Androgen Receptor and Cardiovascular Disease: A Potential Risk for the Abuse of Supplements Containing Selective Androgen Receptor Modulators
Abstract
:1. Introduction
2. Main Body
2.1. Androgen Receptor
AR Function
2.2. AR Structure
2.2.1. N-Terminal Regulatory Domain
2.2.2. DNA-Binding Domain
2.2.3. Hinge Region
2.2.4. Ligand-Binding Domain
2.3. Genomic Mechanism of AR Action
2.4. Non-Genomic Mechanism of AR Action
2.5. Androgen Receptor Agonists and Antagonists
3. SARMs
3.1. SARMs as AR Ligands
SARMs Mechanism of Action
3.2. Clinical Use of SARMs
3.3. Recreational Use of SARMs as Sport Performance Enhancers
3.3.1. Ostarine
3.3.2. Ligandrol
3.3.3. Andarine
3.3.4. Testolone
4. The AR and Cardiovascular Events
4.1. AR and CVD
4.1.1. Hypertension
4.1.2. Atherosclerosis
4.1.3. Myocardial Hypertrophy
4.1.4. Stroke
5. SARMs and the Potential Risk for CVDs
5.1. SARMs and CVD
5.2. Alternative Pathways
The Hypothalamic–Pituitary–Gonadal Axis
5.3. The Duality of SARMs on CVDs
6. Discussion
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Burmeister, M.A.; Fincher, T.K.; Graham, W. Recreational use of selective androgen receptor modulators. US Pharm. 2020, 45, 15–18. [Google Scholar]
- Christiansen, A.R.; Lipshultz, L.I.; Hotaling, J.M.; Pastuszak, A.W. Selective androgen receptor modulators: The future of androgen therapy? Transl. Androl. Urol. 2020, 9 (Suppl. S2), S135–S148. [Google Scholar] [CrossRef] [PubMed]
- Solomon, Z.J.; Mirabal, J.R.; Mazur, D.J.; Kohn, T.P.; Lipshultz, L.I.; Pastuszak, A.W. Selective androgen receptor modulators: Current knowledge and clinical applications. Sex. Med. Rev. 2019, 7, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Gao, W.; Dalton, J.T. Expanding the therapeutic use of androgens via selective androgen receptor modulators (SARMs). Drug Discov. Today 2007, 12, 241–248. [Google Scholar] [CrossRef] [Green Version]
- Vignali, J.D.; Pak, K.C.; Beverley, H.R.; DeLuca, J.P.; Downs, J.W.; Kress, A.T.; Sadowski, B.W.; Selig, D.J. Systematic Review of Safety of Selective Androgen Receptor Modulators in Healthy Adults: Implications for Recreational Users. J. Xenobiot. 2023, 13, 218–236. [Google Scholar] [CrossRef]
- Hahamyan, H.A.; Vasireddi, N.; Voos, J.E.; Calcei, J.G. Social Media’s Impact on Widespread SARMs Abuse; Taylor & Francis: Abingdon, UK, 2022; pp. 1–3. [Google Scholar]
- Hilkens, L.; Cruyff, M.; Woertman, L.; Benjamins, J.; Evers, C. Social Media, Body Image and Resistance Training: Creating the Perfect ‘Me’ with Dietary Supplements, Anabolic Steroids and SARM’s. Sports Med. Open 2021, 7, 81. [Google Scholar] [CrossRef]
- Vasireddi, N.; Hahamyan, H.A.; Kumar, Y.; Ng, M.K.; Voos, J.E.; Calcei, J.G. Social media may cause emergent SARMs abuse by athletes: A content quality analysis of the most popular YouTube videos. Phys. Sportsmed. 2023, 51, 175–182. [Google Scholar] [CrossRef]
- Padappayil, R.P.; Arjun, A.C.; Acosta, J.V.; Ghali, W.; Mughal, M.S. Acute myocarditis from the use of selective androgen receptor modulator (sarm) rad-140 (testolone). Cureus 2022, 14, 21663. [Google Scholar] [CrossRef]
- Sinha-Hikim, I.; Taylor, W.E.; Gonzalez-Cadavid, N.f.; Zheng, W.; Bhasin, S. Androgen receptor in human skeletal muscle and cultured muscle satellite cells: Up-regulation by androgen treatment. J. Clin. Endocrinol. Metab. 2004, 89, 5245–5255. [Google Scholar] [CrossRef] [Green Version]
- Pirompol, P.; Teekabut, V.; Weerachatyanukul, W.; Bupha-Intr, T.; Wattanapermpool, J. Supra-physiological dose of testosterone induces pathological cardiac hypertrophy. J. Endocrinol. 2016, 229, 13–23. [Google Scholar] [CrossRef]
- Narayanan, R.; Coss, C.C.; Dalton, J.T. Development of selective androgen receptor modulators (SARMs). Mol. Cell. Endocrinol. 2018, 465, 134–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Davey, R.A.; Grossmann, M. Androgen receptor structure, function and biology: From bench to bedside. Clin. Biochem. Rev. 2016, 37, 3. [Google Scholar] [PubMed]
- Li, J.; Al-Azzawi, F. Mechanism of androgen receptor action. Maturitas 2009, 63, 142–148. [Google Scholar] [CrossRef]
- Heinlein, C.A.; Chang, C. Androgen receptor (AR) coregulators: An overview. Endocr. Rev. 2002, 23, 175–200. [Google Scholar] [CrossRef] [PubMed]
- Park, H.J.; Ahn, S.T.; Moon, D.G. Evolution of guidelines for testosterone replacement therapy. J. Clin. Med. 2019, 8, 410. [Google Scholar] [CrossRef] [Green Version]
- Snyder, P.J.; Fricker, P. Use of Androgens and Other Hormones by Athletes. UpToDate. 2018. Available online: https://www.uptodate.com/contents/use-of-androgens-and-other-hormones-by-athletes (accessed on 20 July 2018).
- Cai, J.-J.; Wen, J.; Jiang, W.-H.; Lin, J.; Hong, Y.; Zhu, Y.-S. Androgen actions on endothelium functions and cardiovascular diseases. J. Geriatr. Cardiol. JGC 2016, 13, 183. [Google Scholar]
- Bennett, N.C.; Gardiner, R.A.; Hooper, J.D.; Johnson, D.W.; Gobe, G.C. Molecular cell biology of androgen receptor signalling. Int. J. Biochem. Cell Biol. 2010, 42, 813–827. [Google Scholar] [CrossRef]
- Matsumoto, T.; Shiina, H.; Kawano, H.; Sato, T.; Kato, S. Androgen receptor functions in male and female physiology. J. Steroid Biochem. Mol. Biol. 2008, 109, 236–241. [Google Scholar] [CrossRef]
- Gelmann, E.P. Molecular biology of the androgen receptor. J. Clin. Oncol. 2002, 20, 3001–3015. [Google Scholar] [CrossRef]
- Liegibel, U.M.; Sommer, U.; Boercsoek, I.; Hilscher, U.; Bierhaus, A.; Schweikert, H.U.; Nawroth, P.; Kasperk, C. Androgen receptor isoforms AR-A and AR-B display functional differences in cultured human bone cells and genital skin fibroblasts. Steroids 2003, 68, 1179–1187. [Google Scholar] [CrossRef]
- Azhagiya Singam, E.R.; Tachachartvanich, P.; La Merrill, M.A.; Smith, M.T.; Durkin, K.A. Structural dynamics of agonist and antagonist binding to the androgen receptor. J. Phys. Chem. B 2019, 123, 7657–7666. [Google Scholar] [CrossRef] [PubMed]
- Schoenmakers, E.; Alen, P.; Verrijdt, G.; Peeters, B.; Verhoeven, G.; Rombauts, W.; Claessens, F. Differential DNA binding by the androgen and glucocorticoid receptors involves the second Zn-finger and a C-terminal extension of the DNA-binding domains. Biochem. J. 1999, 341, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Härd, T.; Kellenbach, E.; Boelens, R.; Maler, B.A.; Dahlman, K.; Freedman, L.P.; Carlstedt-Duke, J.; Yamamoto, K.R.; Gustafsson, J.-Å.; Kaptein, R. Solution structure of the glucocorticoid receptor DNA-binding domain. Science 1990, 249, 157–160. [Google Scholar] [CrossRef]
- Tanner, T.; Claessens, F.; Haelens, A. The hinge region of the androgen receptor plays a role in proteasome-mediated transcriptional activation. Ann. N. Y. Acad. Sci. 2004, 1030, 587–592. [Google Scholar] [CrossRef] [PubMed]
- Cole, R.; Pascal, L.E.; Wang, Z. The classical and updated models of androgen receptor nucleocytoplasmic trafficking. Am. J. Clin. Exp. Urol. 2021, 9, 287. [Google Scholar] [PubMed]
- Cabeza, M.; Flores, M.; Bratoeff, E.; De La Peña, A.; Mendez, E.; Ceballos, G. Intracellular Ca2+ stimulates the binding to androgen receptors in platelets. Steroids 2004, 69, 767–772. [Google Scholar] [CrossRef]
- Masiello, D.; Cheng, S.; Bubley, G.J.; Lu, M.L.; Balk, S.P. Bicalutamide functions as an androgen receptor antagonist by assembly of a transcriptionally inactive receptor. J. Biol. Chem. 2002, 277, 26321–26326. [Google Scholar] [CrossRef] [Green Version]
- Aydogdu, A.; Swerdloff, R.S. Emerging medication for the treatment of male hypogonadism. Expert. Opin. Emerg. Drugs 2016, 21, 255–266. [Google Scholar] [CrossRef]
- Evans, N.A. Current concepts in anabolic-androgenic steroids. Am. J. Sports Med. 2004, 32, 534–542. [Google Scholar] [CrossRef]
- Negro-Vilar, A. Selective androgen receptor modulators (SARMs): A novel approach to androgen therapy for the new millennium. J. Clin. Endocrinol. Metab. 1999, 84, 3459–3462. [Google Scholar] [CrossRef]
- Giagulli, V.; Silvestrini, A.; Bruno, C.; Triggiani, V.; Mordente, A.; Mancini, A. Is There Room for SERMs or SARMs as Alternative Therapies for Adult Male Hypogonadism? Int. J. Endocrinol. 2020, 2020, 9649838. [Google Scholar] [CrossRef]
- Huang, C.-K.; Lee, S.O.; Chang, E.; Pang, H.; Chang, C. Androgen receptor (AR) in cardiovascular diseases. J. Endocrinol. 2016, 229, R1. [Google Scholar] [CrossRef] [Green Version]
- Dalton, J.T.; Barnette, K.G.; Bohl, C.E.; Hancock, M.L.; Rodriguez, D.; Dodson, S.T.; Morton, R.A.; Steiner, M.S. The selective androgen receptor modulator GTx-024 (enobosarm) improves lean body mass and physical function in healthy elderly men and postmenopausal women: Results of a double-blind, placebo-controlled phase II trial. J. Cachexia Sarcopenia Muscle 2011, 2, 153–161. [Google Scholar] [CrossRef] [Green Version]
- Coss, C.C.; Jones, A.; Dalton, J.T. Pharmacokinetic drug interactions of the selective androgen receptor modulator GTx-024 (Enobosarm) with itraconazole, rifampin, probenecid, celecoxib and rosuvastatin. Investig. New Drugs 2016, 34, 458–467. [Google Scholar] [CrossRef] [PubMed]
- Basaria, S.; Collins, L.; Dillon, E.L.; Orwoll, K.; Storer, T.W.; Miciek, R.; Ulloor, J.; Zhang, A.; Eder, R.; Zientek, H. The safety, pharmacokinetics, and effects of LGD-4033, a novel nonsteroidal oral, selective androgen receptor modulator, in healthy young men. J. Gerontol. Ser. A Biomed. Sci. Med. Sci. 2013, 68, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Barbara, M.; Dhingra, S.; Mindikoglu, A.L. Ligandrol (LGD-4033)-induced liver injury. ACG Case Rep. J. 2020, 7, e00370. [Google Scholar] [CrossRef]
- Wallstab, F.; Jechorek, D.; Keitel-Anselmino, V.; Arnim, U.V. Ligandrol-induced liver injury-Case Report. Z. Gastroenterol. 2022, 61, 522–525. [Google Scholar]
- Starcevic, B.; Ahrens, B.D.; Butch, A.W. Detection of the selective androgen receptor modulator S-4 (Andarine) in a doping control sample. Drug Test. Anal. 2013, 5, 377–379. [Google Scholar] [CrossRef] [PubMed]
- Modulators, W.A.S.A.R.; Or, S.; Work, H.D.R.T. Testolone-RAD 140 (HERMES). Available online: https://www.herculesnutrition.co.uk/product/testolone-rad-140 (accessed on 12 May 2023).
- LoRusso, P.; Hamilton, E.; Ma, C.; Vidula, N.; Bagley, R.G.; Troy, S.; Annett, M.; Yu, Z.; Conlan, M.G.; Weise, A. A first-in-human phase 1 study of a novel selective androgen receptor modulator (sarm), rad140, in er+/her2-metastatic breast cancer. Clin. Breast Cancer 2022, 22, 67–77. [Google Scholar] [CrossRef] [PubMed]
- Ballinger, J. Rad 140 Review. 2022. Available online: https://www.csuperb.org/rad-140-review/ (accessed on 12 May 2023).
- Brown, A.M. RAD140 (Testolone) Negatively Impacts Skeletal Muscle Adaptation, Frailty Status and Mortality Risk in Female Mice. Bachelor’s Thesis, Ohio University, Athens, OH, USA, 2023. [Google Scholar]
- Flores, J.E.; Chitturi, S.; Walker, S. Drug-induced liver injury by selective androgenic receptor modulators. Hepatol. Commun. 2020, 4, 450–452. [Google Scholar] [CrossRef] [Green Version]
- Diaconu, R.; Donoiu, I.; Mirea, O.; Bălşeanu, T.A. Testosterone, cardiomyopathies, and heart failure: A narrative review. Asian J. Androl. 2021, 23, 348. [Google Scholar] [PubMed]
- Webb, C.M.; Collins, P. Role of testosterone in the treatment of cardiovascular disease. Eur. Cardiol. Rev. 2017, 12, 83. [Google Scholar] [CrossRef] [PubMed]
- Heinze-Milne, S.; Banga, S.; Howlett, S.E. Low testosterone concentrations and risk of ischaemic cardiovascular disease in ageing: Not just a problem for older men. Lancet Healthy Longev. 2022, 3, e83–e84. [Google Scholar] [CrossRef] [PubMed]
- Chistiakov, D.A.; Myasoedova, V.A.; Melnichenko, A.A.; Grechko, A.V.; Orekhov, A.N. Role of androgens in cardiovascular pathology. Vasc. Health Risk Manag. 2018, 14, 283–290. [Google Scholar] [CrossRef] [Green Version]
- Connelly, P.J.; Casey, H.; Montezano, A.C.; Touyz, R.M.; Delles, C. Sex steroids receptors, hypertension, and vascular ageing. J. Hum. Hypertens. 2022, 36, 120–125. [Google Scholar] [CrossRef]
- Matavelli, L.C.; Siragy, H.M. AT2 receptor activities and pathophysiological implications. J. Cardiovasc. Pharmacol. 2015, 65, 226. [Google Scholar] [CrossRef] [Green Version]
- Mishra, J.S.; More, A.S.; Gopalakrishnan, K.; Kumar, S. Testosterone plays a permissive role in angiotensin II-induced hypertension and cardiac hypertrophy in male rats. Biol. Reprod. 2019, 100, 139–148. [Google Scholar] [CrossRef]
- Yanes, L.L.; Romero, D.G. Dihydrotestosterone stimulates aldosterone secretion by H295R human adrenocortical cells. Mol. Cell. Endocrinol. 2009, 303, 50–56. [Google Scholar] [CrossRef] [Green Version]
- Kienitz, T.; Quinkler, M. Testosterone and blood pressure regulation. Kidney Blood Press. Res. 2008, 31, 71–79. [Google Scholar] [CrossRef]
- Clarke, J.; Benjamin, N.; Larkin, S.; Webb, D.; Maseri, A.; Davies, G. Interaction of neuropeptide Y and the sympathetic nervous system in vascular control in man. Circulation 1991, 83, 774–777. [Google Scholar] [CrossRef] [Green Version]
- Tan, C.M.; Green, P.; Tapoulal, N.; Lewandowski, A.J.; Leeson, P.; Herring, N. The role of neuropeptide Y in cardiovascular health and disease. Front. Physiol. 2018, 9, 1281. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falk, E. Pathogenesis of atherosclerosis. J. Am. Coll. Cardiol. 2006, 47, C7–C12. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manolakou, P.; Angelopoulou, R.; Bakoyiannis, C.; Bastounis, E. The effects of endogenous and exogenous androgens on cardiovascular disease risk factors and progression. Reprod. Biol. Endocrinol. 2009, 7, 44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Linton, M.F.; Yancey, P.G.; Davies, S.S.; Jerome, W.G.; Linton, E.F.; Song, W.L.; Doran, A.C.; Vickers, K.C. The Role of Lipids and Lipoproteins in Atherosclerosis. Endotext [Internet]. 2019. Available online: https://www.ncbi.nlm.nih.gov/books/NBK343489/ (accessed on 15 June 2023).
- Cizek, S.M.; Bedri, S.; Talusan, P.; Silva, N.; Lee, H.; Stone, J.R. Risk factors for atherosclerosis and the development of preatherosclerotic intimal hyperplasia. Cardiovasc. Pathol. 2007, 16, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Roşca, A.E.; Vlădăreanu, A.-M.; Mititelu, A.; Popescu, B.O.; Badiu, C.; Căruntu, C.; Voiculescu, S.E.; Onisâi, M.; Gologan, Ş.; Mirica, R. Effects of exogenous androgens on platelet activity and their thrombogenic potential in supraphysiological administration: A literature review. J. Clin. Med. 2021, 10, 147. [Google Scholar] [CrossRef] [PubMed]
- Catalucci, D.; Latronico, M.V.; Ellingsen, O.; Condorelli, G. Physiological myocardial hypertrophy: How and why? Front. Biosci. Landmark 2008, 13, 312–324. [Google Scholar] [CrossRef] [Green Version]
- Crabbe, D.L.; Dipla, K.; Ambati, S.; Zafeiridis, A.; Gaughan, J.P.; Houser, S.R.; Margulies, K.B. Gender differences in post-infarction hypertrophy in end-stage failing hearts. J. Am. Coll. Cardiol. 2003, 41, 300–306. [Google Scholar] [CrossRef] [Green Version]
- Wu, J.; Dai, F.; Li, C.; Zou, Y. Gender differences in cardiac hypertrophy. J. Cardiovasc. Transl. Res. 2020, 13, 73–84. [Google Scholar] [CrossRef]
- Zhao, W.; Pan, J.; Wang, X.; Wu, Y.; Bauman, W.W.; Cardozo, C.P. Expression of the muscle atrophy factor muscle atrophy F-box is suppressed by testosterone. Endocrinology 2008, 149, 5449–5460. [Google Scholar] [CrossRef] [Green Version]
- Er, F.; Michels, G.; Brandt, M.C.; Khan, I.; Haase, H.; Eicks, M.; Lindner, M.; Hoppe, U.C. Impact of testosterone on cardiac L-type calcium channels and Ca2+ sparks: Acute actions antagonize chronic effects. Cell Calcium 2007, 41, 467–477. [Google Scholar] [CrossRef]
- Foradori, C.D.; Werner, S.B.; Sandau, U.S.; Clapp, T.R.; Handa, R.J. Activation of the androgen receptor alters the intracellular calcium response to glutamate in primary hippocampal neurons and modulates sarco/endoplasmic reticulum calcium ATPase 2 transcription. Neuroscience 2007, 149, 155–164. [Google Scholar] [CrossRef] [PubMed]
- Olson, E.N.; Molkentin, J.D. Prevention of cardiac hypertrophy by calcineurin inhibition: Hope or hype? Circ. Res. 1999, 84, 623–632. [Google Scholar] [CrossRef] [PubMed]
- Abi-Ghanem, C.; Robison, L.S.; Zuloaga, K.L. Androgens’ effects on cerebrovascular function in health and disease. Biol. Sex Differ. 2020, 11, 35. [Google Scholar] [CrossRef] [PubMed]
- Sierra, C.; Coca, A.; Schiffrin, E.L. Vascular mechanisms in the pathogenesis of stroke. Curr. Hypertens. Rep. 2011, 13, 200–207. [Google Scholar] [CrossRef]
- Tuttolomondo, A.; Daidone, M.; Pinto, A. Endothelial dysfunction and inflammation in ischemic stroke pathogenesis. Curr. Pharm. Des. 2020, 26, 4209–4219. [Google Scholar] [CrossRef]
- Skogastierna, C.; Hotzen, M.; Rane, A.; Ekström, L. A supraphysiological dose of testosterone induces nitric oxide production and oxidative stress. Eur. J. Prev. Cardiol. 2014, 21, 1049–1054. [Google Scholar] [CrossRef]
- Farquharson, C.A.; Struthers, A.D. Aldosterone induces acute endothelial dysfunction in vivo in humans: Evidence for an aldosterone-induced vasculopathy. Clin. Sci. 2002, 103, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Takov, K.; Wu, J.; Denvir, M.A.; Smith, L.B.; Hadoke, P.W. The role of androgen receptors in atherosclerosis. Mol. Cell. Endocrinol. 2018, 465, 82–91. [Google Scholar] [CrossRef]
- Franklin, B.A.; Thompson, P.D.; Al-Zaiti, S.S.; Albert, C.M.; Hivert, M.-F.; Levine, B.D.; Lobelo, F.; Madan, K.; Sharrief, A.Z.; Eijsvogels, T.M. Exercise-related acute cardiovascular events and potential deleterious adaptations following long-term exercise training: Placing the risks into perspective–an update: A scientific statement from the American Heart Association. Circulation 2020, 141, e705–e736. [Google Scholar] [CrossRef]
- Strahm, E.; Rane, A.; Ekström, L. PDE7B is involved in nandrolone decanoate hydrolysis in liver cytosol and its transcription is up-regulated by androgens in HepG2. Front. Pharmacol. 2014, 5, 132. [Google Scholar] [CrossRef]
- Giovanelli, L.; Quinton, R. Therapeutic effects of androgens for cachexia. Best Pract. Res. Clin. Endocrinol. Metab. 2022, 36, 101598. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L.; Auchus, R.J. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011, 32, 81–151. [Google Scholar] [CrossRef] [Green Version]
- Patt, M.; Beck, K.R.; Di Marco, T.; Jäger, M.-C.; González-Ruiz, V.; Boccard, J.; Rudaz, S.; Hartmann, R.W.; Salah, M.; van Koppen, C.J. Profiling of anabolic androgenic steroids and selective androgen receptor modulators for interference with adrenal steroidogenesis. Biochem. Pharmacol. 2020, 172, 113781. [Google Scholar] [CrossRef]
- Corradi, P.F.; Corradi, R.B.; Greene, L.W. Physiology of the hypothalamic pituitary gonadal axis in the male. Urol. Clin. 2016, 43, 151–162. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, G.W.P.D.; Dworatzek, E.; Ebner, N.; Von Haehling, S. Selective androgen receptor modulators (SARMs) as pharmacological treatment for muscle wasting in ongoing clinical trials. Expert. Opin. Investig. Drugs 2020, 29, 881–891. [Google Scholar] [CrossRef] [PubMed]
- Machek, S.B.; Cardaci, T.D.; Wilburn, D.T.; Willoughby, D.S. Considerations, possible contraindications, and potential mechanisms for deleterious effect in recreational and athletic use of selective androgen receptor modulators (SARMs) in lieu of anabolic androgenic steroids: A narrative review. Steroids 2020, 164, 108753. [Google Scholar] [CrossRef]
- Shin, T.; Plunkett, M.T.; Hoang, T.D.; Mai, V.Q.; Shakir, M.K. SUN-001 Identification of Dehydroepiandrosterone-s (DHEA-s) Elevation Due to Performance Enhancing Supplements. J. Endocr. Soc. 2020, 4 (Suppl. S1), SUN-001. [Google Scholar] [CrossRef]
- Veldhuis, J.D.; Keenan, D.M.; Liu, P.Y.; Iranmanesh, A.; Takahashi, P.Y.; Nehra, A.X. The aging male hypothalamic–pituitary–gonadal axis: Pulsatility and feedback. Mol. Cell. Endocrinol. 2009, 299, 14–22. [Google Scholar] [CrossRef] [Green Version]
- Hengevoss, J.; Piechotta, M.; Müller, D.; Hanft, F.; Parr, M.K.; Schänzer, W.; Diel, P. Combined effects of androgen anabolic steroids and physical activity on the hypothalamic–pituitary–gonadal axis. J. Steroid Biochem. Mol. Biol. 2015, 150, 86–96. [Google Scholar] [CrossRef]
- Van Breda, E.; Keizer, H.A.; Kuipers, H.; Wolffenbuttel, B.H.R. Androgenic anabolic steroid use and severe hypothalamic-pituitary dysfunction: A case study. Int. J. Sports Med. 2003, 24, 195–196. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, E.; Vrolijk, M.F. Androgen Receptor and Cardiovascular Disease: A Potential Risk for the Abuse of Supplements Containing Selective Androgen Receptor Modulators. Nutrients 2023, 15, 3330. https://doi.org/10.3390/nu15153330
Hall E, Vrolijk MF. Androgen Receptor and Cardiovascular Disease: A Potential Risk for the Abuse of Supplements Containing Selective Androgen Receptor Modulators. Nutrients. 2023; 15(15):3330. https://doi.org/10.3390/nu15153330
Chicago/Turabian StyleHall, Ellis, and Misha F. Vrolijk. 2023. "Androgen Receptor and Cardiovascular Disease: A Potential Risk for the Abuse of Supplements Containing Selective Androgen Receptor Modulators" Nutrients 15, no. 15: 3330. https://doi.org/10.3390/nu15153330