Taro Roots: An Underexploited Root Crop
Abstract
:1. Introduction
2. Origin and Production in the World
3. Nutritional Composition of Taro
3.1. Moisture Content
3.2. Carbohydrates
3.3. Protein
3.4. Vitamins and Minerals
4. Antinutrients in Taro
5. Health Benefits
5.1. Antioxidant Activity
5.2. Anticancer Activity
5.3. Anti-Inflammatory Activity
5.4. Antidiabetic Activity
5.5. Antimicrobial Activity
6. Food Products of Taro
6.1. Food Ingredients
6.1.1. Flour
6.1.2. Starch
6.2. Traditional Dishes
6.2.1. Poi
6.2.2. Sapal
6.3. Baked Products
6.4. Extruded Snacks
Taro Noodles
6.5. Dairy Products
6.5.1. Ice Cream
6.5.2. Taro Yogurt
6.6. Other Food Products
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scott, G.J. A Review of Root, Tuber and Banana Crops in Developing Countries: Past, Present and Future. Int. J. Food Sci. Technol. 2021, 56, 1093–1114. [Google Scholar] [CrossRef]
- Chandrasekara, A.; Josheph Kumar, T. Roots and Tuber Crops as Functional Foods: A Review on Phytochemical Constituents and Their Potential Health Benefits. Int. J. Food Sci. 2016, 2016, 3631647. [Google Scholar] [CrossRef]
- Aditika; Kapoor, B.; Singh, S.; Kumar, P. Taro (Colocasia esculenta): Zero Wastage Orphan Food Crop for Food and Nutritional Security. S. Afr. J. Bot. 2022, 145, 157–169. [Google Scholar] [CrossRef]
- Shah, Y.A.; Saeed, F.; Afzaal, M.; Waris, N.; Ahmad, S.; Shoukat, N.; Ateeq, H. Industrial Applications of Taro (Colocasia esculenta) as a Novel Food Ingredient: A Review. J. Food Process. Preserv. 2022, 46, e16951. [Google Scholar] [CrossRef]
- Ahmed, I.; Lockhart, P.J.; Agoo, E.M.G.; Naing, K.W.; Nguyen, D.V.; Medhi, D.K.; Matthews, P.J. Evolutionary Origins of Taro (Colocasia esculenta) in Southeast Asia. Ecol. Evol. 2020, 10, 13530–13543. [Google Scholar] [CrossRef]
- Okonkwo, C.A.C. Taro. In Genetic Improvement of Vegetable Crops; Elsevier: Amsterdam, The Netherlands, 1993; pp. 709–715. ISBN 978-0-08-040826-2. [Google Scholar]
- Zhang, E.; Shen, W.; Jiang, W.; Li, W.; Wan, X.; Yu, X.; Xiong, F. Research Progress on the Bulb Expansion and Starch Enrichment in Taro (Colocasia esculenta (L). Schott). PeerJ 2023, 11, e15400. [Google Scholar] [CrossRef] [PubMed]
- Pereira, P.R.; Winter, H.C.; Verícimo, M.A.; Meagher, J.L.; Stuckey, J.A.; Goldstein, I.J.; Paschoalin, V.M.F.; Silva, J.T. Structural Analysis and Binding Properties of Isoforms of Tarin, the GNA-Related Lectin from Colocasia Esculenta. Biochim. Biophys. Acta BBA-Proteins Proteom. 2015, 1854, 20–30. [Google Scholar] [CrossRef]
- Jennings, D. Tropical Root and Tuber Crops. Cassava, Sweet Potato, Yams and Aroids. By V. Lebot. Wallingford, UK: CABI (2009), Pp. 413, £37.50. ISBN 978-1-84593-424-8. Exp. Agric. 2009, 45, 382. [Google Scholar] [CrossRef]
- Quero-Garcia, J.; Ivancic, A.; Lebot, V. Taro and Cocoyam. In Root and Tuber Crops; Bradshaw, J.E., Ed.; Springer: New York, NY, USA, 2010; pp. 149–172. ISBN 978-0-387-92764-0. [Google Scholar]
- Loy, T.H.; Spriggs, M.; Wickler, S. Direct Evidence for Human Use of Plants 28,000 Years Ago: Starch Residues on Stone Artefacts from the Northern Solomon Islands. Antiquity 1992, 66, 898–912. [Google Scholar] [CrossRef]
- Helmkampf, M.; Wolfgruber, T.K.; Bellinger, M.R.; Paudel, R.; Kantar, M.B.; Miyasaka, S.C.; Kimball, H.L.; Brown, A.; Veillet, A.; Read, A.; et al. Phylogenetic Relationships, Breeding Implications, and Cultivation History of Hawaiian Taro (Colocasia esculenta) Through Genome-Wide SNP Genotyping. J. Hered. 2018, 109, 272–282. [Google Scholar] [CrossRef]
- Matthews, P.J. The Origins, Dispersal and Domestication of Taro. Ph.D. Thesis, The Australian National University, Canberra, Australia, 1990; p. 421. [Google Scholar] [CrossRef]
- FAOSTAT. FAO Statistical Database. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 20 June 2023).
- Taro Market-Growth, Trends, COVID-19 Impact, and Forecasts (2023–2028) 2023. Available online: https://www.researchandmarkets.com/report/taro (accessed on 20 June 2023).
- Taro Statistics: State of Hawaii, 2021; Department of Agriculture, State of Hawaii: Honolulu, HI, USA, 2022.
- Whitney, L.D.; Bowers, F.A.I.; Takahashi, M. Taro Varieties in Hawaii; University of Hawaii Press: Honolulu, HI, USA, 1939; 86p. [Google Scholar]
- Saxby, S.M. The Potential of Taro (Colocasia Esculenta) as a Dietary Prebiotic Source for the Prevention of Colorectal Cancer. Ph.D. Thesis, University of Hawai’i at Mānoa, Honolulu, HI, USA, 2020. [Google Scholar]
- Mergedus, A.; Kristl, J.; Ivancic, A.; Sober, A.; Sustar, V.; Krizan, T.; Lebot, V. Variation of Mineral Composition in Different Parts of Taro (Colocasia esculenta) Corms. Food Chem. 2015, 170, 37–46. [Google Scholar] [CrossRef]
- Huang, A.S.; Titchenal, C.A.; Meilleur, B.A. Nutrient Composition of Taro Corms and Breadfruit. J. Food Compos. Anal. 2000, 13, 859–864. [Google Scholar] [CrossRef]
- Kaushal, P.; Kumar, V.; Sharma, H.K. Utilization of Taro (Colocasia esculenta): A Review. J. Food Sci. Technol. 2015, 52, 27–40. [Google Scholar] [CrossRef]
- Otekunrin, O.A.; Sawicka, B.; Adeyonu, A.G.; Otekunrin, O.A.; Rachoń, L. Cocoyam [Colocasia esculenta (L.) Schott]: Exploring the Production, Health and Trade Potentials in Sub-Saharan Africa. Sustainability 2021, 13, 4483. [Google Scholar] [CrossRef]
- Singh, A.B.; Awasthi, C.P.; Gautam, A. Nutritional Quality of Arvi (Colocasia esculenta L.) and Ghandiyali (Alocasia Sp.) Corm Collections. INDIAN J. Agric. Res. 2000, 34, 152–155. [Google Scholar]
- Odedeji, J.O.; Oyeleke, G.O.; Ayinde, L.A.; Azeez, L.A. Nutritional, Antinutritional Compositions And Organoleptic Analyses Of Raw And Blanched Cocoyam (Colocasia esculenta) Leaves. J. Environ. Sci. Toxicol. Food Technol. 2014, 8, 45–48. [Google Scholar]
- Onwueme, I.C.; Charles, W.B. Tropical Root and Tuber Crops: Production, Perspectives, and Future Prospects; FAO Plant Production and Protection Paper; FAO: Rome, Italy, 1994; ISBN 978-92-5-103461-3. [Google Scholar]
- Huang, C.-C.; Chen, W.-C.; Wang, C.-C.R. Comparison of Taiwan Paddy- and Upland-Cultivated Taro (Colocasia esculenta L.) Cultivars for Nutritive Values. Food Chem. 2007, 102, 250–256. [Google Scholar] [CrossRef]
- Adane, T.; Shimelis, A.; Negussie, R.; Tilahun, B.; Haki, G. Botswana College of Agriculture Effect of Processing Method on the Proximate Composition, Mineral Content and Antinutritional Factors to Taro (Colocasia esculenta, L.) Grown in Ethiopia. Afr. J. Food Agric. Nutr. Dev. 2013, 13, 7383–7398. [Google Scholar] [CrossRef]
- Wondimu Fufa, T.; Ogba Oselebe, H.; Veronica Nnamani, C.; Azubuike Afiukwa, C.; Aniedi Uyoh, E. Systematic Review on Farmers’ Perceptions, Preferences and Utilization Patterns of Taro [Colocasia esculenta (L.) Scott] for Food and Nutrition Security in Nigeria. J. Plant Sci. 2021, 9, 224. [Google Scholar] [CrossRef]
- Midmore, D.; Daniel, W.; Nguyen, V.; Hicks, D.; Coleman, E.; Newman, S.; Wilk, D.; Reeve, D.; McLaughlin, P. Development of Taro, Yam, Yam Bean and Sweet Potato Exports to Japan and USA: A Report for the Rural Industries Research and Development Corporation; Rural Industries Research and Development Corporation: Kingston, ACT, Australia, 2006.
- Lelmen, E.K.; Makatiani, J.K. Phytochemical Changes in Root Vegetables during Postharvest Storage. In Advances in Root Vegetables Research; Kaushik, P., Ed.; IntechOpen: London, UK, 2023; ISBN 978-1-80356-701-3. [Google Scholar]
- Kader, A.A.; Rolle, R.S. The Role of Post-Harvest Management in Assuring the Quality and Safety of Horticultural Produce; FAO Agricultural Services Bulletin; Food and Agriculture Organization of the United Nations: Rome, Italy, 2004; ISBN 978-92-5-105137-5. [Google Scholar]
- Chang, M.-S.; Kim, G.-H. Combined Effect of Hot Water Dipping and Vacuum Packaging for Maintaining the Postharvest Quality of Peeled Taro. Hortic. Environ. Biotechnol. 2015, 56, 662–668. [Google Scholar] [CrossRef]
- Alcantara, R.M. The Nutritional Value and Phytochemical Components of Taro [Colocasia esculenta (L.) Schott] Powder and Its Selected Processed Foods. J. Nutr. Food Sci. 2013, 3, 207. [Google Scholar] [CrossRef]
- Simsek, S.; El, S.N. Production of Resistant Starch from Taro (Colocasia esculenta L. Schott) Corm and Determination of Its Effects on Health by in Vitro Methods. Carbohydr. Polym. 2012, 90, 1204–1209. [Google Scholar] [CrossRef]
- Emmanuel-Ikpeme, C.A.; Eneji, C.A.; Essiet, U. Storage Stability and Sensory Evaluation of Taro Chips Fried in Palm Oil, Palm Olein Oil, Groundnut Oil, Soybean Oil and Their Blends. Pak. J. Nutr. 2007, 6, 570–575. [Google Scholar]
- Ribeiro Pereira, P.; Bertozzi De Aquino Mattos, É.; Nitzsche Teixeira Fernandes Corrêa, A.C.; Afonso Vericimo, M.; Margaret Flosi Paschoalin, V. Anticancer and Immunomodulatory Benefits of Taro (Colocasia esculenta) Corms, an Underexploited Tuber Crop. Int. J. Mol. Sci. 2020, 22, 265. [Google Scholar] [CrossRef] [PubMed]
- Ribes, S.; Peña, N.; Fuentes, A.; Talens, P.; Barat, J.M. Chia (Salvia Hispanica L.) Seed Mucilage as a Fat Replacer in Yogurts: Effect on Their Nutritional, Technological, and Sensory Properties. J. Dairy Sci. 2021, 104, 2822–2833. [Google Scholar] [CrossRef]
- Otálora, M.C.; Wilches-Torres, A.; Castaño, J.A.G. Extraction and Physicochemical Characterization of Dried Powder Mucilage from Opuntia Ficus-Indica Cladodes and Aloe Vera Leaves: A Comparative Study. Polymers 2021, 13, 1689. [Google Scholar] [CrossRef]
- Tosif, M.M.; Najda, A.; Klepacka, J.; Bains, A.; Chawla, P.; Kumar, A.; Sharma, M.; Sridhar, K.; Gautam, S.P.; Kaushik, R. A Concise Review on Taro Mucilage: Extraction Techniques, Chemical Composition, Characterization, Applications, and Health Attributes. Polymers 2022, 14, 1163. [Google Scholar] [CrossRef]
- Liu, C.; An, F.; He, H.; He, D.; Wang, Y.; Song, H. Pickering Emulsions Stabilized by Compound Modified Areca Taro (Colocasia esculenta (L.) Schott) Starch with Ball-Milling and OSA. Colloids Surf. Physicochem. Eng. Asp. 2018, 556, 185–194. [Google Scholar] [CrossRef]
- Temesgen, M.; Retta, N. Nutritional Potential, Health and Food Security Benefits of Taro Colocasia esculenta (L.): A Review. Food Sci. Qual. Manag. 2015, 36, 23–31. [Google Scholar]
- Hirai, M.; Nakamura, K.; Imai, T.; Sato, T. CDNAs Encoding for Storage Proteins in the Tubers of Taro (Colocasia esculenta Schott). Jpn. J. Genet. 1993, 68, 229–236. [Google Scholar] [CrossRef]
- Ogata, F.; Makisumi, S. Isolation and Characterization of Trypsin Inhibitors from Tubers of Taro, Colocasia Antiquorum Var. Nymphaifolia? J. Biochem. 1984, 96, 1565–1574. [Google Scholar] [CrossRef]
- Rosarlo, M.; Vinas, A.; Lorenz, K. PASTA PRODUCTS CONTAINING TARO (COLOCASIA ESCULENTA L. SCHOTT) and CHAYA (CNIDOSCOLUS CHAVAMANSA L. MCVAUGH). J. Food Process. Preserv. 1999, 23, 1–20. [Google Scholar] [CrossRef]
- Englberger, L.; Aalbersberg, W.; Ravi, P.; Bonnin, E.; Marks, G.C.; Fitzgerald, M.H.; Elymore, J. Further Analyses on Micronesian Banana, Taro, Breadfruit and Other Foods for Provitamin A Carotenoids and Minerals. J. Food Compos. Anal. 2003, 16, 219–236. [Google Scholar] [CrossRef]
- FoodData Central; USDA, U.S. Department of Agriculture: Washington DC, USA, 2019.
- Longvah, T.; Ananthan, R.; Bhaskarachary, K.; Venkaiah, K. Indian Food Composition Tables; Indian Council of Medical Research: Hyderabad, India, 2017.
- Hedges, L.J.; Lister, C.E. Health Attributes of Roots and Tubers; New Zealand Institute for Crop & Food Research Limited: Christchurch, New Zealand, 2006. [Google Scholar] [CrossRef]
- Eze, C.; Nwofia, G. Variability and Inter-Relationships between Yield and Associated Traits in Taro (Colocasia esculenta (L.) Schott). J. Exp. Agric. Int. 2016, 14, 1–13. [Google Scholar] [CrossRef]
- Mwenye, O.J.; Labuschagn, M.T.; Herselman, L.; Benesi, I.R.M. Mineral Composition of Malawian Cocoyam (Colocasia esculenta and Xanthosoma Sagittifolium) Genotypes. J. Biol. Sci. 2011, 11, 331–335. [Google Scholar] [CrossRef]
- Rana, B.; Kaushik, R.; Kaushal, K.; Arora, S.; Kaushal, A.; Gupta, S.; Upadhyay, N.; Rani, P.; Kaushik, P. Physicochemical and Electrochemical Properties of Zinc Fortified Milk. Food Biosci. 2018, 21, 117–124. [Google Scholar] [CrossRef]
- Mulugeta, E.; Yemiru, T.; Yoseph, T. Manifestations and Extent of Climate Change’. The Case of Merti District, Arsi Zone, Oromiya Region, Ethiopia. Int. J. Clim. Res. 2017, 2, 1–18. [Google Scholar] [CrossRef]
- Smith, D.S.; Cash, J.N.; Nip, Y.K.; Hui, Y.H. Processing Vegetables: Science and Technology; Smith, D.S., Ed.; Technomic Pub. Co: Lancaster, PA, USA, 1997; ISBN 978-1-56676-507-7. [Google Scholar]
- Holloway, W.D.; Argall, M.E.; Jealous, W.T.; Lee, J.A.; Bradbury, J.H. Organic Acids and Calcium Oxalate in Tropical Root Crops. J. Agric. Food Chem. 1989, 37, 337–341. [Google Scholar]
- Huang, A.S.; Tanudjaja, L.S. Application of Anion-Exchange High-Performance Liquid Chromatography in Determining Oxalates in Taro (Colocasia esculenta) Corms. J. Agric. Food Chem. 1992, 40, 2123–2126. [Google Scholar]
- Bradbury, J.H.; Holloway, W.D. Chemistry of Tropical Root Crops: Significance for Nutrition and Agriculture in the Pacific; Australian Centre for Agricultural Research: Canberra, ACT, Australia, 1988; ISBN 978-0-949511-61-4.
- Crabtree, J.; Baldry, J. Technical Note: The Use of Taro Products in Bread Making. Int. J. Food Sci. Technol. 2007, 17, 771–777. [Google Scholar] [CrossRef]
- Catherwood, D.J.; Savage, G.P.; Mason, S.M.; Scheffer, J.J.C.; Douglas, J.A. Oxalate Content of Cormels of Japanese Taro (Colocasia esculenta (L.) Schott) and the Effect of Cooking. J. Food Compos. Anal. 2007, 20, 147–151. [Google Scholar] [CrossRef]
- Oscarsson, K.V.; Savage, G.P. Composition and Availability of Soluble and Insoluble Oxalates in Raw and Cooked Taro (Colocasia esculenta Var. Schott) Leaves. Food Chem. 2007, 101, 559–562. [Google Scholar] [CrossRef]
- Aboubakar; Njintang, N.Y.; Scher, J.; Mbofung, C.M.F. Texture, Microstructure and Physicochemical Characteristics of Taro (Colocasia esculenta) as Influenced by Cooking Conditions. J. Food Eng. 2009, 91, 373–379. [Google Scholar] [CrossRef]
- Li, H.; Dong, Z.; Liu, X.; Chen, H.; Lai, F.; Zhang, M. Structure Characterization of Two Novel Polysaccharides from Colocasia esculenta (Taro) and a Comparative Study of Their Immunomodulatory Activities. J. Funct. Foods 2018, 42, 47–57. [Google Scholar] [CrossRef]
- Ubalua, A.O.; Ewa, F.; Okeagu, O.D. Potentials and Challenges of Sustainable Taro (Colocasia esculenta) Production in Nigeria. J. Appl. Biol. Biotechnol. 2016, 4, 53–59. [Google Scholar] [CrossRef]
- Gonçalves, R.F.; Silva, A.M.S.; Silva, A.M.; Valentão, P.; Ferreres, F.; Gil-Izquierdo, A.; Silva, J.B.; Santos, D.; Andrade, P.B. Influence of Taro (Colocasia esculenta L. Shott) Growth Conditions on the Phenolic Composition and Biological Properties. Food Chem. 2013, 141, 3480–3485. [Google Scholar] [CrossRef]
- Singh, S.; Singh, D.R.; Salim, K.M.; Srivastava, A.; Singh, L.B.; Srivastava, R.C. Estimation of Proximate Composition, Micronutrients and Phytochemical Compounds in Traditional Vegetables from Andaman and Nicobar Islands. Int. J. Food Sci. Nutr. 2011, 62, 765–773. [Google Scholar] [CrossRef] [PubMed]
- Corrêa, A.; Vericimo, M.; Dashevskiy, A.; Pereira, P.; Paschoalin, V. Liposomal Taro Lectin Nanocapsules Control Human Glioblastoma and Mammary Adenocarcinoma Cell Proliferation. Molecules 2019, 24, 471. [Google Scholar] [CrossRef]
- Kundu, N.; Campbell, P.; Hampton, B.; Lin, C.-Y.; Ma, X.; Ambulos, N.; Zhao, X.F.; Goloubeva, O.; Holt, D.; Fulton, A.M. Antimetastatic Activity Isolated from Colocasia esculenta (Taro). Anticancer Drugs 2012, 23, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Agyare, C.; Boakye, Y.D. Antimicrobial and Anti-Inflammatory Properties of Anchomanes Difformis (Bl.) Engl. and Colocasia esculenta (L.) Schott. Biochem. Pharmacol. Open Access 2015, 5, 201. [Google Scholar] [CrossRef]
- Baro, M.R.; Das, M.; Kalita, A.; Das, B.; Sarma, K. Exploring the Anti-Inflammatory Potential of Colocasia esculenta Root Extract in in-Vitro and in-Vivo Models of Inflammation. J. Ethnopharmacol. 2023, 303, 116021. [Google Scholar] [CrossRef] [PubMed]
- Biren, N.S.; Nayak, B.S.; Bhatt, S.P.; Jalalpure, S.S.; Seth, A.K. Anti-Inflammatory Activity of the Leaves of Colocasia esculenta. Saudi Pharm. J. 2007, 15, 228–232. [Google Scholar]
- Eleazu, C.O.; Iroaganachi, M.; Eleazu, K.C. Ameliorative Potentials of Cocoyam (Colocasia esculenta L.) and Unripe Plantain (Musa paradisiaca L.) on the Relative Tissue Weights of Streptozotocin-Induced Diabetic Rats. J. Diabetes Res. 2013, 2013, 160964. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Hwang, S.; Kang, B.; Hong, J.; Lim, S. Inhibitory Effects of Colocasia esculenta (L.) Schott Constituents on Aldose Reductase. Molecules 2014, 19, 13212–13224. [Google Scholar] [CrossRef]
- Kumawat, N.S.; Chaudhari, S.P.; Wani, N.S.; Deshmukh, T.A.; Patil, V.R. Antidiabetic Activity of Ethanol Extract of Colocasia esculenta Leaves in Alloxan Induced Diabetic Rats. Int. J. PharmTech Res. 2010, 2, 1246–1249. [Google Scholar]
- Wei, L.S.; Musa, N.; Sengm, C.T.; Wee, W.; Shazili, N.A.M. Antimicrobial Properties of Tropical Plants against 12 Pathogenic Bacteria Isolated from Aquatic Organisms. Afr. J. Biotechnol. 2008, 7, 2275–2278. [Google Scholar]
- Chakraborty, P.; Deb, P.; Chakraborty, S.; Chatterjee, B.; Abraham, J. Cytotoxicity and Antimicrobial Activity of Colocasia esculenta. J. Chem. Pharm. Res. 2015, 7, 627–635. [Google Scholar]
- Elmosallamy, A.; Eltawil, N.; Ibrahim, S.; Hussein, S. Phenolic Profile: Antimicrobial Activity and Antioxidant Capacity of Colocasia esculenta (L.) Schott. Egypt. J. Chem. 2021, 64, 2165–2172. [Google Scholar] [CrossRef]
- Nur-Hadirah, K.; Arifullah, M.; Nazahatul, A.A.; Klaiklay, S.; Chumkaew, P.; Norhazlini, M.Z.; Zulhazman, H. Total Phenolic Content and Antioxidant Activity of an Edible Aroid, Colocasia esculenta (L.) Schott. IOP Conf. Ser. Earth Environ. Sci. 2021, 756, 012044. [Google Scholar] [CrossRef]
- Singh, S.; Swain, S.; Singh, D.R.; Salim, K.M.; Nayak, D.; Roy, S.D. Changes in Phytochemicals, Anti-Nutrients and Antioxidant Activity in Leafy Vegetables by Microwave Boiling with Normal and 5% NaCl Solution. Food Chem. 2015, 176, 244–253. [Google Scholar] [CrossRef]
- Lloyd, G.R.; Uesugi, A.; Gleadow, R.M. Effects of Salinity on the Growth and Nutrition of Taro (Colocasia esculenta): Implications for Food Security. Plants 2021, 10, 2319. [Google Scholar] [CrossRef]
- Patel, D.; Prasad, S.; Kumar, R.; Hemalatha, S. An Overview on Antidiabetic Medicinal Plants Having Insulin Mimetic Property. Asian Pac. J. Trop. Biomed. 2012, 2, 320–330. [Google Scholar] [CrossRef]
- Li, W.-Z.; Stirling, K.; Yang, J.-J.; Zhang, L. Gut Microbiota and Diabetes: From Correlation to Causality and Mechanism. World J. Diabetes 2020, 11, 293–308. [Google Scholar] [CrossRef]
- Darkwa, S.; Darkwa, A.A. TARO “Colocasia esculenta”: It’s Utilization in Food Products in Ghana. J. Food Process. Technol. 2013, 4, 225. [Google Scholar] [CrossRef]
- Kaur, M.; Kaushal, P.; Sandhu, K.S. Studies on Physicochemical and Pasting Properties of Taro (Colocasia esculenta L.) Flour in Comparison with a Cereal, Tuber and Legume Flour. J. Food Sci. Technol. 2013, 50, 94–100. [Google Scholar] [CrossRef]
- Amon, A.S.; Soro, R.Y.; Assemand, E.F.; Dué, E.A.; Kouamé, L.P. Effect of Boiling Time on Chemical Composition and Physico-Functional Properties of Flours from Taro (Colocasia esculenta Cv Fouê) Corm Grown in Côte d’Ivoire. J. Food Sci. Technol. 2014, 51, 855–864. [Google Scholar] [CrossRef] [PubMed]
- Njintang, Y.N.; Mbofung, C.M.F.; Moates, G.K.; Parker, M.L.; Craig, F.; Smith, A.C.; Waldron, W.K. Functional Properties of Five Varieties of Taro Flour, and Relationship to Creep Recovery and Sensory Characteristics of Achu (Taro Based Paste). J. Food Eng. 2007, 82, 114–120. [Google Scholar] [CrossRef]
- Afifah, D.N.; Imanianti, A.; Rachmawati, T.; Nindita, Y.; Anjani, G.; Syauqy, A.; Pratiwi, S.N. The Characteristics of Noodles Produced from Tuber and Leaf of Taro (Colocasiaesculenta L. Schott). Food Res. 2023, 7, 154–163. [Google Scholar] [CrossRef]
- Kaushal, P.; Kumar, V.; Sharma, H.K. Comparative Study of Physicochemical, Functional, Antinutritional and Pasting Properties of Taro (Colocasia esculenta), Rice (Oryza sativa) Flour, Pigeonpea (Cajanus cajan) Flour and Their Blends. LWT-Food Sci. Technol. 2012, 48, 59–68. [Google Scholar] [CrossRef]
- Arıcı, M.; Özülkü, G.; Kahraman, B.; Yıldırım, R.M.; Toker, Ö.S. Taro Flour Usage in Wheat Flour Bread and Gluten-free Bread: Evaluation of Rheological, Technological and Some Nutritional Properties. J. Food Process Eng. 2020, 43, e13454. [Google Scholar] [CrossRef]
- Saklani, A.; Kaushik, R.; Chawla, P.; Kumar, N.; Kumar, M. Effect of Taro (Colocasia esculenta) Enrichment on Physicochemical and Textural Properties of Cake. Int. J. Food Stud. 2021, 10, 14–25. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; González, G. Effects of Exposure to Pulsed Light on Surface and Structural Properties of Edible Films Made from Cassava and Taro Starch. Food Bioprocess Technol. 2016, 9, 1812–1824. [Google Scholar] [CrossRef]
- Krisnaningsih, A.T.; Purwadi, P.; Evanuarini, H.; Rosyidi, D. The Effect of Incubation Time to The Physicochemical and Microbial Properties of Yoghurt with Local Taro (Colocasia esculenta (L.) Schott) Starch as Stabilizer. Curr. Res. Nutr. Food Sci. J. 2019, 7, 547–554. [Google Scholar] [CrossRef]
- Krisnaningsih, A.T.N.; Rosyidi, D.; Radiati, L.E.; Purwadi, P.; Hadiani, D.P.P.; Wae, R.L. The Effect of Different Storage Times at 5 °C on the Quality of Yogurt with the Addition of Local Taro Starch (Colocasiaesculenta) as Stabilizer. J. Phys. Conf. Ser. 2021, 1869, 012005. [Google Scholar] [CrossRef]
- Saranraj, P.; Behera, S.S.; Ray, R.C. Traditional Foods From Tropical Root and Tuber Crops. In Innovations in Traditional Foods; Elsevier: Amsterdam, The Netherlands, 2019; pp. 159–191. ISBN 978-0-12-814887-7. [Google Scholar]
- El-Dardiry, A.; Ewis, A.; Abo-Srea, M. Impact of Taro Corms on Functional Low Fat Ice Cream Properties. J. Food Dairy Sci. 2018, 9, 399–402. [Google Scholar] [CrossRef]
- More, P.R.; Solunke, R.V.; Talib, M.I.; Parate, V.R. Stabilization of Ice-Cream by Incorporating α-Amylase Modified Taro (Colocasia esculenta) Starch. Int. J. Creat. Res. Thoughts 2017. [Google Scholar]
- Abera, G.; Solomon, W.K.; Bultosa, G. Effect of Drying Methods and Blending Ratios on Dough Rheological Properties, Physical and Sensory Properties of Wheat-Taro Flour Composite Bread. Food Sci. Nutr. 2017, 5, 653–661. [Google Scholar] [CrossRef]
- Alflen, T.A.; Quast, E.; Bertan, L.C.; Bainy, E.M. Partial Substitution of Wheat Flour with Taro (Colocasia esculenta) Flour on Cookie Quality. RECEN 2016, 18, 202–212. [Google Scholar]
- Eneh, C. Towards Food Security and Improved Nutrition in Nigeria: Taro (Colocacia Antiquorum) Grit as Carbohydrate Supplement in Energy Food Drink. Afr. J. Food Sci. 2013, 7, 355–360. [Google Scholar] [CrossRef]
- Sit, N.; Misra, S.; Baruah, D.; Badwaik, L.S.; Deka, S.C. Physicochemical Properties of Taro and Maize Starch and Their Effect on Texture, Colour and Sensory Quality of Tomato Ketchup. Starch-Stärke 2014, 66, 294–302. [Google Scholar] [CrossRef]
- Andre, G.D.; Angele Kou, K.A.A.; Albarin, G.G.; Kouakou, B.; Dago, G. Rheological and Nutritional Characteristic of Weaning Mush Prepared from Mixed Flours of Taro [Colocasia esculenta (L) Schott], Pigeon Pea (Cajanus cajan) and Malted Maize (Zea mays). Pak. J. Nutr. 2009, 8, 1032–1035. [Google Scholar] [CrossRef]
- Ikpeme-Emmanuel, C.A.; Okoi, J.; Osuchukwu, N.C. Functional, Anti-Nutritional and Sensory Acceptability of Taro and Soybean Based Weaning Food. Afr. J. Food Sci. 2009, 3, 372–377. [Google Scholar]
- Temesgen, M.; Retta, N.; Tesfaye, E. Pre-Gelatinized Taro Flour for Development of Weaning Food in Ethiopia. Int. J. Food Sci. Nutr. 2016, 1, 12–23. [Google Scholar]
- Ammar, M.S.; Hegazy, A.E.; Bedeir, S.H. Using of Taro Flour as Partial Substitute of Wheat Flour in Bread Making. World J. Dairy Food Sci. 2009, 4, 94–99. [Google Scholar]
- Ikpeme Emmanuel, C.A.; Osuchukwu, N.C.; Oshiele, L. Functional and Sensory Properties of Wheat (Aestium Triticium) and Taro Flour (Colocasia esculenta) Composite Bread. Afr. J. Food Sci. 2010, 4, 248–253. [Google Scholar]
- Nip, W.; Muchille, J.; Cai, T.; Moy, J.H. Nutritive and Non-Nutritive Constituents in Taro (Colocasia esculenta (L.) Schott) from American Samoa. J. Hawaii. Pac. Agric. 1989, 2, 1–5. [Google Scholar]
- Njintang, N.Y.; Parker, M.L.; Moates, G.K.; Mbofung, C.M.; Smith, A.C.; Waldron, K.W. Rheology and Microstructure of Achu, a Food Based on Taro (Colocasia esculenta L. Schott), as Affected by Method of Preparation. J. Sci. Food Agric. 2006, 86, 902–907. [Google Scholar] [CrossRef]
- Elisabeth, D.A.A. Added Value Improvement of Taro and Sweet Potato Commodities by Doing Snack Processing Activity. Procedia Food Sci. 2015, 3, 262–273. [Google Scholar] [CrossRef]
- Calle, J.; Benavent-Gil, Y.; Rosell, C.M. Development of Gluten Free Breads from Colocasia esculenta Flour Blended with Hydrocolloids and Enzymes. Food Hydrocoll. 2020, 98, 105243. [Google Scholar] [CrossRef]
- Rashmi, D.R.; Raghu, N.; Gopenath, T.S.; Pradeep, P.; Pugazhandhi, B.; Murugesan, K.; Ashok, G.; Ranjith, M.S.; Chandrashekrappa, G.K.; Kanthesh, M.B. Taro (Colocasia esculenta): An Overview. J. Med. Plants Stud. 2018, 6, 156–161. [Google Scholar]
- Falade, K.O.; Okafor, C.A. Physicochemical Properties of Five Cocoyam (Colocasia esculenta and Xanthosoma Sagittifolium) Starches. Food Hydrocoll. 2013, 30, 173–181. [Google Scholar] [CrossRef]
- Sit, N.; Deka, S.C.; Misra, S. Optimization of Starch Isolation from Taro Using Combination of Enzymes and Comparison of Properties of Starches Isolated by Enzymatic and Conventional Methods. J. Food Sci. Technol. 2015, 52, 4324–4332. [Google Scholar] [CrossRef]
- Pérez, E.; Schultz, F.S.; De Delahaye, E.P. Characterization of Some Properties of Starches Isolated from Xanthosoma Sagittifolium (Tannia) and Colocassia Esculenta (Taro). Carbohydr. Polym. 2005, 60, 139–145. [Google Scholar] [CrossRef]
- Barbhuiya, R.I.; Singha, P.; Singh, S.K. A Comprehensive Review on Impact of Non-Thermal Processing on the Structural Changes of Food Components. Food Res. Int. 2021, 149, 110647. [Google Scholar] [CrossRef]
- Zhu, X.; Cui, W.; Zhang, E.; Sheng, J.; Yu, X.; Xiong, F. Morphological and Physicochemical Properties of Starches Isolated from Three Taro Bulbs: Morphological and Physicochemical Properties of Taro Starch. Starch-Stärke 2018, 70, 1700168. [Google Scholar] [CrossRef]
- Nagar, C.K.; Dash, S.K.; Rayaguru, K.; Pal, U.S.; Nedunchezhiyan, M. Isolation, Characterization, Modification and Uses of Taro Starch: A Review. Int. J. Biol. Macromol. 2021, 192, 574–589. [Google Scholar] [CrossRef] [PubMed]
- Jianchu, X.; Yongping, Y.; Yingdong, P.; Ayad, W.G.; Eyzaguirre, P.B. Genetic Diversity in Taro (Colocasia esculenta Schott, Araceae) in China: An Ethnobotanical and Genetic Approach. Econ. Bot. 2001, 55, 14–31. [Google Scholar] [CrossRef]
- Brown, A.C.; Valiere, A. The Medicinal Uses of Poi. Nutr. Clin. Care Off. Publ. Tufts Univ. 2004, 7, 69–74. [Google Scholar]
- Brown, A.C.; Reitzenstein, J.E.; Liu, J.; Jadus, M.R. The Anti-Cancer Effects of Poi (Colocasia esculenta) on Colonic Adenocarcinoma CellsIn Vitro. Phytother. Res. 2005, 19, 767–771. [Google Scholar] [CrossRef]
- Carneiro, M.; Rodrigues, C.A.; De Castro, L.A.B.; Da Silva, M.C.; Coutinho, M.V. Isolation Characterization of the Major Albumin from Colocasia esculenta Corms. Plant Sci. 1990, 67, 39–46. [Google Scholar] [CrossRef]
- Gubag, R. Sapal: A Traditional Fermented Taro [Colocasia esculenta (L.) Schott] Corm and Coconut Cream Mixture from Papua New Guinea. Int. J. Food Microbiol. 1996, 28, 361–367. [Google Scholar] [CrossRef] [PubMed]
- Cai, T.; Nip, W. Biochemical Changes in the Development of Alcoholic Fermented Products from Taro [Colocasia esculenta (L.) Schott]. Trop. Sci. 1990, 30, 379–390. [Google Scholar]
- Wang, Y.; Jian, C. Sustainable Plant-Based Ingredients as Wheat Flour Substitutes in Bread Making. Npj Sci. Food 2022, 6, 49. [Google Scholar] [CrossRef]
- Rekha, M.R.; Padmaja, G. Alpha-Amylase Inhibitor Changes during Processing of Sweet Potato and Taro Tubers. Plant Foods Hum. Nutr. 2002, 57, 285–294. [Google Scholar] [CrossRef]
- Ajita, T. Extrusion Cooking Technology: An Advance Skill for Manufacturing of Extrudate Food Products. In Extrusion of Metals, Polymers and Food Products; Qamar, S.Z., Ed.; IntechOpen: London, UK, 2018; ISBN 978-953-51-3837-2. [Google Scholar]
- Maga, J.A.; Bang Liu, M.; Rey, T. Taro (Colocasia esculenta) Extrusion. Carbohydr. Polym. 1993, 21, 177–178. [Google Scholar] [CrossRef]
- Lee, S.Y.; Hamidah, A. Some Physico-Chemical Characteristics of Taro, Sweet Potato and Potato Flours, and Their Extrudates. J. Trop. Agric. Food Sci. 1997, 25, 77–83. [Google Scholar]
- Pensamiento-Niño, C.A.; Gómez-Aldapa, C.A.; Hernández-Santos, B.; Juárez-Barrientos, J.M.; Herman-Lara, E.; Martínez-Sánchez, C.E.; Torruco-Uco, J.G.; Rodríguez-Miranda, J. Optimization and Characterization of an Extruded Snack Based on Taro Flour (Colocasia esculenta L.) Enriched with Mango Pulp (Mangifera indica L.). J. Food Sci. Technol. 2018, 55, 4244–4255. [Google Scholar] [CrossRef] [PubMed]
- CFR-Code of Federal Regulations Title 21; US Food and Drug Administration: Silver Spring, MD, USA, 2017.
- Lu, T.-J.; Chuang, C.-W.; Chang, Y.-H. Sensory and Physicochemical Analyses on Commercial Taro Ice Products. J. Food Drug Anal. 2020, 10, 3. [Google Scholar] [CrossRef]
- Sharma, H.K.; Njintang, N.Y.; Singhal, R.S.; Kaushal, P. Tropical Roots and Tubers: Production, Processing and Technology; Sharma, H.K., Njintang, N.Y., Singhal, R.S., Kaushal, P., Eds.; IFST advances in food science book series; Wiley Blackwell: Chichester, UK, 2016; ISBN 978-1-118-99269-2. [Google Scholar]
Year | Area Harvested (Ha) | Total Yield (Tons) | ||||||
---|---|---|---|---|---|---|---|---|
Africa | Asia | Oceania | Americas | Africa | Asia | Oceania | Americas | |
2000 | 1,250,204 | 128,872 | 44,361 | 7622 | 8,233,653.65 | 1,930,699.73 | 318,752.90 | 78,815.08 |
2005 | 1,383,172 | 127,935 | 55,659 | 8915 | 9,849,310.49 | 1,914,001.54 | 413,899.85 | 82,994.87 |
2010 | 1,194,840 | 132,284 | 52,462 | 4883 | 7,754,061.42 | 2,079,541.37 | 402,544.38 | 55,662.43 |
2015 | 1,575,862 | 147,251 | 48,310 | 7836 | 8,632,488.23 | 2,366,643.69 | 416,184.77 | 133,346.23 |
2021 | 1,590,820 | 148,515 | 48,048 | 6320 | 9,525,695.56 | 2,395,189.79 | 410,496.50 | 64,866.65 |
Compositions | References | |||||
---|---|---|---|---|---|---|
Corm £ | Leaves | Corm | Corm | Corm | Corm | |
[23] | [24] | [25] | [20] | [26] | [27] | |
Moisture (%) | 6.21 | 88.5 | 63–85 | 72.4 | 71.7 | 70.90 |
Protein (%) | 8.07 | 2.7 | 1.4–3.0 | 1.10 | 2.57 | 6.43 |
Fat (%) | 0.45 | n.d. | 0.16–0.36 | 0.20 | 0.15 | 0.47 |
Fiber (%) | 3.10 | 2.8 ‡ | 0.60–1.18 ‡ | 3.60 | 0.61 ¥ | 2.63 |
Ash (%) | 2.78 | 2.5 | 0.60–1.3 | 1.0 | 1.37 | 4.82 |
Carbohydrate (%) | 85.60 | 3.1 | 13–29 | 19.20 | 22.3 | n.d. |
Total energy (kcal/100 g) | n.d. | n.d. | n.d. | 372.60 | 103 | 372.55 |
Compositions (mg/100 g) | References | |||
---|---|---|---|---|
Leaves | Leaves | Corm | Cormels | |
[46] | [47] | [48] | [49] † | |
Thiamin | 0.209 | 0.08 | 0.02 | 0.21 |
Riboflavin | 0.456 | 0.07 | 0.03 | 0.04 |
Niacin | 1.51 | 0.80 | 0.78 | 0.58 |
Pantothenic acid | 0.084 | 0.27 | n.d. | n.d. |
pyridoxine | 0.146 | 0.29 | n.d. | n.d. |
Biotin | n.d. | 12.10 | n.d. | n.d. |
Folate | 0.126 | 0.159 | 0.022 | n.d. |
Vitamin A | 0.241 | n.d. | 0.006 | 8.92 |
Vitamin C | 52 | 40.71 | 14.30 | 10.29 |
Vitamin E | 2.02 | 0.07 | 3 | 1.89 |
Compositions (mg/100 g) | References | |||||
---|---|---|---|---|---|---|
Leaves | Leaves | Corm | Corm | Corm | Edible Part | |
[46] | [47] | [27] † | [19] | [52] | [45] † | |
Ca | 112 | 216 | 45.23 | 86.70 | 782.15 | 137 |
Fe | 2.35 | 3.41 | 5.86 | 1.16 | 218.50 | 0.20 |
Mg | 47 | 59.44 | 7.24 | 100 | 543.90 | 23.70 |
P | 63 | 57.88 | 7.77 | 1.39 | n.d. | 16.70 |
Na | 133 | 12.08 | 13.81 | n.d. | 25.6 | 46.40 |
K | 675 | 404 | n.d. | 224 | 372.40 | 141 |
Mn | n.d. | 1.30 | 3.61 | 1.12 | 221.30 | 2.2 |
Zn | 0.43 | 0.82 | 43.08 | 5.14 | 392.23 | 4.80 |
Cu | 0.281 | 0.29 | 0.43 | 0.67 | 231.70 | 0.40 |
Se | 0.0009 | 0.0043 | n.d. | n.d. | n.d. | n.d. |
Properties | Used Part | Bioactive Compounds | Results | Ref. |
---|---|---|---|---|
Antioxidant | Leaf | Mono-C-glycosides, di-C-glycosides, mono-C-(O-glycosyl) glycosides, derivatives of luteolin, apigenin, and chrysoeriol. | The IC50 values for three different varieties were in the range of 0.226–1.140 mg/mL, 0.076–0.145 mg/mL, and 0.521–1.485 mg/mL. | [63] |
Leaf | Phenolic compounds | The extract contained approximately 250.23 mg gallic acid equivalent (GAE) per 100 g of fresh weight. | [64] | |
Anticancer | Corms | Tarin | Encapsulated tarin demonstrated effectiveness in inhibiting the proliferation of human glioblastoma (U-87 MG) and breast adenocarcinoma (MDA-MB-231) cells, with IC50 values of 39.36 and 71.38 μg/mL, respectively. | [65] |
Corms | Lectin | The structure and ligand-binding properties of a GNA-related lectin that has potential applications as a therapeutic molecule to promote immune response and proliferation. | [8] | |
Corms | 12-kDa storage protein, tarin, and lectin | TE treatment resulted in moderate inhibition of several breast and prostate cancer cell lines, with observed morphological alterations and a complete cessation of cancerous cell migration. Furthermore, the administration of TE reduced the expression of cyclooxygenase 1 and 2 mRNA and lowered the production of prostaglandin E2 (PGE2). | [66] | |
Anti-inflammatory | Leaf | Steroids | The extracts possessed significant inhibitory effects on preformed mediators, such as histamine and serotonin, which are involved in the initial phase of the acute inflammatory process. | [67] |
Root | Sinapic acid | A dose of 400 mg/kg significantly reduced inflammation in the rat paw and lipopolysaccharide (LPS) stimulated RAW264.7 cells | [68] | |
Leaf | Steroids | The extract was administered orally at a dosage of 100 mg/kg, resulting in the inhibition of edema. | [69] | |
Antidiabetic | Tuber flour | Flavonoids, alkaloids, saponins, and tannins | Significant decrease of 58.75% in hyperglycemia (glucose: −ve to trace), compared to the diabetic control group and non-diabetic rats. The relative kidney weights of the diabetic control rats were significantly higher than the non-diabetic and diabetic rats treated with cocoyam. | [70] |
Leaf | Flavonoids | Prevented and treated diabetic complications by preventing sorbitol accumulation in rat lenses through aldose reductase inhibition. | [71] | |
Leaf | Flavonoids and tannins | Rats with alloxan-induced diabetes, extraction at a dose of 400 mg/kg displayed antihyperglycemic action. | [72] | |
Antimicrobial | Leaf | Folic acid alkaloids, glycosides, phenolics, and resins | The diameter (mm) of the inhibition zone was found as 9, 9, 11, 12, 9, and 8 for Citrobacter freundii, Vibrio alginolyticus, V. parahaemolyticus, V. harveyi, V. vulnificus, and V. cholerae, respectively. | [73] |
Tuber and leaf | Flavonoids, carbohydrates, tannins, and terpenoids | Methanol extracts from both the tuber and leaves showed a distinctive area of inhibition against all the pathogens tested. | [74] | |
Leaf | ----- | The ethanol extract’s antibacterial efficacy against six clinical pathogens revealed a distinctive zone of inhibition. Comparing Proteus vulgaris (Gram-negative bacteria) to the conventional medicine Gentamicin, the maximum zone of inhibition was seen at a concentration of 100 mg/mL against Proteus vulgaris at 15 mm. | [75] |
Food Product | Used Part | References |
---|---|---|
Flour/starch | Root/cormels | [82,83,84] |
Noodle | Root flour | [21,85,86] |
Cake | Root flour | [87,88] |
Edible film | Underground stems/corms | [89] |
Yogurt | Corms | [90,91,92] |
Ice cream | Root flour | [93,94] |
Bread | Root flour | [87,95] |
Cookie | Root flour | [96] |
Beverage | Cocoyam | [97] |
Ketchup | Root starch | [98] |
Weaning food | Taro Flour | [99,100,101] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferdaus, M.J.; Chukwu-Munsen, E.; Foguel, A.; da Silva, R.C. Taro Roots: An Underexploited Root Crop. Nutrients 2023, 15, 3337. https://doi.org/10.3390/nu15153337
Ferdaus MJ, Chukwu-Munsen E, Foguel A, da Silva RC. Taro Roots: An Underexploited Root Crop. Nutrients. 2023; 15(15):3337. https://doi.org/10.3390/nu15153337
Chicago/Turabian StyleFerdaus, Md. Jannatul, Ezzine Chukwu-Munsen, Aline Foguel, and Roberta Claro da Silva. 2023. "Taro Roots: An Underexploited Root Crop" Nutrients 15, no. 15: 3337. https://doi.org/10.3390/nu15153337
APA StyleFerdaus, M. J., Chukwu-Munsen, E., Foguel, A., & da Silva, R. C. (2023). Taro Roots: An Underexploited Root Crop. Nutrients, 15(15), 3337. https://doi.org/10.3390/nu15153337