Sex Related Differences in the Complex Relationship between Coffee, Caffeine and Atrial Fibrillation
Abstract
:1. Introduction
2. Caffeine
Molecular and Cellular Action of Caffeine
- Inhibition of phosphodiesterase enzyme: Caffeine inhibits the activity of phosphodiesterase enzymes, which normally break down cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP). By inhibiting phosphodiesterase, caffeine increases the levels of cAMP and cGMP, leading to various physiological effects [34].
- Antagonism of adenosine receptors: Caffeine acts as a competitive antagonist of adenosine receptors, specifically the A1 and A2A subtypes. By binding to these receptors, caffeine blocks the actions of adenosine, a neuromodulator that promotes relaxation and sleep. This antagonistic action of caffeine contributes to its stimulating effects, such as increased alertness and wakefulness [33].
3. Effects of Coffee and Caffeine Linked to Arrhythmias Development
4. Effects of Coffee and Caffeine Linked to Arrhythmias Prevention
5. Clinical Studies on Coffee and Caffeine and Atrial Fibrillation
6. Limitations
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Surma, S.; Romańczyk, M.; Filipiak, K.J.; Lip, G.Y.H. Coffee and cardiac arrhythmias: Up-date review of the literature and clinical studies. Cardiol. J. 2022. [Google Scholar] [CrossRef]
- Sims, S.T.; Kerksick, C.M.; Smith-Ryan, A.E.; Janse de Jonge, X.A.; Hirsch, K.R.; Arent, S.M.; Hewlings, S.J.; Kleiner, S.M.; Bustillo, E.; Tartar, J.L.; et al. International society of sports nutrition position stand: Nutritional concerns of the female athlete. J. Int. Soc. Sports Nutr. 2023, 20, 2204066. [Google Scholar] [CrossRef] [PubMed]
- Chieng, D.; Kistler, P.M. Coffee and tea on cardiovascular disease (CVD) prevention. Trends Cardiovasc. Med. 2022, 32, 399–405. [Google Scholar] [CrossRef]
- Voskoboinik, A.; Kalman, J.M.; Kistler, P.M. Caffeine and Arrhythmias: Time to Grind the Data. JACC Clin. Electrophysiol. 2018, 4, 425–432. [Google Scholar] [CrossRef] [PubMed]
- Kaur, A.; Yousuf, H.; Ramgobin-Marshall, D.; Jain, R.; Jain, R. Energy drink consumption: A rising public health issue. Rev. Cardiovasc. Med. 2022, 23, 83. [Google Scholar] [CrossRef]
- Mattioli, A.V. Effects of caffeine and coffee consumption on cardiovascular disease and risk factors. Fut. Cardiol. 2007, 3, 203–212. [Google Scholar] [CrossRef]
- Khiali, S.; Agabalazadeh, A.; Sahrai, H.; Bannazadeh Baghi, H.; Rahbari Banaeian, G.; Entezari-Maleki, T. Effect of Caffeine Consumption on Cardiovascular Disease: An Updated Review. Pharmaceut Med. 2023, 37, 139–151. [Google Scholar] [CrossRef]
- Bastian, F.; Hutabarat, O.S.; Dirpan, A.; Nainu, F.; Harapan, H.; Emran, T.B.; Simal-Gandara, J. From Plantation to Cup: Changes in Bioactive Compounds during Coffee Processing. Foods 2021, 10, 2827. [Google Scholar] [CrossRef]
- Mattioli, A.V. Caffeine and atrial fibrillation. In V Preedy Coffee in 1. Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2015; pp. 691–698. [Google Scholar] [CrossRef]
- Food Standards Australian and New Zealand. Available online: https://www.foodstandards.gov.au/consumer/generalissues/pages/caffeine.aspx#:~:text=It%20sets%20maximum%20permitted%20levels,is%20320%20mg%20per%20litre (accessed on 28 June 2023).
- Standard 2.6.4—Formulated Caffeinated Beverages—Food Standards (Proposal P1025—Code Revision) Variation—Australia New Zealand Food Standards Code—Amendment No. 154. Available online: https://gazette.govt.nz/notice/id/2015-gs1907 (accessed on 28 June 2023).
- ESFA Journal “Scientific Opinion on the Safety of Caffeine”. 2015. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/4102 (accessed on 25 June 2023).
- Kaplan, G.B.; Greenblatt, D.J.; Ehrenberg, B.L.; Goddard, J.E.; Cotreau, M.M.; Harmatz, J.S.; Shader, R.I. Dose-dependent pharmacokinetics and psychomotor effects of caffeine in humans. J. Clin. Pharm. 1997, 37, 693–703. [Google Scholar] [CrossRef]
- Lang, R.; Dieminger, N.; Beusch, A.; Lee, Y.M.; Dunkel, A.; Suess, B.; Skurk, T.; Wahl, A.; Hauner, H.; Hofmann, T. Bioappearance and pharmacokinetics of bioactives upon coffee consumption. Anal. Bioanal. Chem. 2013, 405, 8487–8503. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Manenti, A.; Farinetti, A. Monitoring Caffeine Intake: The Relevance of Adequate Assessment in the Population. J. Am. Nutr. Assoc. 2023, 1–3. [Google Scholar] [CrossRef]
- Ludwig, I.A.; Mena, P.; Calani, L.; Cid, C.; Del Rio, D.; Lean, M.E.; Crozier, A. Variations in caffeine and chlorogenic acid contents of coffees: What are we drinking? Food Funct. 2014, 5, 1718–1726. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mannino, G.; Kunz, R.; Maffei, M.E. Discrimination of Green Coffee (Coffea arabica and Coffea canephora) of Different Geographical Origin Based on Antioxidant Activity, High-Throughput Metabolomics, and DNA RFLP Fingerprinting. Antioxidants 2023, 12, 1135. [Google Scholar] [CrossRef] [PubMed]
- Jeszka-Skowron, M.; Frankowski, R.; Zgoła-Grześkowiak, A.; Płatkiewicz, J. Comprehensive Analysis of Metabolites in Brews Prepared from Naturally and Technologically Treated Coffee Beans. Antioxidants 2022, 12, 95. [Google Scholar] [CrossRef] [PubMed]
- Stiefel, C.; Lindemann, B.; Morlock, G.E. Non-target bioactive compound profiles of coffee roasts and preparations. Food Chem. 2022, 391, 133263. [Google Scholar] [CrossRef]
- Chieng, D.; Canovas, R.; Segan, L.; Sugumar, H.; Voskoboinik, A.; Prabhu, S.; Ling, L.H.; Lee, G.; Morton, J.B.; Kaye, D.M.; et al. The impact of coffee subtypes on incident cardiovascular disease, arrhythmias, and mortality: Long-term outcomes from the UK Biobank. Eur. J. Prev. Cardiol. 2022, 29, 2240–2249. [Google Scholar] [CrossRef]
- Bulczak, E.M.; Chmurzyńska, A.U. Caffeine Consumption in Polish Adults: Development and Validation of a Polish Questionnaire for Assessing Caffeine Intake. J. Am. Nutr. Assoc. 2023, 1–7. [Google Scholar] [CrossRef]
- Sachse, C.; Brockmöller, J.; Bauer, S.; Roots, I. Functional significance of a C→A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br. J. Clin. Pharmacol. 1999, 47, 445–449. [Google Scholar] [CrossRef] [Green Version]
- Cornelis, M.C.; El-Sohemy, A.; Kabagambe, E.K.; Campos, H. Coffee, CYP1A2 genotype, and risk of myocardial infarction. JAMA 2006, 295, 1135–1141. [Google Scholar] [CrossRef] [Green Version]
- Palatini, P.; Benetti, E.; Mos, L.; Garavelli, G.; Mazzer, A.; Cozzio, S.; Fania, C.; Casiglia, E. Association of coffee consumption and CYP1A2 polymorphism with risk of impaired fasting glucose in hypertensive patients. Eur. J. Epidemiol. 2015, 30, 209–217. [Google Scholar] [CrossRef]
- Mahdavi, S.; Palatini, P.; El-Sohemy, A. CYP1A2 Genetic Variation, Coffee Intake, and Kidney Dysfunction. JAMA Netw. Open 2023, 6, e2247868. [Google Scholar] [CrossRef]
- Huang, Y.; Shan, Y.; Zhang, W.; Lee, A.M.; Li, F.; Stranger, B.E.; Huang, R.S. Deciphering genetic causes for sex differences in human health through drug metabolism and transporter genes. Nat. Commun. 2023, 14, 175. [Google Scholar] [CrossRef]
- Van Der Weide, J.; Steijns, L.S.W.; VanWeelden, M.J.M. The effect of smoking and cytochrome P450 CYP1A2 genetic polymorphism on clozapine clearance and dose requirement. Pharmacogenetics 2003, 13, 169–172. [Google Scholar] [CrossRef]
- Coppi, F.; Migaldi, M.; Stefanelli, C.; Farinetti, A.; Mattioli, A.V. Changes in coffee and caffeine intake during the pandemic in women smokers and non-smokers: A future challenge for cardiovascular prevention. Acta Biomed. 2023, 94, e2023114. [Google Scholar] [CrossRef] [PubMed]
- Casiglia, E.; Tikhonoff, V.; Albertini, F.; Favaro, J.; Montagnana, M.; Danese, E.; Finatti, F.; Benati, M.; Mazza, A.; Dal Maso, L.; et al. Caffeine intake and abstract reasoning among 1374 unselected men and women from general population. Role of the -163C>A polymorphism of CYP1A2 gene. Clin. Nutr. ESPEN 2017, 20, 52–59. [Google Scholar] [CrossRef]
- Gkouskou, K.G.; Georgiopoulos, G.; Vlastos, I.; Lazou, E.; Chaniotis, D.; Papaioannou, T.G.; Mantzoros, C.S.; Sanoudou, D.; Eliopoulos, A.G. CYP1A2 polymorphisms modify the association of habitual coffee consumption with appetite, macronutrient intake, and body mass index: Results from an observational cohort and a cross-over randomized study. Int. J. Obes. 2022, 46, 162–168. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Moscucci, F.; Sciomer, S.; Maffei, S.; Nasi, M.; Pinti, M.; Bucciarelli, V.; Dei Cas, A.; Parati, G.; Ciccone, M.; et al. Cardiovascular prevention in women: Un update By the Italian Society of Cardiology Working Group on “Prevention, Hypertension and peripheral disease”. J. Cardiovasc. Med. 2023, 24 (Suppl. 2), e147–e155. [Google Scholar] [CrossRef] [PubMed]
- Cornelis, M.C.; Kacprowski, T.; Menni, C.; Gustafsson, S.; Pivin, E.; Adamski, J.; Artati, A.; Eap, C.B.; Ehret, G.; Friedrich, N.; et al. Genome-wide association study of caffeine metabolites provides new insights to caffeine metabolism and dietary caffeine-consumption behavior. Hum. Mol. Genet. 2016, 25, 5472–5482. [Google Scholar] [CrossRef]
- Fredholm, B.B.; Battic, K.; Holmen, J.; Nehlig, A.; Zvartau, E.E. Actions of 2. caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol. Rev. 1999, 51, 83–133. [Google Scholar] [PubMed]
- Röhrig, T.; Liesenfeld, D.; Richling, E. Identification of a Phosphodiesterase-Inhibiting Fraction from Roasted Coffee (Coffea arabica) through Activity-Guided Fractionation. J. Agric. Food Chem. 2017, 65, 3792–3800. [Google Scholar] [CrossRef]
- Barone, J.J.; Roberts, H.R. Caffeine consumption. Food Chem. Toxicol. 1996, 34, 119–129. [Google Scholar] [CrossRef]
- Bolignano, D.; Coppolino, G.; Barillà, A.; Campo, S.; Criseo, M.; Tripodo, D.; Buemi, M. Caffeine and the kidney: What evidence right now? J. Ren. Nutr. 2007, 17, 225–234. [Google Scholar] [CrossRef] [PubMed]
- Echeverri, D.; Montes, F.R.; Cabrera, M.; Galán, A.; Prieto, A. Caffeine’s Vascular Mechanisms of Action. Int. J. Vasc. Med. 2010, 2010, 834060. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Yin, J.; Li, J.; Sun, H.; Liu, Y.; Yang, J. Association between dietary caffeine intake and severe headache or migraine in US adults. Sci Rep. 2023, 13, 10220. [Google Scholar] [CrossRef] [PubMed]
- Bucciarelli, V.; Mattioli, A.V.; Sciomer, S.; Moscucci, F.; Renda, G.; Gallina, S. The Impact of Physical Activity and Inactivity on Cardiovascular Risk across Women’s Lifespan: An Updated Review. J. Clin. Med. 2023, 12, 4347. [Google Scholar] [CrossRef] [PubMed]
- Susy, K. Long-term outcomes from the UK Biobank on the impact of coffee on cardiovascular disease, arrhythmias, and mortality: Does the future hold coffee prescriptions? Glob. Cardiol. Sci. Pract. 2023, 2023, e202313. [Google Scholar] [CrossRef] [PubMed]
- Marcus, G.M.; Modrow, M.F.; Schmid, C.H.; Sigona, K.; Nah, G.; Yang, J.; Chu, T.C.; Joyce, S.; Gettabecha, S.; Ogomori, K.; et al. Individualized Studies of Triggers of Paroxysmal Atrial Fibrillation: The I-STOP-AFib Randomized Clinical Trial. JAMA Cardiol. 2022, 7, 167–174. [Google Scholar] [CrossRef]
- Mattioli, A.V. Link between coffee and atrial fibrillation debunked? Expert. Rev. Cardiovasc. Ther. 2019, 17, 75–77. [Google Scholar] [CrossRef]
- Borghi, C. Coffee and blood pressure: Exciting news! Blood Press. 2022, 31, 284–287. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Selleri, V.; Zanini, G.; Nasi, M.; Pinti, M.; Stefanelli, C.; Fedele, F.; Gallina, S. Physical Activity and Diet in Older Women: A Narrative Review. J. Clin. Med. 2022, 12, 81. [Google Scholar] [CrossRef]
- Guieu, R.; Degioanni, C.; Fromonot, J.; De Maria, L.; Ruf, J.; Deharo, J.C.; Brignole, M. Adenosine, Adenosine Receptors and Neurohumoral Syncope: From Molecular Basis to Personalized Treatment. Biomedicines 2022, 10, 1127. [Google Scholar] [CrossRef] [PubMed]
- O’Keefe, J.H.; Bhatti, S.K.; Patil, H.R.; DiNicolantonio, J.J.; Lucan, S.C.; Lavie, C.J. Effects of habitual coffee consumption on cardiometabolic disease, cardiovascular health, and all-cause mortality. J. Am. Coll. Cardiol. 2013, 62, 1043–1051. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ochoa-Rosales, C.; van der Schaft, N.; Braun, K.V.E.; Ho, F.K.; Petermann-Rocha, F.; Ahmadizar, F.; Kavousi, M.; Pell, J.P.; Ikram, M.A.; Celis-Morales, C.A.; et al. C-reactive protein partially mediates the inverse association between coffee consumption and risk of type 2 diabetes: The UK Biobank and the Rotterdam study cohorts. Clin. Nutr. 2023, 42, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, A.V.; Farinetti, A.; Miloro, C.; Pedrazzi, P.; Mattioli, G. Influence of coffee and caffeine consumption on atrial fibrillation in hypertensive patients. Nutr. Metab. Cardiovasc. Dis. 2011, 21, 412–417. [Google Scholar] [CrossRef]
- Machado, F.; Coimbra, M.A.; Castillo, M.D.D.; Coreta-Gomes, F. Mechanisms of action of coffee bioactive compounds—A key to unveil the coffee paradox. Crit. Rev. Food Sci. Nutr. 2023; ahead of print. [Google Scholar] [CrossRef]
- Costa, V.M.; Grando, L.G.R.; Milandri, E.; Nardi, J.; Teixeira, P.; Mladěnka, P.; Remião, F. On Behalf Of The Oemonom. Natural Sympathomimetic Drugs: From Pharmacology to Toxicology. Biomolecules 2022, 12, 1793. [Google Scholar] [CrossRef] [PubMed]
- Cicero, A.F.; Fogacci, F.; D’Addato, S.; Grandi, E.; Rizzoli, E.; Borghi, C.; Brisighella Heart Study. Self-Reported Coffee Consumption and Central and Peripheral Blood Pressure in the Cohort of the Brisighella Heart Study. Nutrients 2023, 15, 312. [Google Scholar] [CrossRef]
- Marcus, G.M.; Rosenthal, D.G.; Nah, G.; Vittinghoff, E.; Fang, C.; Ogomori, K.; Joyce, S.; Yilmaz, D.; Yang, V.; Kessedjian, T.; et al. Acute Effects of Coffee Consumption on Health among Ambulatory Adults. N. Engl. J. Med. 2023, 388, 1092–1100. [Google Scholar] [CrossRef]
- Machado, M.; Espírito Santo, L.; Machado, S.; Lobo, J.C.; Costa, A.S.; Oliveira, M.B.P.; Ferreira, H.; Alves, R.C. Bioactive Potential and Chemical Composition of Coffee By-Products: From Pulp to Silverskin. Foods 2023, 12, 2354. [Google Scholar] [CrossRef]
- Lemos, M.F.; Salustriano, N.A.; Costa, M.M.S.; Lirio, K.; Fonseca, A.F.A.; Pacheco, H.P.; Endringer, D.C.; Fronza, M.; Scherer, R. Chlorogenic acid and caffeine contents and anti-inflammatory and antioxidant activities of green beans of conilon and arabica coffees harvested with different degrees of maturation. J. Saudi. Chem. Soc. 2022, 26, 101467. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Francesca, C.; Mario, M.; Farinetti, A. Fruit and vegetables in hypertensive women with asymptomatic peripheral arterial disease. Clin. Nutr. ESPEN 2018, 27, 110–112. [Google Scholar] [CrossRef]
- Cyr, A.R.; Huckaby, L.V.; Shiva, S.S.; Zuckerbraun, B.S. Nitric Oxide and Endothelial Dysfunction. Crit. Care Clin. 2020, 36, 307–321. [Google Scholar] [CrossRef] [PubMed]
- Lu, M.Y.; Lai, J.C.; Chen, S.J. Influence of Sex Differences on Serum Lipid Profiles among Habitual Coffee Drinkers: Evidence from 23,072 Taiwan Biobank Participants. Nutrients 2023, 15, 2576. [Google Scholar] [CrossRef] [PubMed]
- Tan, X.; Sun, Y.; Chen, L.; Hu, J.; Meng, Y.; Yuan, M.; Wang, Q.; Li, S.; Zheng, G.; Qiu, Z. Caffeine Ameliorates AKT-Driven Nonalcoholic Steatohepatitis by Suppressing De Novo Lipogenesis and MyD88 Palmitoylation. J. Agric. Food Chem. 2022, 70, 6108–6122. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Migaldi, M.; Farinetti, A. Coffee in hypertensive women with asymptomatic peripheral arterial disease: A potential nutraceutical effect. J. Cardiovasc. Med. 2018, 19, 183–185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vandenberghe, C.; St-Pierre, V.; Courchesne-Loyer, A.; Hennebelle, M.; Castellano, C.A.; Cunnane, S.C. Caffeine intake increases plasma ketones: An acute metabolic study in humans. Can. J. Physiol. Pharmacol. 2017, 95, 455–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, J.; Park, J.; Lim, K. Nutrition Supplements to Stimulate Lipolysis: A Review in Relation to Endurance Exercise Capacity. J. Nutr. Sci. Vitaminol. 2016, 62, 141–161. [Google Scholar] [CrossRef] [Green Version]
- Yamada, A.K.; Pimentel, G.D.; Pickering, C.; Cordeiro, A.V.; Silva, V.R.R. Effect of caffeine on mitochondrial biogenesis in the skeletal muscle—A narrative review. Clin. Nutr. ESPEN 2022, 51, 1–6. [Google Scholar] [CrossRef]
- Schnuck, J.K.; Gould, L.M.; Parry, H.A.; Johnson, M.A.; Gannon, N.P.; Sunderland, K.L.; Vaughan, R.A. Metabolic effects of physiological levels of caffeine in myotubes. J. Physiol. Biochem. 2018, 74, 35–45. [Google Scholar] [CrossRef]
- Mattioli, A.V. Coffee consumption effects on bioelectrical impedance parameters: Does gender matter? Eur. J. Clin. Nutr. 2022, 76, 1622–1623. [Google Scholar] [CrossRef]
- Slighoua, M.; Amrati, F.E.Z.; Chebaibi, M.; Mahdi, I.; Al Kamaly, O.; El Ouahdani, K.; Drioiche, A.; Saleh, A.; Bousta, D. Quercetin and Ferulic Acid Elicit Estrogenic Activities In Vivo and In Silico. Molecules 2023, 28, 5112. [Google Scholar] [CrossRef]
- Gohil, K.J.; Kshirsagar, S.B.; Sahane, R.S. Ferulic Acid-A Comprehensive Pharmacology of an Important Bioflavonoid. Int. J. Pharm. Sci. Res. 2012, 3, 700–710. [Google Scholar]
- Krause, D.N.; Duckles, S.P.; Pelligrino, D.A. Influence of Sex Steroid Hormones on Cerebrovascular Function. J. Appl. Physiol. 2006, 101, 1252–1261. [Google Scholar] [CrossRef]
- Surma, S.; Sahebkar, A.; Banach, M. Coffee or tea: Anti-inflammatory properties in the context of atherosclerotic cardiovascular disease prevention. Pharmacol. Res. 2023, 187, 106596. [Google Scholar] [CrossRef]
- Ren, Y.; Wang, C.; Xu, J.; Wang, S. Cafestol and Kahweol: A Review on Their Bioactivities and Pharmacological Properties. Int. J. Mol. Sci. 2019, 20, 4238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Roos, B.; Caslake, M.J.; Stalenhoef, A.F.; Bedford, D.; Demacker, P.N.; Katan, M.B.; Packard, C.J. The coffee diterpene cafestol increases plasma triacylglycerol by increasing the production rate of large VLDL apolipoprotein B in healthy normolipidemic subjects. Am. J. Clin. Nutr. 2001, 73, 45–52. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coelho, M.; Patarrão, R.S.; Sousa-Lima, I.; Ribeiro, R.T.; Meneses, M.J.; Andrade, R.; Mendes, V.M.; Manadas, B.; Raposo, J.F.; Macedo, M.P.; et al. Increased Intake of Both Caffeine and Non-Caffeine Coffee Components Is Associated with Reduced NAFLD Severity in Subjects with Type 2 Diabetes. Nutrients 2022, 15, 4. [Google Scholar] [CrossRef] [PubMed]
- Frost, L.; Vestergaard, P. Caffeine and risk of atrial fibrillation or flutter: The Danish Diet, Cancer, and Health Study. Am. J. Clin. Nutr. 2005, 81, 578–582. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wilhelmsen, L.; Rosengren, A.; Lappas, G. Hospitalizations for atrial fibrillation in the general male population: Morbidity and risk factors. J. Intern. Med. 2001, 250, 382–389. [Google Scholar] [CrossRef] [Green Version]
- Conen, D.; Chiuve, S.E.; Everett, B.M.; Zhang, S.M.; Buring, J.E.; Albert, C.M. Caffeine consumption and incident atrial fibrillation in women. Am. J. Clin. Nutr. 2010, 92, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Mattioli, A.V.; Tarabini Castellani, E.; Vivoli, D.; Molinari, R.; Mattioli, G. Restoration of atrial function after atrial fibrillation of different etiological origins. Cardiology 1996, 87, 205–211. [Google Scholar] [CrossRef]
- Yuan, S.; Larsson, S.C. No association between coffee consumption and risk of atrial fibrillation: A Mendelian randomization study. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 1185–1188. [Google Scholar] [CrossRef]
- Bodar, V.; Chen, J.; Gaziano, J.M.; Albert, C.; Djoussé, L. Coffee consumption and risk of atrial fibrillation in the Physicians’ Health Study. J. Am. Heart Assoc. 2019, 8, e011346. [Google Scholar] [CrossRef] [Green Version]
- Casiglia, E.; Tikhonoff, V.; Albertini, F.; Gasparotti, F.; Mazza, A.; Montagnana, M.; Danese, E.; Benati, M.; Spinella, P.; Palatini, P. Caffeine intake reduces incident atrial fibrillation at a population level. Eur. J. Prev. Cardiol. 2018, 25, 1055–1062. [Google Scholar] [CrossRef] [PubMed]
- Mattioli, A.V.; Bonatti, S.; Zennaro, M.; Melotti, R.; Mattioli, G. Effect of coffee consumption, lifestyle and acute life stress in the development of acute lone atrial fibrillation. J. Cardiovasc. Med. 2008, 9, 794–798. [Google Scholar] [CrossRef] [PubMed]
- Leo, D.G.; Ozdemir, H.; Lane, D.A.; Lip, G.Y.H.; Keller, S.S.; Proietti, R. At the heart of the matter: How mental stress and negative emotions affect atrial fibrillation. Front. Cardiovasc. Med. 2023, 10, 1171647. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Coppi, F.; Nasi, M.; Gallina, S. Stress and cardiovascular risk burden after the pandemic: Current status and future prospects. Expert. Rev. Cardiovasc. Ther. 2022, 20, 507–513. [Google Scholar] [CrossRef] [PubMed]
- Jakobsdottir, G.; Stefansdottir, R.S.; Gestsdottir, S.; Stefansson, V.; Johannsson, E.; Rognvaldsdottir, V.; Gisladottir, T.L. Changes in health-related lifestyle choices of university students before and during the COVID-19 pandemic: Associations between food choices, physical activity and health. PLoS ONE 2023, 18, e0286345. [Google Scholar] [CrossRef]
- Adcock, S.; Lang, B. Caffeine Motives and Expectancies for Individuals with High Anxiety Sensitivity. Subst. Use Misuse. 2023, 58, 610–617. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Sabatini, S. Changes in energy drink consumption during the COVID-19 quarantine. Clin. Nutr. ESPEN 2021, 45, 516–517. [Google Scholar] [CrossRef]
- Kim, E.J.; Hoffmann, T.J.; Nah, G.; Vittinghoff, E.; Delling, F.; Marcus, G.M. Coffee consumption and incident tachyarrhythmias: Reported behavior, Mendelian randomization, and their interactions. JAMA Intern. Med. 2021, 181, 1185–1193. [Google Scholar] [CrossRef]
- Larsson, S.C.; Drca, N.; Jensen-Urstad, M.; Wolk, A. Coffee consumption is not associated with increased risk of atrial fibrillation: Results from two prospective cohorts and a meta-analysis. BMC Med. 2015, 13, 207. [Google Scholar] [CrossRef] [Green Version]
- Shen, J.; Johnson, V.M.; Sullivan, L.M.; Jacques, P.F.; Magnani, J.W.; Lubitz, S.A.; Pandey, S.; Levy, D.; Vasan, R.S.; Quatromoni, P.A.; et al. Dietary factors and incident atrial fibrillation: The Framingham Heart Study. Am. J. Clin. Nutr. 2011, 93, 261–266. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kapellou, A.; King, A.; Graham, C.A.M.; Pilic, L.; Mavrommatis, Y. Genetics of caffeine and brain-related outcomes—A systematic review of observational studies and randomized trials. Nutr. Rev. 2023, nuad029. [Google Scholar] [CrossRef]
- Mostofsky, E.; Berg Johansen, M.; Tjønneland, A.; Chahal, H.S.; Mittleman, M.A.; Overvad, K. Chocolate intake and risk of clinically apparent atrial fibrillation: The Danish Diet, Cancer, and Health Study. Heart 2017, 103, 1163–1167. [Google Scholar] [CrossRef]
- Li, Y.; Xu, Y.; Le Roy, C.; Hu, J.; Steves, C.J.; Bell, J.T.; Spector, T.D.; Gibson, R.; Menni, C.; Rodriguez-Mateos, A. Interplay between the (Poly)phenol Metabolome, Gut Microbiome, and Cardiovascular Health in Women: A Cross-Sectional Study from the Twins UK Cohort. Nutrients 2023, 15, 1900. [Google Scholar] [CrossRef] [PubMed]
- Dai, A.; Hoffman, K.; Xu, A.A.; Gurwara, S.; White, D.L.; Kanwal, F.; Jang, A.; El-Serag, H.B.; Petrosino, J.F.; Jiao, L. The Association between Caffeine Intake and the Colonic Mucosa-Associated Gut Microbiota in Humans-A Preliminary Investigation. Nutrients 2023, 15, 1747. [Google Scholar] [CrossRef]
- Salerni, S.; Di Francescomarino, S.; Cadeddu, C.; Acquistapace, F.; Maffei, S.; Gallina, S. The different role of sex hormones on female cardiovascular physiology and function: Not only oestrogens. Eur. J. Clin. Investig. 2015, 45, 634–645. [Google Scholar] [CrossRef] [PubMed]
- Cadeddu, C.; Franconi, F.; Cassisa, L.; Campesi, I.; Pepe, A.; Cugusi, L.; Maffei, S.; Gallina, S.; Sciomer, S.; Mercuro, G., on behalf of the Working Group of Gender Medicine of Italian Society of Cardiology. Arterial hypertension in the female world: Pathophysiology and therapy. J. Cardiovasc. Med. 2016, 17, 229–236. [Google Scholar] [CrossRef]
- Domaszewski, P. Gender Differences in the Frequency of Positive and Negative Effects after Acute Caffeine Consumption. Nutrients 2023, 15, 1318. [Google Scholar] [CrossRef]
- Mattioli, A.V.; Pennella, S.; Farinetti, A.; Manenti, A. Energy Drinks and atrial fibrillation in young adults. Clin. Nutr. 2018, 37, 1073–1074. [Google Scholar] [CrossRef]
- Ellermann, C.; Hakenes, T.; Wolfes, J.; Wegner, F.K.; Willy, K.; Leitz, P.; Rath, B.; Eckardt, L.; Frommeyer, G. Cardiovascular risk of energy drinks: Caffeine and taurine facilitate ventricular arrhythmias in a sensitive whole-heart model. J. Cardiovasc. Electrophysiol. 2022, 33, 1290–1297. [Google Scholar] [CrossRef] [PubMed]
- Lévy, S.; Cappato, R. Cardiovascular Adverse Events Associated with Energy Drinks in Adolescents and Young Adults. Cardiovasc. Drugs Ther. 2022, 36, 379–381. [Google Scholar] [CrossRef] [PubMed]
- Coppi, F.; Nasi, M.; Farinetti, A.; Manenti, A.; Sabina, G.; Mattioli, A.V. Physical activity, sedentary behaviour, and diet in menopausal women: Comparison between COVID19 “first wave” and “second wave” of pandemic in Italy. Prog. Nutr. 2021, 23, 11755. [Google Scholar] [CrossRef]
- Yang, L.; Chung, M.K. Lifestyle changes in atrial fibrillation management and intervention. J. Cardiovasc. Electrophysiol, 2023; ahead of print. [Google Scholar] [CrossRef]
- Truzzi, M.L.; Puviani, M.B.; Tripodi, A.; Toni, S.; Farinetti, A.; Nasi, M.; Mattioli, A.V. Mediterranean Diet as a model of sustainable, resilient and healthy diet. Prog. Nutr. 2020, 22, 388–394. [Google Scholar]
- Gupta, V.; Munjal, J.S.; Jhajj, P.; Jhajj, S.; Jain, R. Obesity and Atrial Fibrillation: A Narrative Review. Cureus 2022, 14, e31205. [Google Scholar] [CrossRef]
- Bizhanov, K.A.; Abzaliyev, K.B.; Baimbetov, A.K.; Sarsenbayeva, A.B.; Lyan, E. Atrial fibrillation: Epidemiology, pathophysiology, and clinical complications (literature review). J. Cardiovasc. Electrophysiol. 2023, 34, 153–165. [Google Scholar] [CrossRef]
Dose (mg/day) | Equivalent to (mg/kg) * | |
---|---|---|
Low intake | 80–250 | 1.1–1.3 |
Moderate intake: | 300–400 | 4–6 |
High intake: | >500 | 7 |
No Safety Problem | Dose (mg/day) | Equivalent to (mg/kg) * |
---|---|---|
up to 200 mg | 3 | |
Habitual consumers | up to 400 mg | 6 |
Pregnant women habitual consumers | up to 200 | 3 |
Breastfeeding women | up to 200 | 3 |
Children and adolescent | Unknown |
Author [Ref] | Population | Female/Male (%) | Results |
---|---|---|---|
Kim et al. [85] | 386,258 subjects | 52.3/47.7 | Each additional cup of habitual coffee consumed was associated with a 3% lower risk of incident arrhythmia (hazard ratio [HR], 0.97; 95% CI, 0.96–0.98; p < 0.001). |
UK Biobank [20] | 449,563 subjects | 55.3/44.7 | Drinking 4 to 5 cups/day of ground coffee and 2 to 3 cups/day of instant coffee reduced incident arrhythmias |
Women Health study [74] | 33,638 Subjects Alla females | 100/0 | No increased risk of AF in women who consumed large amounts of caffeine |
Frost [72] Danish Diet, Cancer and Health Study. | 47,949 subjects | 43.3/56.7 | Lowest quintile of caffeine consumption was used as a reference, the adjusted hazard ratios (95% CIs) in quintiles 2: HR 1.12 (0.87, 1.44), quintiles 3: HR 0.85 (0.65, 1.12) quintiles 4: HR 0.92 (0.71, 1.20), quintiles 5: HR 0.91 (0.70, 1.19) |
Bodar et al. [77] Physicians’ Health Study | 18,960 Subjects (all males) | 0/100 | The effect of coffee consumption on the risk of AF was dose-related:
|
Wilhelmsen et al. [73] | 7495 Subjects (all males) | 0/100 | Consumption of ≥ 5 cups/day was not significantly associated with a higher risk of incident AF, moderate consumption reached borderline significance (OR = 1.24; 95% CI: 1.00–1.54) |
Casiglia et al. [78] | 1475 subjects | 54.6/43.4 | Consumption of <320 mg caffeine/day was not significantly associated with the risk reduction in AF, while consumption > 320 mg/day significantly reduced this risk, |
Larsson SC et al. [86] | 76,475 subjects | 41,881 men in the Cohort of Swedish Men and 34,594 women in the Swedish Mammography Cohort | Coffee consumption has not been shown to influence the risk of AF. |
Mattioli et al. [48] | 247 subjects | 45.4/54.6 | Consumption of 1 to >3 cups of coffee/day was not significantly associated with spontaneous conversion of AF |
Shen et al. [87] Framingham Heart Study | 4526 subjects | 56/44 | Consumption of caffeine was not significantly associated with AF risk. Q1, Q2, Q3 and Q4: NS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppi, F.; Bucciarelli, V.; Sinigaglia, G.; Zanini, G.; Selleri, V.; Nasi, M.; Pinti, M.; Gallina, S.; Mattioli, A.V. Sex Related Differences in the Complex Relationship between Coffee, Caffeine and Atrial Fibrillation. Nutrients 2023, 15, 3299. https://doi.org/10.3390/nu15153299
Coppi F, Bucciarelli V, Sinigaglia G, Zanini G, Selleri V, Nasi M, Pinti M, Gallina S, Mattioli AV. Sex Related Differences in the Complex Relationship between Coffee, Caffeine and Atrial Fibrillation. Nutrients. 2023; 15(15):3299. https://doi.org/10.3390/nu15153299
Chicago/Turabian StyleCoppi, Francesca, Valentina Bucciarelli, Giorgia Sinigaglia, Giada Zanini, Valentina Selleri, Milena Nasi, Marcello Pinti, Sabina Gallina, and Anna Vittoria Mattioli. 2023. "Sex Related Differences in the Complex Relationship between Coffee, Caffeine and Atrial Fibrillation" Nutrients 15, no. 15: 3299. https://doi.org/10.3390/nu15153299
APA StyleCoppi, F., Bucciarelli, V., Sinigaglia, G., Zanini, G., Selleri, V., Nasi, M., Pinti, M., Gallina, S., & Mattioli, A. V. (2023). Sex Related Differences in the Complex Relationship between Coffee, Caffeine and Atrial Fibrillation. Nutrients, 15(15), 3299. https://doi.org/10.3390/nu15153299