.; Han, S.K.; Ahn, H.J.; Kim, S.; Lee, J.H. Variants at potential loci associated with Sjogren’s syndrome in Koreans: A genetic association study. Clin. Immunol. 2019, 207, 79–86. [Google Scholar] [CrossRef]
- Park, S.; Daily, J.W.; Song, M.Y.; Kwon, H.K. Gene-gene and gene-lifestyle interactions of AKAP11, KCNMA1, PUM1, SPTBN1, and EPDR1 on osteoporosis risk in middle-aged adults. Nutrition 2020, 79–80, 110859. [Google Scholar] [CrossRef]
- Kim, Y.; Han, B.-G.; the KoGES Group. Cohort Profile: The Korean Genome and Epidemiology Study (KoGES) Consortium. Int. J. Epidemiol. 2017, 46, e20. [Google Scholar] [CrossRef] [PubMed]
- Ahn, Y.; Kwon, E.; Shim, J.E.; Park, M.K.; Joo, Y.; Kimm, K.; Park, C.; Kim, D.H. Validation and reproducibility of food frequency questionnaire for Korean genome epidemiologic study. Eur. J. Clin. Nutr. 2007, 61, 1435–1441. [Google Scholar] [CrossRef] [PubMed]
- Hur, H.J.; Yang, H.J.; Kim, M.J.; Lee, K.H.; Kim, M.S.; Park, S. Association of Polygenic Variants with Type 2 Diabetes Risk and Their Interaction with Lifestyles in Asians. Nutrients 2022, 14, 3222. [Google Scholar] [CrossRef] [PubMed]
- Hur, H.J.; Wu, X.; Yang, H.J.; Kim, M.J.; Lee, K.-H.; Hong, M.; Park, S.; Kim, M.-S. Beneficial Effects of a Low-Glycemic Diet on Serum Metabolites and Gut Microbiota in Obese Women With Prevotella and Bacteriodes Enterotypes: A Randomized Clinical Trial. Front. Nutr. 2022, 9, 861880. [Google Scholar] [CrossRef]
- Stafyla, E.; Kotsiou, O.S.; Deskata, K.; Gourgoulianis, K.I. Missed diagnosis and overtreatment of COPD among smoking primary care population in Central Greece: Old problems persist. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 487–498. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liang, Q.; Li, Z.; Li, F. Body Composition and COPD: A New Perspective. Int. J. Chronic Obstr. Pulm. Dis. 2023, 18, 79–97. [Google Scholar] [CrossRef]
- Song, Q.; Chen, P.; Liu, X.-M. The role of cigarette smoke-induced pulmonary vascular endothelial cell apoptosis in COPD. Respir. Res. 2021, 22, 39. [Google Scholar] [CrossRef]
- Shukla, S.D.; Shastri, M.D.; Jha, N.K.; Gupta, G.; Chellappan, D.K.; Bagade, T.; Dua, K. Female gender as a risk factor for developing COPD. Excli J. 2021, 20, 1290–1293. [Google Scholar] [CrossRef]
- Murgia, N.; Gambelunghe, A. Occupational COPD-The most under-recognized occupational lung disease? Respirology 2022, 27, 399–410. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, H.; Gu, K.; Chen, J.; Jiang, X. Association of Body Mass Index with Risk of Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. COPD J. Chronic Obstr. Pulm. Dis. 2021, 18, 101–113. [Google Scholar] [CrossRef]
- Serban, K.A.; Pratte, K.A.; Strange, C.; Sandhaus, R.A.; Turner, A.M.; Beiko, T.; Spittle, D.A.; Maier, L.; Hamzeh, N.; Silverman, E.K.; et al. Unique and shared systemic biomarkers for emphysema in Alpha-1 Antitrypsin deficiency and chronic obstructive pulmonary disease. EBioMedicine 2022, 84, 104262. [Google Scholar] [CrossRef]
- Hobbs, B.D.; de Jong, K.; Lamontagne, M.; Bossé, Y.; Shrine, N.; Artigas, M.S.; Wain, L.V.; Hall, I.P.; Jackson, V.E.; Wyss, A.B.; et al. Genetic loci associated with chronic obstructive pulmonary disease overlap with loci for lung function and pulmonary fibrosis. Nat. Genet. 2017, 49, 426–432. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, J.; Chen, S.; Yu, T.; Chang, C.; Liu, J.; Ren, X.; Niu, H.; Huang, K.; Li, B.; Wang, C.; et al. Dynamic analysis of gene signatures in the progression of COPD. ERJ Open Res. 2023, 9, 00343-2022. [Google Scholar] [CrossRef] [PubMed]
- Sakornsakolpat, P.; Morrow, J.D.; Castaldi, P.J.; Hersh, C.P.; Bossé, Y.; Silverman, E.K.; Manichaikul, A.; Cho, M.H. Integrative genomics identifies new genes associated with severe COPD and emphysema. Respir. Res. 2018, 19, 46. [Google Scholar] [CrossRef] [Green Version]
- Kotlyarov, S.; Kotlyarova, A. The Role of ABC Transporters in Lipid Metabolism and the Comorbid Course of Chronic Obstructive Pulmonary Disease and Atherosclerosis. Int. J. Mol. Sci. 2021, 22, 6711. [Google Scholar] [CrossRef]
- Volonte, D.; Galbiati, F. Caveolin-1, cellular senescence and pulmonary emphysema. Aging 2009, 1, 831–835. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eni-Aganga, I.; Lanaghan, Z.M.; Balasubramaniam, M.; Dash, C.; Pandhare, J. PROLIDASE: A Review from Discovery to its Role in Health and Disease. Front. Mol. Biosci. 2021, 8, 723003. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhao, X.; Liu, P.; Wang, D.; Chen, C.; Wang, Y.; Zhang, N.; Shen, B.; Zhao, D. Differential Expression of Serum Proteins in Chronic Obstructive Pulmonary Disease Assessed Using Label-Free Proteomics and Bioinformatics Analyses. Int. J. Chronic Obstr. Pulm. Dis. 2022, 17, 2871–2891. [Google Scholar] [CrossRef]
- Barnes, P.J. Oxidative Stress in Chronic Obstructive Pulmonary Disease. Antioxidants 2022, 11, 965. [Google Scholar] [CrossRef]
- Dhakal, N.; Lamsal, M.; Baral, N.; Shrestha, S.; Dhakal, S.S.; Bhatta, N.; Dubey, R.K. Oxidative stress and nutritional status in chronic obstructive pulmonary disease. J. Clin. Diagn. Res. 2015, 9, Bc01–Bc04. [Google Scholar] [CrossRef]
- Xiang, X.; Huang, L.; Fang, Y.; Cai, S.; Zhang, M. Physical activity and chronic obstructive pulmonary disease: A scoping review. BMC Pulm. Med. 2022, 22, 301. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Su, X.; Lei, T.; Zhang, C.; Zhang, M.; Wang, Y.; Zhu, L.; Liu, J. Effect of Omega-3 Fatty Acids on Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Int. J. Chronic Obstr. Pulm. Dis. 2021, 16, 2677–2686. [Google Scholar] [CrossRef] [PubMed]
- Lemoine, S.C.M.; Brigham, E.P.; Woo, H.; Hanson, C.K.; McCormack, M.C.; Koch, A.; Putcha, N.; Hansel, N.N. Omega-3 fatty acid intake and prevalent respiratory symptoms among U.S. adults with COPD. BMC Pulm. Med. 2019, 19, 97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zailani, H.; Satyanarayanan, S.K.; Liao, W.-C.; Liao, H.-F.; Huang, S.-Y.; Gałecki, P.; Su, K.-P.; Chang, J.P.-C. Omega-3 Polyunsaturated Fatty Acids in Managing Comorbid Mood Disorders in Chronic Obstructive Pulmonary Disease (COPD): A Review. J. Clin. Med. 2023, 12, 2653. [Google Scholar] [CrossRef]
- Huang, Z.; Zheng, J.; Huang, W.; Yan, M.; Hong, L.; Hong, Y.; Jin, R.; Huang, X.; Fan, H.; Chen, H.; et al. The effects and safety of omega-3 fatty for acute lung injury: A systematic review and meta-analysis. World J. Surg. Oncol. 2020, 18, 235. [Google Scholar] [CrossRef]
- Hanson, C.; Ponce, J.; Isaak, M.; Heires, A.; Nordgren, T.; Wichman, C.; Furtado, J.D.; LeVan, T.; Romberger, D. Fatty Acids, Amphiregulin Production, and Lung Function in a Cohort of Midwestern Veterans. Front. Rehabil. Sci. 2022, 3, 773835. [Google Scholar] [CrossRef]
- Pizzini, A.; Lunger, L.; Sonnweber, T.; Weiss, G.; Tancevski, I. The Role of Omega-3 Fatty Acids in the Setting of Coronary Artery Disease and COPD: A Review. Nutrients 2018, 10, 1864. [Google Scholar] [CrossRef] [Green Version]
Health (n = 7965) | COPD (n = 875) | Adjusted OR and 95% CI | |
---|---|---|---|
FEV1 (% predicted) | 113.8 ± 0.18 | 92.5 ± 0.58 *** | 2.479 (2.073–2.965) |
<55 years | 111.3 ± 0.26 | 93.2 ± 0.76 *** | |
55–65 years | 114.3 ± 0.40 | 91.3 ± 0.94 | |
≥65 years | 115.8 ± 0.60 | 90.2 ± 1.17 | |
FEV1/FVC 1 | 81.5 ± 0.12 | 63.9 ± 0.33 *** | 2.293 (1.643–3.202) |
<55 years | 82.0 ± 0.09 | 64.7 ± 0.29 ***, +++ | |
55–65 year | 81.2 ± 0.13 | 63.3 ± 0.35 | |
≥65 years | 81.0 ± 0.20 | 63.2 ± 0.44 | |
Age 2 | 51.2 ± 0.09 | 52.6 ± 0.29 *** | 1.504 (1.228–1.843) |
Gender (Male, n, %) | 3657 (45.9) | 525 (60.0) *** | 1.503 (1.177–1.918) |
Education (Yes, n, %) | |||
<High school | 4351 (55.1) | 551 (63.6) | 1 |
High school | 2477 (31.4) | 231 (26.6) | 0.854 (0.681–1.069) |
>High school | 1073 (13.6) | 85 (9.8) | 0.676 (0.494–0.925) |
Area (city, n, %) | 4281 (53.8) | 355 (40.6) *** | 0.786 (0.620–0.995) |
Job | |||
Chemical Job (Yes, n, %) | 565 (7.20) | 61 (7.08) | 1.124 (0.782–1.616) |
Dust Job (Yes, n, %) | 1450 (18.5) | 153 (17.9) | 0.808 (0.527–1.238) |
Psychological stress (score, ≤2) | 2.25 ± 0.02 | 2.29 ± 0.07 | 0.952 (0.800–1.133) |
Physical stress (score, ≤2) | 2.83 ± 0.02 | 2.80 ± 0.08 | 1.023 (0.851–1.229) |
Behavior stress (score, ≤2) | 1.53 ± 0.02 | 1.53 ± 0.06 | 0.967 (0.809–1.156) |
Stress-related behavior (score, ≤1) | 2.11 ± 0.02 | 2.03 ± 0.07 | 1.012 (0.848–1.206) |
Total stress (score, ≤4) | 8.74 ± 0.07 | 8.64 ± 0.22 | 0.927 (0.760–1.129) |
Insomnia (Yes, n, %) | 711 (9.77) | 146 (10.2) | 1.052 (0.833–1.328) |
Sleep period (<6 h, n, %) | 6.74+0.02 | 6.69 + 0.05 | 1.161 (0.931–1.449) |
Snoring (Yes, n, %) | 341 (10.6) | 528 (9.49) | 0.914 (0.783–1.068) |
Awaking due to hard breathing (Yes, n, %) | 761 (9.65) | 104 (12.6) ** | 1.814 (1.285–2.562) |
Sputum (Yes, n, %) | 740 (9.53) | 125 (12.9) *** | 1.300 (1.019–1.660) |
Cough (Yes, n, %) | 809 (9.69) | 53 (14.1) ** | 1.407 (0.961–2.059) |
Height (cm) 3 | 160 ± 0.06 | 161 ± 0.19 ** | 1.135 (0.888–1.452) |
BMI (Kg/m2) 4 | 24.7 ± 0.04 | 24.3 ± 0.12 ** | 0.916 (0.776–1.081) |
Low BMI (n, %) | 614 (10.6) | 261 (8.52) ** | |
Body fat (%) 5 | 27.0 ± 0.06 | 26.5 ± 0.20 * | 0.950 (0.752–1.200) |
WBC (×103/mL) 6 | 6.58 ± 0.02 | 6.68 ± 0.06 * | 1.267 (1.031–1.555) |
Serum CRP (mg/dL) 7 | 0.23 ± 0.01 | 0.25 ± 0.02 * | 1.319 (1.091–1.595) |
Serum Pb (μg/mL) 8 | 4.45 ± 0.10 | 5.06 ± 0.26 * | 1.914 (1.116–3.283) |
Serum Cd (μg/mL) 9 | 1.09 ± 0.06 | 1.20 ± 0.16 | 1.479 (0.742–2.948) |
Asthma (n, %) | 835 (9.66) | 40 (20.7) | 2.869 (1.866–4.410) |
Allergies (n, %) | 821 (9.84) | 54 (11.0) | 1.107 (0.794–1.541) |
Psychological disease (n, %) | 873 (9.93) | 2 (4.88) | 0.525 (0.070–3.947) |
Health (n = 7965) | COPD (n = 875) | Adjusted OR and 95% CI | |
---|---|---|---|
Energy (EER%) 1 | 101 ± 0.43 | 102 ± 1.33 | 1.072 (0.900–1.276) |
Carbohydrate (En%) 2 | 70.7 ± 0.07 | 70.5 ± 0.23 | 1.133 (0.920–1.394) |
Protein (En%) 3 | 13.6 ± 0.03 | 13.7 ± 0.08 | 0.893 (0.744–1.073) |
Fat (En%) 4 | 14.4 ± 0.06 | 14.6 ± 0.17 | 0.876 (0.728–1.053) |
w-3 fatty acid (En%) 5 | 0.51 ± 0.01 | 0.50 ± 0.03 | 0.935 (0.790–1.106) |
w-6 fatty acid (En%) 6 | 3.36 ± 0.02 | 3.36 ± 0.06 | 1.018 (0.858–1.206) |
Fiber (g/day) 7 | 15 ± 0.06 | 15 ± 0.2 | 0.948 (0.764–1.175) |
Total polyphenol (mg/day) 8 | 2060 ± 1.96 | 2078 ± 39.79 | 0.924 (0.742–1.151) |
Total flavonoids (mg/day) 8 | 1459 ± 5.22 | 1467 ± 16.03 | 0.982 (0.784–1.229) |
V-C (mg/day) 9 | 15 ± 0.06 | 15 ± 0.2 | 0.947 (0.789–1.137) |
V-E (mg/day) 9 | 6.25 ± 0.04 | 6.3 ± 0.12 | 1.007 (0.819–1.240) |
V-D (μg/day) 9 | 5.95 ± 0.06 | 6.27 ± 0.18 | 1.135 (0.905–1.424) |
Se (μg/day) 9 | 29.8 ± 0.27 | 28.8 ± 0.83 | 0.865 (0.707–1.059) |
Ca (mg/day) 10 | 475 ± 2.24 | 482 ± 6.91 | 1.039 (0.850–1.271) |
Alcohol (g/day) 11 | 10.1 ± 0.24 | 9.18 ± 0.74 | 0.896 (0.708–1.133) |
Non-smoking (n, %) | 4753 (60.5) | 389 (45.1) *** | 1 |
Former smoking | 1200 (15.3) | 153 (17.8) | 1.192 (0.874–1.625) |
Current smoking | 1908 (24.3) | 320 (37.1) | 1.581 (1.195–2.091) |
Exercise 12 | 2168 (28.3) | 312 (37.6) *** | 0.980 (0.780–1.231) |
Chr 1 | SNP 2 | Position | Mi 3 | Ma 4 | OR 5 | SE 6 | p Value for OR 7 | MAF 8 | p for HWE 9 | Gene Names | Location |
---|---|---|---|---|---|---|---|---|---|---|---|
3 | rs117262613 | 21603388 | A | G | 2.209 | 0.1958 | 5.16 × 10−6 | 0.0134 | 0.207 | ZNF385D | NMD transcript variant |
4 | rs1585258 | 89879196 | G | T | 0.7895 | 0.0588 | 5.74 × 10−6 | 0.4271 | 1.0 | FAM13A | NMD transcript variant |
5 | rs889294 | 52110676 | A | G | 1.281 | 0.0593 | 2.96 × 10−5 | 0.3251 | 0.191 | ITGA1 | NMD transcript variant |
7 | rs4145714 | 48391642 | C | G | 0.7009 | 0.0808 | 6.68 × 10−7 | 0.3653 | 0.277 | ABCA13 | intron variant |
7 | rs1997571 | 116198621 | G | A | 1.269 | 0.0598 | 4.96 × 10−5 | 0.3372 | 0.175 | CAV1 | NMD transcript variant |
9 | rs10959052 | 10332654 | C | T | 0.7293 | 0.0856 | 5.45 × 10−7 | 0.1456 | 0.266 | PTPRD | Intron variant |
11 | rs74433025 | 132172642 | C | T | 2.156 | 0.1968 | 9.51 × 10−6 | 0.0140 | 1.0 | NTM | Intron variant |
17 | rs719601 | 28731415 | G | A | 1.28 | 0.0663 | 2.12 × 10−5 | 0.2168 | 0.778 | CPD | Intron variant |
18 | rs17482826 | 8796149 | T | A | 2.304 | 0.1676 | 6.41 × 10−7 | 0.0742 | 0.315 | MTCL1 | Intron variant |
19 | rs17569 | 33882222 | A | G | 1.251 | 0.0636 | 4.35 × 10−5 | 0.2433 | 0.112 | PEPD | Missense p.His377Gln |
Minor Allele | Beta Value | p Value | Tissues | |
---|---|---|---|---|
FAM13A_rs1585258 | G | −0.11 | 0.0055 | Lung |
FAM13A_rs1585258 | G | −0.087 | 0.0093 | Tibial nerve |
ITGA1_rs889294 | A | 0.17 | 2.8 × 10−10 | Skeletal muscle |
ITGA1_rs889294 | A | 0.11 | 6.5 × 10−6 | Subcutaneous adipose tissue |
ITGA1_rs889294 | A | 0.13 | 8.4 × 10−6 | Visceral adipose tissues |
ITGA1_rs889294 | A | 0.11 | 0.00021 | Tibial nerve |
ITGA1_rs889294 | A | 0.11 | 0.00033 | Left ventricle of the heart |
CAV1_rs1997571 | G | −0.078 | 0.000068 | Tibial nerve |
CAV1_rs1997571 | G | 0.13 | 0.0000035 | Atrial appendage of the heart |
CPD_rs719601 | G | −0.089 | 0.0000026 | Skeletal muscle |
CPD_rs719601 | G | −0.054 | 0.025 | Lung |
PEPD_rs17569 | A | −0.39 | 6.9 × 10−16 | Subcutaneous adipose tissue |
PEPD_rs17569 | A | −0.26 | 8.6 × 10−10 | Visceral adipose tissues |
PEPD_rs17569 | A | −0.45 | 7.6 × 10−6 | The cortex of the brain |
PEPD_rs17569 | A | −0.38 | 5.9 × 10−16 | Skeletal muscle |
PEPD_rs17569 | A | −0.2 | 3.4 × 10−9 | Tibial nerve |
PEPD_rs17569 | A | −0.28 | 5.3 × 10−8 | Atrial appendage of the heart |
PEPD_rs17569 | A | −0.27 | 1.3 × 10−6 | Left ventricle of the heart |
PEPD_rs17569 | A | −0.22 | 1.8 × 10−14 | Lung |
Low-PRS (n = 2230) | Meddle-PRS (n = 4438) | High-PRS (n = 2172) | p Value for Interaction with PRS | |
---|---|---|---|---|
Low-EER 1 High-EER | 1 1 | 1.189 (0.912–1.549) 1.376 (1.000–1.892) | 1.574 (1.179–2.101) 2.097 (1.487 2.956) | 0.6221 |
Low-CHO 2 High-CHO | 1 1 | 1.260 (1.002–1.584) 1.330 (0.852–2.074) | 1.744 (1.360–2.236) 2.072 (1.278–3.361) | 0.8662 |
Low-Protein 3 High-Protein | 1 1 | 1.849 (1.488–2.296) 1.159 (0.847–1.586) | 2.005 (1.419–2.832) 1.549 (1.100–2.180) | 0.6349 |
Low-Fat 4 High-Fat | 1 1 | 1.284 (0.948–1.740) 1.265 (0.961–1.664) | 1.747 (1.296–2.355) 1.937 (1.356–2.769) | 0.9926 |
Low-w3 fat 5 High-w3 fat | 1 1 | 1.408 (1.031–1.924) 1.173 (0.900–1.530) | 2.291 (1.642–3.197) 1.445 (1.076–1.941) | 0.0183 |
Low-Fiber 6 High-Fiber | 1 1 | 1.257 (1.000–1.579) 1.292 (0.823–2.026) | 1.786 (1.392–2.291) 1.789 (1.104–2.888) | 0.1119 |
Low-V-C 7 High-V-C | 1 1 | 1.209 (0.910–1.605) 1.319 (0.984–1.767) | 1.689 (1.238–2.304) 1.860 (1.357–2.550) | 0.8173 |
Low-V-D 8 High-V-D | 1 1 | 1.268 (1.008–1.595) 1.274 (0.821–1.977) | 1.853 (1.447–2.373) 1.511 (0.923–2.472) | 0.9739 |
Low-TP 9 High-TP | 1 1 | 1.237 (0.823–1.860) 1.282 (1.014–1.621) | 1.609 (1.031–2.509) 1.856 (1.440–2.393) | 0.6323 |
Low-coffee 10 High-coffee | 1 1 | 1.354 (0.987–1.857) 1.196 (0.916–1.561) | 1.898 (1.343–2.683) 1.677 (1.258–2.234) | 0.1935 |
Low-alcohol 11 High-alcohol | 1 1 | 1.139 (0.915–1.418) 2.157 (1.257–3.700) | 1.637 (1.288–2.080) 2.727 (1.544–4.818) | 0.3373 |
Low-Exercise 12 High-Exercise | 1 1 | 1.192 (0.944–1.506) 1.514 (1.037–2.212) | 1.555 (1.203–2.001) 2.368 (1.576–3.560) | 0.0056 |
Non-smokers Smokers | 1 1 | 1.273 (1.039–1.559) 1.282 (0.967–1.700) | 1.777 (1.426–2.215) 1.838 (1.354–2.494) | 0.8442 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, K.-S.; Park, S. Impact of Lung-Related Polygenic Risk Scores on Chronic Obstructive Pulmonary Disease Risk and Their Interaction with w-3 Fatty Acid Intake in Middle-Aged and Elderly Individuals. Nutrients 2023, 15, 3062. https://doi.org/10.3390/nu15133062
Kim K-S, Park S. Impact of Lung-Related Polygenic Risk Scores on Chronic Obstructive Pulmonary Disease Risk and Their Interaction with w-3 Fatty Acid Intake in Middle-Aged and Elderly Individuals. Nutrients. 2023; 15(13):3062. https://doi.org/10.3390/nu15133062
Chicago/Turabian StyleKim, Ki-Song, and Sunmin Park. 2023. "Impact of Lung-Related Polygenic Risk Scores on Chronic Obstructive Pulmonary Disease Risk and Their Interaction with w-3 Fatty Acid Intake in Middle-Aged and Elderly Individuals" Nutrients 15, no. 13: 3062. https://doi.org/10.3390/nu15133062
APA StyleKim, K. -S., & Park, S. (2023). Impact of Lung-Related Polygenic Risk Scores on Chronic Obstructive Pulmonary Disease Risk and Their Interaction with w-3 Fatty Acid Intake in Middle-Aged and Elderly Individuals. Nutrients, 15(13), 3062. https://doi.org/10.3390/nu15133062