Micronutrient and Nutritional Status of HIV-Exposed and HIV-Unexposed Malawian Infants in the First Year of Life: Assessment of Ferritin, Vitamin A, and D Status and Its Association with Growth
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Clinical Procedures
2.3. Sample Collection and Analysis
2.4. Definitions
2.5. Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perkins, J.M.; Kim, R.; Krishna, A.; McGovern, M.; Aguayo, V.M.; Subramanian, S.V. Understanding the association between stunting and child development in low- and middle-income countries: Next steps for research and intervention. Soc. Sci. Med. 2017, 193, 101–109. [Google Scholar] [CrossRef] [Green Version]
- Soekatri, M.Y.E.; Sandjaja, S.; Syauqy, A. Stunting was associated with reported morbidity, parental education and socioeconomic status in 0.5–12-year-old Indonesian children. Int. J. Environ. Res. Public Health 2020, 17, 6204. [Google Scholar] [CrossRef] [PubMed]
- Victora, C.G.; de Onis, M.; Hallal, P.C.; Blossner, M.; Shrimpton, R.C. Worldwide timing of growth faltering: Revisiting implications for interventions. Pediatrics 2020, 125, e473–e480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dewey, K.G.; Begum, K. Long-term consequences of stunting in early life. Matern. Child Nutr. 2011, 7, 5–18. [Google Scholar] [CrossRef]
- Kinyoki, D.K.; Berkley, J.A.; Moloney, G.M.; Kandala, N.B.; Noor, A.M. Predictors of the risk of malnutrition among children under the age of 5 years in Somalia. Public Health Nutr. 2015, 18, 3125–3133. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization; United Nations Children’s Fund (UNICEF); World Bank. Levels and Trends in Child Malnutrition: UNICEF/WHO/The World Bank Group Joint Child Malnutrition Estimates: Key Findings of the 2021 Edition; World Health Organization: Geneva, Switzerland, 2021; Available online: https://apps.who.int/iris/handle/10665/341135 (accessed on 10 January 2023).
- WHO. Guideline: Updates on the Management of Severe Acute Malnutrition in Infants and Children; World Health Organization: Geneva, Switzerland, 2013; Available online: https://www.who.int/publications/i/item/9789241506328 (accessed on 10 January 2023).
- Evans, C.; Jones, C.E.; Prendergast, A.J. HIV-exposed, uninfected infants: New global challenges in the era of paediatric HIV elimination. Lancet Infect. Dis. 2016, 16, e92–e107. [Google Scholar] [CrossRef]
- Yeganeh, N.; Watts, D.H.; Xu, J.; Kerin, T.; Joao, E.C.; Pilotto, J.H.; Theron, G.; Gray, G.; Santos, B.; Fonseca, R.; et al. Infectious Morbidity, Mortality and Nutrition in HIV-exposed, Uninfected, Formula-fed Infants: Results From the HPTN 040/PACTG 1043 Trial. Pediatr. Infect. Dis. J. 2018, 37, 1271–1278. [Google Scholar] [CrossRef]
- le Roux, S.M.; Abrams, E.J.; Donald, K.A.; Brittain, K.; Phillips, T.K.; Zerbe, A.; le Roux, D.M.; Kroon, M.; Myer, L. Infectious morbidity of breastfed, HIV-exposed uninfected infants under conditions of universal antiretroviral therapy in South Africa: A prospective cohort study. Lancet Child Adolesc. Health 2020, 4, 220–231. [Google Scholar] [CrossRef]
- Anderson, K.; Kalk, E.; Madlala, H.P.; Nyemba, D.C.; Kassanjee, R.; Jacob, N.; Slogrove, A.; Smith, M.; Eley, B.S.; Cotton, M.F.; et al. Increased infectious-cause hospitalization among infants who are HIV-exposed uninfected compared with HIV-unexposed. AIDS 2021, 35, 2327–2339. [Google Scholar] [CrossRef] [PubMed]
- Cusick, S.E.; Opoka, R.O.; Lund, T.C.; John, C.C.; Polgreen, L.E. Vitamin D insufficiency is common in Ugandan children and is associated with severe malaria. PLoS ONE 2014, 9, e113185. [Google Scholar] [CrossRef]
- Sudfeld, C.R.; Duggan, C.; Aboud, S.; Kupka, R.; Manji, K.P.; Kisenge, R.; Fawzi, W.W. Vitamin D status is associated with mortality, morbidity, and growth failure among a prospective cohort of HIV-infected and HIV-exposed Tanzanian infants. J. Nutr. 2015, 145, 121–127. [Google Scholar] [CrossRef] [Green Version]
- Aibana, O.; Huang, C.C.; Aboud, S.; Arnedo-Pena, A.; Becerra, M.C.; Bellido-Blasco, J.B.; Bhosale, R.; Calderon, R.; Chiang, S.; Contreras, C.; et al. Vitamin D status and risk of incident tuberculosis disease: A nested case-control study, systematic review, and individual-participant data meta-analysis. PLoS Med. 2019, 16, e1002907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bearden, A.; Van Winden, K.; Frederick, T.; Kono, N.; Operskalski, E.; Pandian, R.; Barton, L.; Stek, A.; Kovacs, A. Low maternal vitamin D is associated with increased risk of congenital and peri/postnatal transmission of Cytomegalovirus in women with HIV. PLoS ONE. 2020, 15, e0228900. [Google Scholar] [CrossRef]
- Akeredolu, F.D.; Akuse, R.M.; Mado, S.M.; Yusuf, R. Relationship Between Serum Vitamin D Levels and Acute Pneumonia in Children Aged 1-59 Months in Nigeria. J. Trop. Pediatr. 2021, 67, fmaa101. [Google Scholar] [CrossRef]
- Ssentongo, P.; Ba, D.M.; Ssentongo, A.E.; Fronterre, C.; Whalen, A.; Yang, Y.; Ericson, J.E.; Chinchilli, V.M. Association of vitamin A deficiency with early childhood stunting in Uganda: A population-based cross-sectional study. PLoS ONE 2020, 15, e0233615. [Google Scholar] [CrossRef]
- Grant, F.K.; Wanjala, R.; Low, J.; Levin, C.; Cole, D.C.; Okuku, H.S.; Ackatia-Armah, R.; Girard, A.W. Association between infection and nutritional status among infants in a cohort study of vitamin A in western Kenya. Front. Nutr. 2022, 9, 921213. [Google Scholar] [CrossRef]
- Imdad, A.; Mayo-Wilson, E.; Haykal, M.R.; Regan, A.; Sidhu, J.; Smith, A.; Bhutta, Z.A. Vitamin A supplementation for preventing morbidity and mortality in children from six months to five years of age. Cochrane Database Syst. Rev. 2022, 3, CD008524. [Google Scholar] [CrossRef]
- Scott, S.P.; Chen-Edinboro, L.P.; Caulfield, L.E.; Murray-Kolb, L.E. The impact of anemia on child mortality: An updated review. Nutrients 2014, 6, 5915–5932. [Google Scholar] [CrossRef] [Green Version]
- Liotta, G.; Marazzi, M.C.; Mothibi, K.E.; Zimba, I.; Amangoua, E.E.; Bonje, E.K.; Bossiky, N.B.; Robinson, P.A.; Scarcella, P.; Musokotwane, K.; et al. Elimination of mother-to-child transmission of HIV infection: The drug resource enhancement against AIDS and malnutrition model. Int. J. Environ. Res. Public Health 2015, 12, 13224–13239. [Google Scholar] [CrossRef] [Green Version]
- Floridia, M.; Ciccacci, F.; Andreotti, M.; Hassane, A.; Sidumo, Z.; Magid, N.A.; Sotomane, H.; David, M.; Mutemba, E.; Cebola, J.; et al. Tuberculosis case finding with combined rapid point-of-care assays (Xpert MTB/RIF and determine TB LAM) in HIV-positive individuals starting antiretroviral therapy in Mozambique. Clin. Infect. Dis. 2017, 65, 1878–1883. [Google Scholar] [CrossRef] [Green Version]
- Ciccacci, F.; Tolno, V.T.; Doro Altan, A.M.; Liotta, G.; Orlando, S.; Mancinelli, S.; Palombi, L.; Marazzi, M.C. Noncommunicable diseases burden and risk factors in a cohort of HIV+ elderly patients in Malawi. AIDS Res. Hum. Retroviruses 2019, 35, 1106–1111. [Google Scholar] [CrossRef] [PubMed]
- Floridia, M.; Orlando, S.; Andreotti, M.; Mphwere, R.; Kavalo, T.; Ciccacci, F.; Scarcella, P.; Marazzi, M.C.; Giuliano, M. A 12-month prospective study of HIV-infected and HIV-uninfected women and their infants in Malawi: Comparative Analysis of Clinical Events and Infant Growth. Am. J. Trop. Med. Hyg. 2023, 108, 394–402. [Google Scholar] [CrossRef]
- Giuliano, M.; Andreotti, M.; Liotta, G.; Jere, H.; Sagno, J.B.; Maulidi, M.; Mancinelli, S.; Buonomo, E.; Scarcella, P.; Pirillo, M.F.; et al. Maternal antiretroviral therapy for the prevention of mother-to-child transmission of HIV in Malawi: Maternal and infant outcomes two years after delivery. PLoS ONE 2013, 8, e68950. [Google Scholar] [CrossRef] [Green Version]
- National Immunization Schedule: Malawi Recommended Routine Immunization. Available online: http://www.vacfa.uct.ac.za/sites/default/files/image_tool/images/210/Immunization_Schedules/Malawi.pdf (accessed on 10 January 2023).
- Ministry of Health and Population, Malawi. 4th Edition of the Malawi Guidelines for Clinical Management of HIV in Children and Adults. Available online: https://differentiatedservicedelivery.org/Portals/0/adam/Content/xc8bFLkQfECqbTEpxM8C9Q/File/Malawi%20Clinical%20HIV%20Guidelines%202019%20Addendumversion%208.1.pdf (accessed on 10 January 2023).
- Sandalinas, F.; Filteau, S.; Joy, E.J.M.; Segovia de la Revilla, L.; MacDougall, A.; Hopkins, H. Measuring the impact of malaria infection on indicators of iron and vitamin A status: A systematic literature review and meta-analysis. Br. J. Nutr. 2022, 129, 87–103. [Google Scholar] [CrossRef]
- Namaste, S.M.L.; Ou, J.; Williams, A.M.; Young, M.F.; Yu, E.X.; Suchdev, P.S. Adjusting iron and vitamin A status in settings of inflammation: A sensitivity analysis of the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) approach. Am. J. Clin. Nutr. 2019, 112 (Suppl. S1), 458S–467S. [Google Scholar] [CrossRef]
- Tomkins, A. Assessing micronutrient status in the presence of inflammation. J. Nutr. 2003, 133, 1649S–1655S. [Google Scholar] [CrossRef] [Green Version]
- Thurnham, D.I.; McCabe, L.D.; Haldar, S.; Wieringa, F.T.; Northrop-Clewes, C.A.; McCabe, G.P. Adjusting plasma ferritin concentrations to remove the effects of subclinical inflammation in the assessment of iron deficiency: A meta-analysis. Am. J. Clin. Nutr. 2010, 92, 546–555. [Google Scholar] [CrossRef] [Green Version]
- Namaste, S.M.; Rohner, F.; Huang, J.; Bhushan, N.L.; Flores-Ayala, R.; Kupka, R.; Mei, Z.; Rawt, R.; Williams, A.M.; Raiten, D.J.; et al. Adjusting ferritin concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106 (Suppl. S1), 359S–371S. [Google Scholar] [CrossRef]
- Larson, L.M.; Namaste, S.M.; Williams, A.M.; Engle-Stone, R.; Addo, O.Y.; Suchdev, P.S.; Wirth, J.P.; Temple, V.; Serdula, M.; Northrop-Clewes, C.A. Adjusting retinol-binding protein concentrations for inflammation: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am. J. Clin. Nutr. 2017, 106 (Suppl. S1), 390S–401S. [Google Scholar]
- World Health Organisation. Guideline: Updates on HIV and Infant Feeding; WHO: Geneva, Switzerland, 2016; Available online: https://www.who.int/publications/i/item/9789241549707 (accessed on 10 January 2023).
- WHO. WHO Anthro Survey Analyzer and Other Tools. Available online: https://www.who.int/tools/child-growth-standards/software (accessed on 10 January 2023).
- Aizire, J.; Sikorskii, A.; Ogwang, L.W.; Kawalazira, R.; Mutebe, A.; Familiar-Lopez, I.; MacPherson, M.; Taha, T.; Boivin, M.J.; Glenn Fowler, M.; et al. Decreased growth among antiretroviral drug and HIV-exposed uninfected versus unexposed children in Malawi and Uganda. AIDS 2020, 34, 215–225. [Google Scholar] [CrossRef]
- Mogire, R.M.; Mutua, A.; Kimita, W.; Kamau, A.; Bejon, P.; Pettifor, J.M.; Adeyemo, A.; Williams, T.N.; Atkinson, S.A. Prevalence of vitamin D deficiency in Africa: A systematic review and meta-analysis. Lancet Glob. Health 2020, 8, e134–e142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kruk, M.E.; Jakubowski, A.; Rabkin, M.; Kimanga, D.O.; Kundu, F.; Lim, T.; Lumumba, V.; Oluoch, T.; Robinson, K.A.; El-Sadr, W. Association between HIV programs and quality of maternal health inputs and processes in Kenya. Am. J. Public Health 2015, 105 (Suppl. S2), S207–S210. [Google Scholar] [CrossRef]
- Goga, A.; Feucht, U.; Zar, H.J.; Vanker, A.; Wiysonge, C.S.; McKerrow, N.; Wright, C.Y.; Loveday, M.; Odendaal, W.; Ramokolo, V.; et al. Neonatal, infant and child health in South Africa: Reflecting on the past towards a better future. S. Afr. Med. J. 2019, 109, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Bulstra, C.A.; Hontelez, J.A.C.; Otto, M.; Stepanova, A.; Lamontagne, E.; Yakusik, A.; El-Sadr, W.M.; Apollo, T.; Rabkin, M.; UNAIDS Expert Group on Integration; et al. Integrating HIV services and other health services: A systematic review and meta-analysis. PLoS Med. 2021, 18, e1003836. [Google Scholar] [CrossRef]
- Achoki, T.; Sartorius, B.; Watkins, D.; Glenn, S.D.; Kengne, A.P.; Oni, T.; Wiysonge, C.S.; Walker, A.; Adetokunboh, O.O.; Kayode Babalola, T.; et al. Health trends, inequalities and opportunities in South Africa’s provinces, 1990-2019: Findings from the Global Burden of Disease 2019 Study. J. Epidemiol. Community Health 2022, 76, 471–481. [Google Scholar] [CrossRef]
- Fonzo, M.; Zuanna, T.D.; Amoruso, I.; Resti, C.; Tsegaye, A.; Azzimonti, G.; Sgorbissa, B.; Centomo, M.; Ferretti, S.; Manenti, F.; et al. The HIV paradox: Perinatal mortality is lower in HIV-positive mothers. A field case-control study in Ethiopia. Int. J. Gynaecol. Obstet. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Sutcliffe, C.G.; Moyo, N.; Hamahuwa, M.; Mutanga, J.N.; van Dijk, J.H.; Hamangaba, F.; Schue, J.L.; Thuma, P.E.; Moss, W.J. The Evolving Pediatric HIV Epidemic in Rural Southern Zambia: The Beneficial Impact of Advances in Prevention and Treatment at a District Hospital From 2007 to 2019. Pediatr. Infect. Dis. J. 2023. online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- le Roux, K.W.; Almirol, E.; Rezvan, P.H.; le Roux, I.M.; Mbewu, N.; Dippenaar, E.; Stansert-Katzen, L.; Baker, V.; Tomlinson, M.; Rotheram-Borus, M.J. Community health workers impact on maternal and child health outcomes in rural South Africa—A non-randomized two-group comparison study. BMC Public Health 2020, 20, 1404. [Google Scholar] [CrossRef]
- Ajibola, G.; Bennett, K.; Powis, K.M.; Hughes, M.D.; Leidner, J.; Kgole, S.; Batlang, O.; Mmalane, M.; Makhema, J.; Lockman, S.; et al. Decreased diarrheal and respiratory disease in HIV exposed uninfected children following vaccination with rotavirus and pneumococcal conjugate vaccines. PLoS ONE 2020, 15, e0244100. [Google Scholar] [CrossRef]
- Lemoine, A.; Tounian, P. Childhood anemia and iron deficiency in sub-Saharan Africa—Risk factors and prevention: A review. Arch. Pediatr. 2020, 27, 490–496. [Google Scholar] [CrossRef]
- Wegmüller, R.; Bentil, H.; Wirth, J.P.; Petry, N.; Tanumihardjo, S.A.; Allen, L.; Williams, T.N.; Selenje, L.; Mahama, A.; Amoaful, E.; et al. Anemia, micronutrient deficiencies, malaria, hemoglobinopathies and malnutrition in young children and non-pregnant women in Ghana: Findings from a national survey. PLoS ONE 2020, 15, e0228258. [Google Scholar] [CrossRef] [Green Version]
- Stewart, C.P.; Fernald, L.C.H.; Weber, A.M.; Arnold, C.; Galasso, E. Lipid-Based Nutrient Supplementation Reduces Child Anemia and Increases Micronutrient Status in Madagascar: A Multiarm Cluster-Randomized Controlled Trial. J. Nutr. 2020, 150, 958–966. [Google Scholar]
- Harika, R.; Faber, M.; Samuel, F.; Mulugeta, A.; Kimiywe, J.; Eilander, A. Are Low Intakes and Deficiencies in Iron, Vitamin A, Zinc, and Iodine of Public Health Concern in Ethiopian, Kenyan, Nigerian, and South African Children and Adolescents? Food Nutr. Bull. 2017, 38, 405–427. [Google Scholar] [CrossRef]
- Bhimji, K.M.; Naburi, H.; Aboud, S.; Manji, K. Vitamin D Status and Associated Factors in Neonates in a Resource Constrained Setting. Int. J. Pediatr. 2018, 2018, 9614975. [Google Scholar]
- Tindall, A.M.; Schall, J.I.; Seme, B.; Ratshaa, B.; Tolle, M.; Nnyepi, M.S.; Mahzani, L.; Rutstein, R.M.; Steenhoff, A.P.; Stallings, V.A. Vitamin D status, nutrition and growth in HIV-infected mothers and HIV-exposed infants and children in Botswana. PLoS ONE 2020, 15, e0236510. [Google Scholar] [CrossRef] [PubMed]
- Said, N.A.; Kamenwa, R.W.; Limbe, M.S.; Okumu, M.O.; Macharia, W.M. Prevalence of vitamin D deficiency in exclusively breastfed infants at a tertiary healthcare facility in Nairobi, Kenya. Arch. Endocrinol. Metab. 2021, 64, 726–734. [Google Scholar] [CrossRef]
- Ncayiyana, J.R.; Martinez, L.; Goddard, E.; Myer, L.; Zar, H.J. Prevalence and Correlates of Vitamin D Deficiency among Young South African Infants: A Birth Cohort Study. Nutrients 2021, 13, 1500. [Google Scholar] [CrossRef] [PubMed]
- Amukele, T.K.; Soko, D.; Katundu, P.; Kamanga, M.; Sun, J.; Kumwenda, N.I.; Taha, T.E. Vitamin D levels in Malawian infants from birth to 24 months. Arch. Dis. Child. 2013, 98, 180–183. [Google Scholar]
- Okonofua, F.; Houlder, S.; Bell, J.; Dandona, P. Vitamin D nutrition in pregnant Nigerian women at term and their newborn infants. J. Clin. Pathol. 1986, 39, 650–653. [Google Scholar] [PubMed]
- Pfitzner, M.A.; Thacher, T.D.; Pettifor, J.M.; Zoakah, A.I.; Lawson, J.O.; Isichei, C.O.; Fischer, P.R. Absence of vitamin D deficiency in young Nigerian children. J. Pediatr. 1998, 133, 740–744. [Google Scholar]
- Donkor, W.E.S.; Mbai, J.; Sesay, F.; Ali, S.I.; Woodruff, B.A.; Hussein, S.M.; Mohamed Mohamud, K.; Muse, A.; Said Mohamed, W.; Muse Mohamoud, A.; et al. Risk factors of stunting and wasting in Somali pre-school age children: Results from the 2019 Somalia micronutrient survey. BMC Public Health 2022, 22, 264. [Google Scholar] [CrossRef]
- Neary, J.; Langat, A.; Singa, B.; Kinuthia, J.; Itindi, J.; Nyaboe, E.; Ng’anga, L.W.; Katana, A.; John-Stewart, G.C.; McGrath, C.J. Higher prevalence of stunting and poor growth outcomes in HIV-exposed uninfected than HIV-unexposed infants in Kenya. AIDS 2022, 36, 605–610. [Google Scholar] [CrossRef]
- Phiri, M.; Mulemena, D.; Kalinda, C.; Odhiambo, J.N. Contextual factors and spatial trends of childhood malnutrition in Zambia. PLoS ONE 2022, 17, e0277015. [Google Scholar] [CrossRef]
- Bitew, F.H.; Sparks, C.S.; Nyarko, S.H.; Apgar, L. Spatiotemporal Variations and Determinants of Under-Five Stunting in Ethiopia. Food Nutr. Bull. 2023, 44, 27–38. [Google Scholar] [CrossRef]
- Ahmed, K.Y.; Ross, A.G.; Hussien, S.M.; Agho, K.E.; Olusanya, B.O.; Ogbo, F.A. Mapping Local Variations and the Determinants of Childhood Stunting in Nigeria. Int. J. Environ. Res. Public Health 2023, 20, 3250. [Google Scholar] [CrossRef]
- Luzingu, J.K.; Stroupe, N.; Alaofe, H.; Jacobs, E.; Ernst, K. Risk factors associated with under-five stunting, wasting, and underweight in four provinces of the Democratic Republic of Congo: Analysis of the ASSP project baseline data. BMC Public Health 2022, 22, 2422. [Google Scholar] [CrossRef]
- Katoch, O.R. Determinants of malnutrition among children: A systematic review. Nutrition 2022, 96, 111565. [Google Scholar] [CrossRef]
- Baroncelli, S.; Galluzzo, C.M.; Liotta, G.; Andreotti, M.; Orlando, S.; Ciccacci, F.; Mphwere, R.; Luhanga, R.; Sagno, J.B.; Amici, R.; et al. HIV-exposed infants with EBV infection have a reduced persistence of the immune response to the HBV vaccine. AIDS Res. Ther. 2021, 18, 48. [Google Scholar] [CrossRef]
- Baroncelli, S.; Galluzzo, C.M.; Liotta, G.; Andreotti, M.; Jere, H.; Luhanga, R.; Sagno, J.B.; Ciccacci, F.; Orlando, S.; Amici, R.; et al. Dried blood spots for the quantitative evaluation of IgG isotypes and correlation with serum samples in HIV-exposed uninfected (HEU) infants. J. Immunol. Methods 2021, 493, 113019. [Google Scholar] [CrossRef]
- Baroncelli, S.; Galluzzo, C.M.; Orlando, S.; Mphwere, R.; Kavalo, T.; Luhanga, R.; Amici, R.; Floridia, M.; Andreotti, M.; Scarcella, P.; et al. Dynamics of SARS-CoV-2 exposure in Malawian infants between February 2020 and May 2021. J. Clin. Virol. Plus. 2022, 2, 100110. [Google Scholar] [CrossRef]
- Baroncelli, S.; Galluzzo, C.M.; Orlando, S.; Mphwere, R.; Kavalo, T.; Luhanga, R.; Amici, R.; Floridia, M.; Andreotti, M.; Ciccacci, F.; et al. Immunoglobulin G passive transfer from mothers to infants: Total IgG, IgG subclasses and specific antipneumococcal IgG in 6-week Malawian infants exposed or unexposed to HIV. BMC Infect. Dis. 2022, 22, 342. [Google Scholar] [CrossRef]
Mothers (N = 86) | All Women | GF Cohort, All | GF Cohort, HIV− | GF Cohort, HIV+ | SMAC Cohort (all HIV+) | p Value | p Value |
% (n/N) | % (n/N) | % (n/N) | % (n/N) | % (n/N) | GF HIV+ vs. GF HIV− | GF HIV+ vs. SMAC HIV+ | |
Education level | |||||||
None/primary | 60.5 (52/86) | 55.7 (34/61) | 61.5 (8/13) | 54.2 (26/48) | 72.0 (18/25) | 0.635 | 0.140 |
Secondary/above secondary | 39.5 (34/86) | 44.3 (27/61) | 38.5 (5/13) | 45.8 (22/48) | 28.0 (7/25) | ||
Working status | |||||||
Housewife/none | 69.8 (60/86) | 68.9 (42/61) | 84.6 (11/13) | 64.6 (31/48) | 72.0 (18/25) | 0.311 | 0.522 |
Trader/other job | 30.2 (26/86) | 31.1 (19/61) | 15.4 (2/13) | 35.4 (17/48) | 28.0 (7/25) | ||
Place of delivery | |||||||
Health center | 61.6 (53/86) | 65.6 (40/61) | 84.6 (11/13) | 60.4 (29/48) | 48.0 (13/25) | 0.187 | 0.490 |
Hospital | 38.4 (33/86) | 34.4 (21/61) | 15.4 (2/13) | 39.6 (19/48) | 52.0 (12/25) | ||
Electricity in household | 37.6 (32/85) | 39.3 (24/61) | 38.5 (5/13) | 39.6 (19/48) | 33.3 (8/24) | 0.941 | 0.606 |
WHO HIV stage I (asymptomatic) | 96.5 (83/86) | 100.0 (61/61) | 100.0 (13/13) | 100.0 (48/48) | 88.0 (22/25) | - | 0.037 |
Underweight (BMI < 18.5) † | 3/80 (3.8) | 2/56 (3.6) | 0/12 (0) | 2/44 (4.5) | 1/24 (4.2) | 1.000 | 1.000 |
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | GF HIV+ vs. GF HIV− | GF HIV+ vs. SMAC HIV+ | |
Age (years) (n: 86) | 29.5 (23.7–33.0) | 30 (24.0–33.5) | 30.0 (25.5–33.5) | 30.0 (23.0–33.7) | 27.0 (22.0–32.0) | 0.812 | 0.303 |
Number of other living children (n: 86) | 2 (1–3) | 2 (1–3) | 2 (1.5–3) | 2 (1–3) | 2 (0.5–3) | 0.396 | 0.976 |
Haemoglobin (g/dL, 3rd trimester) (n: 60) | 10.7 (9.6–11.5) | 11.0 (10.5–11.9) | 13.0 (13.0–13.0) | 11.0 (10.5–11.9) | 10.0 (9.0–10.0) | 0.056 | <0.001 |
Body mass index (kg/m2) (n: 80) † | 22.8 (20.9–25.6) | 23.0 (21.3–26.4) | 24.7 (22.1–26.9) | 22.8 (20.7–26.0) | 22.3 (20.4–23.9) | 0.194 | 0.464 |
Infants (N = 88) | All Infants | GF Cohort, All | GF Cohort, HUU | GF Cohort, HEU | SMAC Cohort, HEU | p Value | p Value |
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | GF HEU vs. GF HUU | GF HEU vs. SMAC HEU | |
Birth weight (Kg) (n: 58) | 3.30 (3.00–3.73) | 3.4 (3.0–3.9) | 3.4 (2.7–3.7) | 3.4 (3.02–3.97) | 3.20 (2.98–3.60) | 0.558 | 0.063 |
Month of the start of mixed feeding (n: 88) | 6 (6–7) | 6 (6–7) | 6 (6.0–6.25) | 6 (6–7) | 6 (6–6) | 0.256 | 0.013 |
% (n/N) | % (n/N) | % (n/N) | % (n/N) | % (n/N) | GF HEU vs. GF HUU | GF HEU vs. SMAC HEU | |
Gender (n: 88) | |||||||
Female | 45.5 (40/88) | 39.7 (25/63) | 57.1 (8/14) | 34.7 (17/49) | 60.0 (15/25) | 0.130 | 0.038 |
Male | 54.5 (48/88) | 60.3 (38/63) | 42.9 (6/14) | 65.3 (32/49) | 40.0 (10/25) | ||
Born in winter (n: 88) | 28.4 (25/88) | 34.9 (22/63) | 42.9 (6/14) | 32.7 (16/49) | 12.0 (3/25) | 0.480 | 0.090 |
Low birth weight (<2500 g) (n: 58) | 12.1 (7/58) | 5.7 (2/35) | 14.3 (1/7) | 3.6 (1/28) | 21.7 (5/23) | 0.365 | 0.079 |
N: GF 63 (HUU 14, HEU 49); SMAC 25 (HEU) | All Infants | GF Cohort, All | GF Cohort, HUU | GF Cohort, HEU | SMAC Cohort, HEU | p Value | p Value |
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | GF HEU vs. GF HUU | GF HEU vs. SMAC HEU | |
Weight, Kg (n: 75) | 7.5 (6.9–8.0) | 7.75 (7.0–8.5) | 7.7 (6.9–8.9) | 7.8 (7.0–8.4) | 7.1 (6.4–7.5) | 0.992 | 0.002 |
Height, cm (n: 72) | 65.0 (63.0–66.0) | 66.0 (63–67) | 65.0 (62.5–66.0) | 66.0 (64.0–67.2) | 64 (61.5–65.7) | 0.198 | 0.040 |
Body mass index, Kg/m2 (n: 72) | 17.6 (16.8–19.4) | 18.4 (17.1–20.3) | 18.9 (17.0–21.0) | 18.3 (17.1–19.7) | 17.0 (16.0–17.7) | 0.399 | 0.005 |
BMI Z-score (n: 72) | 0.34 (−0.37–1.38) | 0.79 (−0.04–1.95) | 1.23 (−0.07–2.32) | 0.75 (−0.06–1.56) | −0.25 (−0.62–0.39) | 0.364 | 0.006 |
Weight for age Z-score (n: 75) | −0.26 (−1.05–0.63) | −0.09 (−0.97–0.76) | 0.35 (−1.16–1.19) | −0.12 (−0.91–0.74) | −0.78 (−1.35–0.25) | 0.693 | 0.006 |
Length for age Z-score (n: 72) | −1.11 (−1.99–0.09) | −1.08 (−2.03–0.05) | −1.74 (−2.41–0.04) | −1.06 (−2.01–0.01) | −1.4 (−1.88–0.69) | 0.411 | 0.027 |
Weight for length Z-score (n: 72) | 0.46 (−0.16–1.45) | 1.00 (0.05–2.03) | 1.31 (0.12–2.34) | 0.94 (0.03–1.91) | −0.12 (−0.42–0.56) | 0.376 | 0.008 |
Haemoglobin, g/dL (n: 21) | 10.0 (10.0–11.0) | - | - | - | 10.0 (10.0–11.0) | - | - |
Alpha-glycoprotein, g/L (n: 88) | 0.98 (0.79–1.27) | 0.92 (0.76–1.26) | 1.11 (0.84–1.36) | 0.87 (0.73–1.21) | 1.06 (0.84–1.31) | 0.175 | 0.151 |
C-reactive protein, mg/L (n: 88) | 0.92 (0.24–4.88) | 0.72 (0.24–4.77) | 1.52 (0.42–7.53) | 0.48 (0.22–3.70) | 1.15 (0.21–6.60) | 0.164 | 0.369 |
Ferritin, μg/L (n: 86) | 6.60 (2.95–16.51) | 7.02 (3.17–17.49) | 11.70 (3.84–22.69) | 7.00 (3.00–15.24) | 5.27 (2.38–9.63) | 0.372 | 0.203 |
Retinol-binding protein, μmol/L (n: 88) | 1.37 (1.02–1.82) | 1.35 (0.97–1.72) | 1.30 (0.96–1.79) | 1.38 (0.98–1.73) | 1.41 (1.24–2.29) | 0.766 | 0.170 |
Vitamin D, nmol/L (n: 84) | 134 (115–170) | 129 (112–168) | 136 (115–175) | 128 (111–162) | 152 (119–175) | 0.395 | 0.087 |
All Infants | GF Cohort, all | GF Cohort, HUU | GF Cohort, HEU | SMAC Cohort, HEU | p Value | p Value | |
% (n/N) | % (n/N) | % (n/N) | % (n/N) | % (n/N) | GF HEU vs. GF HUU | GF HEU vs. SMAC HEU | |
Inflammation status (n: 88) | |||||||
No inflammation | 51.1 (45/88) | 55.6 (35/63) | 42.9 (6/14) | 59.2 (29/49) | 40.0 (10/25) | 0.278 | 0.118 |
Incubation | 1.1 (1/88) | 1.6 (1/63) | 0 (0/14) | 2.0 (1/49) | 0 (0/25) | 1.000 | 1.000 |
Early convalescence | 22.7 (20/88) | 20.6 (13/63) | 28.6 (4/14) | 18.4 (9/49) | 28.0 (7/25) | 0.461 | 0.341 |
Late convalescence | 25.0 (22/88) | 22.2 (14/63) | 28.6 (4/14) | 20.4 (10/49) | 32.0 (8/25) | 0.492 | 0.272 |
Ferritin deficiency (<12 μg/L) (n: 86) | 68.6 (59/86) | 63.9 (39/61) | 50.0 (7/14) | 68.1 (32/47) | 80.0 (20/25) | 0.216 | 0.263 |
Vitamin A deficiency (RBP < 0.7 μmol/L) (n: 88) | 8.0 (7/88) | 7.9 (5/63) | 14.3 (2/14) | 6.1 (3/49) | 8.0 (2/25) | 0.307 | 1.000 |
Vitamin D deficiency (<50 nmol/L) (n: 84) | 1.2 (1/84) | 1.7 (1/59) | 0 (0/13) | 2.2 (1/45) | 0 (0/25) | 1.000 | 1.000 |
Vitamin D insufficiency (<75 nmol/L) (n: 84) | 4.8 (4/84) | 6.8 (4/59) | 0 (0/13) | 8.7 (4/46) | 0 (0/25) | 0.566 | 0.290 |
Underweight (WAZ < −2) (n: 75) | 2.7 (2/75) | 1.9 (1/54) | 0 (0/13) | 2.4 (1/41) | 4.8 (1/21) | 1.000 | 1.000 |
Stunting (LAZ < −2) (n: 72) | 25.0 (18/72) | 27.5 (14/51) | 30.8 (4/13) | 26.3 (10/38) | 19.0 (4/21) | 0.734 | 0.751 |
Wasting (WLZ < −2) (n: 72) | 2.8 (2/72) | 3.9 (2/51) | 0 (0/13) | 5.3 (2/38) | 0 (0/21) | 1.000 | 0.534 |
All Infants | GF Cohort | SMAC Cohort | |||||||
N: GF 40 (HUU 9, HEU 31); SMAC 16 (HEU) | GF Cohort, All | GF Cohort, HUU | GF Cohort, HEU | SMAC Cohort, HEU | p Value | p Value | |||
Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | Median (IQR) | GF HEU vs. GF HUU | GF HEU vs. SMAC HEU | |||
Weight, Kg (n: 57) | 1.2 (0.7–1.8) | 1.3 (0.8–1.9) | 1.4 (0.9–1.7) | 1.2 (0.8–2.0) | 0.8 (0.3–1.1) | 0.963 | 0.013 | ||
Height, cm (n: 55) | 7.0 (6.0–9.0) | 7.5 (7.0–9.0) | 7.0 (6.5–10.5) | 8.0 (7.0–9.0) | 5.7 (4.6–8.5) | 0.919 | 0.015 | ||
Body mass index, Kg/m2 (n: 54) | −1.33 (−2.20–0.17) | −1.26 (−2.55–0.05) | −1.37 (−3.12–0.19) | −1.15 (−2.50–0.06) | −1.35 (−1.87–0.22) | 0.711 | 0.906 | ||
BMI Z-score (n: 54) | −0.39 (−1.08–0.34) | −0.32 (−1.20–0.52) | −0.35 (−1.70–0.57) | −0.29 (−1.12–0.56) | −0.66 (−0.99–0.21) | 0.589 | 0.553 | ||
Weight for age Z-score (n: 56) | −0.46 (−0.92–0.13) | −0.21 (−0.76–0.16) | 0.09 (−0.73–0.12) | −0.30 (0.80–0.18) | −0.84 (−1.27–0.57) | 0.949 | 0.014 | ||
Length for age Z-score (n: 53) | −0.18 (−0.88–0.56) | −0.08 (−0.53–0.60) | −0.08 (−0.88–1.14) | −0.07 (−0.50–0.61) | −0.84 (−1.41–0.24) | 0.931 | 0.006 | ||
Weight for length Z-score (n: 54) | −0.86 (−1.47–0.03) | −0.77 (−1.48–0.18) | −0.74 (−2.08–0.20) | −0.81 (−1.43–0.20) | −0.96 (−1.40–0.23) | 0.613 | 0.499 | ||
Ferritin Status | RBP Status | Vitamin D Status | |||||||
Normal | Deficient | Normal | Deficient | Normal | Insufficient | ||||
Median (IQR) | Median (IQR) | p Value | Median (IQR) | Median (IQR) | p Value | Median (IQR) | Median (IQR) | p Value | |
Weight, Kg (n: 56) | 1.8 (0.8–2.3) | 1.1 (0.7–1.4) | 0.016 | 1.1 (0.7–1.85) | 1.5 (0.7–1.9) | 0.466 | 1.1 (0.7–1.9) | 1.2 (0.6–1.4) | 0.861 |
Height, cm (n: 53) | 8.0 (5.5–9.5) | 7.0 (6.0–8.7) | 0.584 | 7.0 (6.0–9.0) | 7.0 (5.0–7.0) | 0.196 | 7.0 (5.6–8.7) | 8.0 (7.0–n.c.) | 0.251 |
Body mass index, Kg/m2 (n: 53) | −0.19 (−2.49–1.00) | −1.48 (−2.39–0.80) | 0.067 | −1.37 (−2.50–0.19) | −0.76 (−1.31–0.75) | 0.139 | −1.33 (−1.99–0.01) | −2.69 (−3.75–n.c.) | 0.164 |
BMI Z-score (n: 53) | 0.31 (−1.20–0.94) | −0.63 (−1.08–0.08) | 0.045 | −0.55 (−1.12–0.28) | 0.02 (−0.62–0.89) | 0.217 | −0.39 (−1.05–0.47) | −1.77 (−1.80–n.c.) | 0.190 |
Weight for age Z-score (n: 55) | 0.12 (−0.80–0.55) | −0.58 (−0.96–0.21) | 0.017 | −0.54 (−0.94–0.14) | 0.11 (−0.80–0.14) | 0.520 | −0.48 (−0.94–0.13) | −0.52 (−0.91–0.38) | 0.569 |
Length for age Z-score (n: 52) | −0.08 (−0.88–0.68) | −0.18 (−0.92–0.38) | 0.668 | −0.14 (−0.78–0.61) | −0.85 (−0.92–0.16) | 0.225 | −0.29 (−0.92–0.24) | 0.57 (−0.19–n.c.) | 0.161 |
Weight for length Z-score (n: 53) | −0.22 (−1.46–0.62) | −0.98 (−1.49–0.25) | 0.060 | −0.92 (−1.49–0.09) | −0.46 (−1.03–0.64) | 0.206 | −0.86 (−1.43–0.15) | −1.59 (−2.33–n.c.) | 0.304 |
Underweight at Any Time (6 or 12 Months) | Stunting at Any Time (6 or 12 Months) | Wasting at Any Time (6 or 12 Months) | |||||||
---|---|---|---|---|---|---|---|---|---|
Yes | No | Yes | No | Yes | No | ||||
Micronutrient Status at 6 Months | % (n/N) | % (n/N) | p Value | % (n/N) | % (n/N) | p Value | % (n/N) | % (n/N) | p Value |
Ferritin deficiency (n: 83) | |||||||||
Yes | 80.0 (8/10) | 67.1 (49/73) | 0.417 | 72.0 (18/25) | 67.2 (39/58) | 0.668 | 77.8 (7/9) | 67.6 (50/74) | 0.713 |
No | 20.0 (2/10) | 32.9 (24/73) | 28.0 (7/25) | 32.8 (19/58) | 22.2 (2/9) | 32.4 (24/74) | |||
Vitamin A deficiency (n: 85) | |||||||||
Yes | 10.0 (1/10) | 8.0 (6/75) | 1.000 | 11.5 (3/26) | 6.8 (4/59) | 0.670 | 0 (0/9) | 9.2 (7/76) | 1.000 |
No | 90.0 (9/10) | 92.0 (69/75) | 88.5 (23/26) | 93.2 (55/59) | 100.0 (9/9) | 90.8 (69/76) | |||
Vitamin D insufficiency (n: 81) | |||||||||
Yes | 0 (0/9) | 5.6 (4/72) | 1.000 | 4.3 (1/23) | 5.2 (3/58) | 1.000 | 12.5 (1/8) | 4.1 (3/73) | 0.346 |
No | 100.0 (9/9) | 94.4 (68/72) | 95.7 (22/23) | 94.8 (55/58) | 87.5 (7/8) | 95.9 (70/73) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Floridia, M.; Galluzzo, C.M.; Orlando, S.; Luhanga, R.; Mphwere, R.; Kavalo, T.; Andreotti, M.; Amici, R.; Ciccacci, F.; Marazzi, M.C.; et al. Micronutrient and Nutritional Status of HIV-Exposed and HIV-Unexposed Malawian Infants in the First Year of Life: Assessment of Ferritin, Vitamin A, and D Status and Its Association with Growth. Nutrients 2023, 15, 3282. https://doi.org/10.3390/nu15143282
Floridia M, Galluzzo CM, Orlando S, Luhanga R, Mphwere R, Kavalo T, Andreotti M, Amici R, Ciccacci F, Marazzi MC, et al. Micronutrient and Nutritional Status of HIV-Exposed and HIV-Unexposed Malawian Infants in the First Year of Life: Assessment of Ferritin, Vitamin A, and D Status and Its Association with Growth. Nutrients. 2023; 15(14):3282. https://doi.org/10.3390/nu15143282
Chicago/Turabian StyleFloridia, Marco, Clementina Maria Galluzzo, Stefano Orlando, Richard Luhanga, Robert Mphwere, Thom Kavalo, Mauro Andreotti, Roberta Amici, Fausto Ciccacci, Maria Cristina Marazzi, and et al. 2023. "Micronutrient and Nutritional Status of HIV-Exposed and HIV-Unexposed Malawian Infants in the First Year of Life: Assessment of Ferritin, Vitamin A, and D Status and Its Association with Growth" Nutrients 15, no. 14: 3282. https://doi.org/10.3390/nu15143282
APA StyleFloridia, M., Galluzzo, C. M., Orlando, S., Luhanga, R., Mphwere, R., Kavalo, T., Andreotti, M., Amici, R., Ciccacci, F., Marazzi, M. C., & Giuliano, M. (2023). Micronutrient and Nutritional Status of HIV-Exposed and HIV-Unexposed Malawian Infants in the First Year of Life: Assessment of Ferritin, Vitamin A, and D Status and Its Association with Growth. Nutrients, 15(14), 3282. https://doi.org/10.3390/nu15143282