Dietary Patterns and the Prevalence of Noncommunicable Diseases in the PURE Poland Study Participants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Group
2.2. Measurements (Outcomes)
2.3. Dietary Assessment
2.4. Identification of Dietary Patterns
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wilson, P.W.F.; Castelli, W.P.; Kannel, W.B. Coronary risk prediction in adults (The Framingham Heart Study). Am. J. Cardiol. 1987, 59, G91–G94. [Google Scholar] [CrossRef] [PubMed]
- Yusuf, S.; Hawken, S.; Ounpuu, S.; Dans, T.; Avezum, A.; Lanas, F.; McQueen, M.; Budaj, A.; Pais, P.; Varigos, J.; et al. INTERHEART Study Investigators. Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): Case-control study. Lancet 2004, 364, 937–952. [Google Scholar] [CrossRef] [PubMed]
- Keys, A.; Menotti, A.; Aravanis, C.; Blackburn, H.; Djordevic, B.S.; Buzina, R.; Dontas, A.S.; Fidanza, F.; Karvonen, M.J.; Kimura, N.; et al. The Seven Countries Study: 2,289 deaths in 15 years. Prev. Med. 1984, 13, 141–154. [Google Scholar] [CrossRef]
- de Lorgeril, M.; Salen, P.; Martin, J.-L.; Monjaud, I.; Delaye, J.; Mamelle, N. Mediterranean Diet, Traditional Risk Factors, and the Rate of Cardiovascular Complications After Myocardial Infarction. Final Report of the Lyon Diet Heart Study. Circulation 1999, 99, 779–785. [Google Scholar] [CrossRef]
- Martínez-González, M.A.; Salas-Salvadó, J.; Estruch, R.; Corella, D.; Fitó, M.; Ros, E.; Predimed Investigators. Benefits of the Mediterranean Diet: Insights From the PREDIMED Study. Prog. Cardiovasc. Dis. 2015, 58, 50–60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- GBD 2017 Diet Collaborators. Health effects of dietary risks in 195 countries, 1990-2017: A systematic analysis for the Global Burden of Disease Study 2017. Lancet 2019, 393, 1958–1972. [Google Scholar] [CrossRef] [Green Version]
- Wozniak, S.; Wieczorkowski, R.; Czekalska, A. Health Status of Population in Poland in 2019; Statistics: Warsaw, Poland, 2021; pp. 34–35, 41–42. [Google Scholar]
- Wojtyniak, B.; Goryński, P. Health Status of Polish Population and Its Determinants 2020; National Institute of Public Health NIH—National Research Institute: Warsaw, Poland, 2020; pp. 439–440, 481–482. Available online: http://bazawiedzy.pzh.gov.pl/wydawnictwa (accessed on 18 July 2023).
- Wojtyniak, B.; Goryński, P. Health Status of Polish Population and Its Determinants 2022; National Institute of Public Health NIH—National Research Institute: Warsaw, Poland, 2022; p. 570. Available online: https://www.pzh.gov.pl/raport-sytuacja-zdrowotna-ludnosci-polski-i-jej-uwarunkowania/ (accessed on 18 July 2023).
- Hu, E.A.; Steffen, L.M.; Coresh, J.; Appel, L.J.; Rebholz, C.M. Adherence to the Healthy Eating Index-2015 and Other Dietary Patterns May Reduce Risk of Cardiovascular Disease, Cardiovascular Mortality, and All-Cause Mortality. J. Nutr. 2020, 150, 312–321. [Google Scholar] [CrossRef]
- Livingstone, K.M.; Abbott, G.; Bowe, S.J.; Ward, J.; Milte, C.; McNaughton, S.A. Diet quality indices, genetic risk and risk of cardiovascular disease and mortality: A longitudinal analysis of 77 004 UK Biobank participants. BMJ Open 2021, 11, e045362. [Google Scholar] [CrossRef]
- Soltani, S.; Arablou, T.; Jayedi, A.; Salehi-Abargouei, A. Adherence to the dietary approaches to stop hypertension (DASH) diet in relation to all-cause and cause-specific mortality: A systematic review and dose-response meta-analysis of prospective cohort studies. Nutr. J. 2020, 19, 37. [Google Scholar] [CrossRef] [Green Version]
- Sezaki, A.; Imai, T.; Miyamoto, K.; Kawase, F.; Shirai, Y.; Abe, C.; Sanada, M.; Inden, A.; Kato, T.; Sugihara, N.; et al. Association between the Mediterranean Diet Score and Healthy Life Expectancy: A Global Comparative Study. J. Nutr. Health Aging 2022, 26, 621–627. [Google Scholar] [CrossRef]
- Stefler, D.; Malyutina, S.; Kubinova, R.; Pajak, A.; Peasey, A.; Pikhart, H.; Brunner, E.J.; Bobak, M. Mediterranean diet score and total and cardiovascular mortality in Eastern Europe: The HAPIEE study. Eur. J. Nutr. 2017, 56, 421–429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mertens, E.; Markey, O.; Geleijnse, J.M.; Givens, D.I.; Lovegrove, J.A. Dietary Patterns in Relation to Cardiovascular Disease Incidence and Risk Markers in a Middle-Aged British Male Population: Data from the Caerphilly Prospective Study. Nutrients 2017, 9, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papavagelis, C.; Avgeraki, E.; Augoulea, A.; Stamatelopoulos, K.; Lambrinoudaki, I.; Yannakoulia, M. Dietary patterns, Mediterranean diet and obesity in postmenopausal women. Maturitas 2018, 110, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Teo, K.; Chow, C.K.; Vaz, M.; Rangarajan, S.; Yusuf, S.; PURE Investigators-Writing Group. The Prospective Urban Rural Epidemiology (PURE) study: Examining the impact of societal influences on chronic noncommunicable diseases in low-, middle-, and high-income countries. Am. Heart J. 2009, 158, 1–7.e1. [Google Scholar] [CrossRef]
- Corsi, D.J.; Subramanian, S.V.; Chow, C.K.; McKee, M.; Chifamba, J.; Dagenais, G.; Diaz, R.; Iqbal, R.; Kelishadi, R.; Kruger, A.; et al. Prospective Urban Rural Epidemiology (PURE) study: Baseline characteristics of the household sample and comparative analyses with national data in 17 countries. Am. Heart J. 2013, 166, 636–646. [Google Scholar] [CrossRef] [Green Version]
- Dehghan, M.; Ilow, R.; Zatonska, K.; Szuba, A.; Zhang, X.; Mente, A.; Regulska-Ilow, B. Development, reproducibility and validity of the food frequency questionnaire in the Poland arm of the Prospective Urban and Rural Epidemiological (PURE) study. J. Hum. Nutr. Diet. 2012, 25, 225–232. [Google Scholar] [CrossRef]
- Bartoń, K. MuMIn: Multi-Model Inference. R Package Version 1.43.17. 2020. Available online: https://CRAN.R-project.org/package=MuMIn (accessed on 27 March 2023).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; Available online: https://www.R-project.org/ (accessed on 27 March 2023).
- Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J. 2021, 42, 3227–3337. [Google Scholar] [CrossRef]
- Sofi, F.; Cesari, F.; Abbate, R.; Gensini, G.F.; Casini, A. Adherence to Mediterranean diet and health status: Meta-analysis. BMJ 2008, 337, a1344. [Google Scholar] [CrossRef] [Green Version]
- Roldan, C.C.; Marcos, M.L.T.; Marcos, F.M.; Albero, J.S.; Rios, R.S.; Rodriguez, A.C.; Royo, J.M.P.; López, P.J.T. Adhesion to the Mediterranean diet in diabetic patients with poor control. Clin. Investig. Arterioscler. 2019, 31, 210–217. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Verde, L.; Sulu, C.; Katsiki, N.; Hassapidou, M.; Frias-Toral, E.; Cucalon, G.; Pazderska, A.; Yumuk, V.D.; Colao, A.; et al. Mediterranean Diet and Obesity-related Disorders: What is the Evidence? Curr. Obes. Rep. 2022, 11, 287–304. [Google Scholar] [CrossRef] [PubMed]
- Panizza, C.E.; Lim, U.; Yonemori, K.M.; Cassel, K.D.; Wilkens, L.R.; Harvie, M.N.; Maskarinec, G.; Delp, E.J.; Lampe, J.W.; Shepherd, J.A.; et al. Effects of Intermittent Energy Restriction Combined with a Mediterranean Diet on Reducing Visceral Adiposity: A Randomized Active Comparator Pilot Study. Nutrients 2019, 11, 1386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filippou, C.D.; Thomopoulos, C.G.; Kouremeti, M.M.; Sotiropoulou, L.I.; Nihoyannopoulos, P.I.; Tousoulis, D.M.; Tsioufis, C.P. Mediterranean diet and blood pressure reduction in adults with and without hypertension: A systematic review and meta-analysis of randomized controlled trials. Clin. Nutr. 2021, 40, 3191–3200. [Google Scholar] [CrossRef] [PubMed]
- Filippou, C.D.; Tsioufis, C.P.; Thomopoulos, C.G.; Mihas, C.C.; Dimitriadis, K.S.; Sotiropoulou, L.I.; Chrysochoou, C.A.; Nihoyannopoulos, P.I.; Tousoulis, D.M. Dietary Approaches to Stop Hypertension (DASH) Diet and Blood Pressure Reduction in Adults with and without Hypertension: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2020, 11, 1150–1160. [Google Scholar] [CrossRef]
- Estruch, R.; Ros, E.; Salas-Salvadó, J.; Covas, M.I.; Corella, D.; Arós, F.; Gómez-Gracia, E.; Ruiz-Gutiérrez, V.; Fiol, M.; Lapetra, J.; et al. PREDIMED Study Investigators. Primary Prevention of Cardiovascular Disease with a Mediterranean Diet Supplemented with Extra-Virgin Olive Oil or Nuts. N. Engl. J. Med. 2018, 378, e34. [Google Scholar] [CrossRef]
- Pramono, A.; Fitranti, D.Y.; Nugroho, K.H.; Sobirin, M.A.; Syauqy, A. The Association between Unhealthy Food Consumption and Impaired Glucose Metabolism among Adults with Overweight or Obesity: A Cross-Sectional Analysis of the Indonesian Population. J. Obes. 2023, 2023, 2885769. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, C.; Cui, L.; Han, A.; Tu, Q.; Lou, P.; Ding, G.; Qin, Y.; Xiang, Q. A population-based survey for dietary patterns and prediabetes among 7555 Chinese adults in urban and rural areas in Jiangsu Province. Sci. Rep. 2020, 10, 10488. [Google Scholar] [CrossRef]
- Zatońska, K.; Psikus, P.; Basiak-Rasała, A.; Stępnicka, Z.; Gaweł-Dąbrowska, D.; Wołyniec, M.; Gibka, J.; Szuba, A.; Połtyn-Zaradna, K. Obesity and Chosen Non-Communicable Diseases in PURE Poland Cohort Study. Int. J. Environ. Res. Public Health 2021, 18, 2701. [Google Scholar] [CrossRef]
Food Group | Unhealthy Dietary Pattern | Healthy Dietary Pattern | Traditional Dietary Pattern |
---|---|---|---|
Milk low fat | 0.20 | 0.45 | 0.05 |
High fat cheese, cream | 0.53 | 0.28 | 0.12 |
Margarines and mayonnaise | 0.53 | −0.11 | 0.06 |
Animal fats | 0.39 | 0.04 | 0.11 |
Eggs | 0.41 | −0.06 | 0.15 |
Fish | 0.13 | 0.14 | 0.55 |
Unrefined grains | −0.16 | 0.50 | 0.18 |
Refined grains | 0.61 | −0.30 | 0.22 |
Mixed dishes | 0.08 | 0.13 | 0.74 |
Soups | −0.03 | 0.15 | 0.71 |
Alcohol | 0.01 | −0.15 | 0.17 |
Sweets | 0.52 | 0.28 | 0.23 |
Beverages | 0.03 | 0.16 | −0.11 |
Sugar and honey | 0.54 | 0.03 | −0.03 |
Nuts, seeds, raisins | 0.00 | 0.61 | 0.03 |
Fruits | 0.01 | 0.68 | 0.05 |
Juices | 0.27 | 0.30 | 0.21 |
Vegetables | −0.04 | 0.61 | 0.42 |
Tea, coffee | 0.35 | 0.22 | −0.17 |
Red and processed meat | 0.45 | −0.09 | 0.64 |
Poultry | 0.29 | 0.15 | 0.51 |
Potatoes and chips | 0.24 | −0.05 | 0.34 |
% | 0.11 | 0.10 | 0.12 |
Incidents | Healthy Dietary Pattern | ||||
---|---|---|---|---|---|
Q1 n (%) | Q2 n (%) | Q3 n (%) | Q4 n (%) | p Trend | |
CVD total (n: Q1 = 505, Q2 = 506, Q3 = 506, Q4 = 506) | 68 (13.5) | 73 (14.4) | 72 (14.2) | 81 (16.0) | 0.3490 |
Hypertension (n: Q1 = 502, Q2 = 498, Q3 = 502, Q4 = 504) | 336 (66.9) | 297 (59.6) | 294 (58.6) | 280 (55.6) | 0.0003 |
Diabetes (n: Q1 = 464, Q2 = 474, Q3 = 473, Q4 = 478) | 64 (13.8) | 52 (11.0) | 41 (8.7) | 42 (8.8) | 0.0009 |
IFG (n: Q1 = 464, Q2 = 474, Q3 = 473, Q4 = 478) | 127 (27.4) | 121 (25.5) | 110 (23.3) | 107 (22.4) | 0.0089 |
Visceral obesity (n: Q1 = 505, Q2 = 505, Q3 = 506, Q4 = 506) | 353 (69.9) | 365 (72.3) | 349 (69.0) | 327 (64.6) | 0.0348 |
Overweight + obesity (n: Q1 = 505, Q2 = 505, Q3 = 506, Q4 = 506) | 365 (72.3) | 364 (72.1) | 358 (70.8) | 350 (69.2) | 0.2260 |
Incidents | Unhealthy Dietary Pattern | ||||
---|---|---|---|---|---|
Q1 n (%) | Q2 n (%) | Q3 n (%) | Q4 n (%) | p Trend | |
CVD total (n: Q1 = 505, Q2 = 506, Q3 = 506, Q4 = 506) | 81 (16.0) | 75 (14.8) | 64 (12.7) | 74 (14.6) | 0.3010 |
Hypertension (n: Q1 = 504, Q2 = 505, Q3 = 500, Q4 = 497) | 338 (67.1) | 302 (59.8) | 279 (55.8) | 288 (58.0) | 0.0012 |
Diabetes (n: Q1 = 464, Q2 = 474, Q3 = 473, Q4 = 478) | 66 (13.9) | 41 (8.6) | 47 (9.8) | 45 (9.8) | 0.1950 |
IFG (n: Q1 = 464, Q2 = 474, Q3 = 473, Q4 = 478) | 108 (22.7) | 95 (20.0) | 121 (25.3) | 141 (30.7) | 0.0037 |
Visceral obesity (n: Q1 = 505, Q2 = 506, Q3 = 505, Q4 = 506) | 356 (70.5) | 346 (68.4) | 324 (64.2) | 368 (72.7) | 0.8120 |
Overweight + obesity (n: Q1 = 505, Q2 = 506, Q3 = 505, Q4 = 506) | 381 (75.5) | 365 (72.1) | 325 (64.4) | 366 (72.3) | 0.0542 |
Incidents | Traditional Dietary Pattern | ||||
---|---|---|---|---|---|
Q1 n (%) | Q2 n (%) | Q3 n (%) | Q4 n (%) | p Trend | |
CVD total (n: Q1 = 505, Q2 = 506, Q3 = 506, Q4 = 506) | 54 (10.7) | 80 (15.8) | 80 (15.8) | 80 (15.8) | 0.0391 |
Hypertension (n: Q1 = 495, Q2 = 502, Q3 = 505, Q4 = 504) | 285 (57.6) | 297 (59.2) | 310 (61.4) | 315 (62.5) | 0.0905 |
Diabetes (n: Q1 = 464, Q2 = 474, Q3 = 473, Q4 = 478) | 28 (5.9) | 49 (10.3) | 61 (13.0) | 61 (13.1) | 0.0014 |
IFG (n: Q1 = 464, Q2 = 474, Q3 = 473, Q4 = 478) | 107 (22.3) | 106 (22.4) | 118 (25.1) | 134 (28.8) | 0.0000 |
Visceral obesity (n: Q1 = 505, Q2 = 506, Q3 = 505, Q4 = 506) | 317 (62.8) | 344 (68.0) | 367 (72.7) | 366 (72.3) | 0.0003 |
Overweight + obesity (n: Q1 = 505, Q2 = 506, Q3 = 505, Q4 = 506) | 325 (64.4) | 347 (68.6) | 380 (75.3) | 385 (76.1) | 0.0000 |
Model | Predictors | OR (95% CI) | p |
---|---|---|---|
CVD total prevalence vs. | |||
Healthy Dietary Pattern 1) | Healthy DP (L) | 1.33 (0.98–1.79) | 0.0654 |
Healthy DP (C) | 0.93 (0.71–1.22) | 0.6009 | |
Healthy DP (Q) | 1.06 (0.81–1.38) | 0.6916 | |
Unhealthy Dietary Pattern 1) | Unhealthy DP (L) | 0.75 (0.55–1.03) | 0.0747 |
Unhealthy DP (C) | 1.11 (0.85–1.46) | 0.4273 | |
Unhealthy DP (Q) | 1.06 (0.81–1.38) | 0.6720 | |
Traditional Dietary Pattern 1) | Traditional DP (L) | 1.17 (0.86–1.61) | 0.3204 |
Traditional DP (C) | 1.11 (0.86–1.44) | 0.41531 | |
Traditional DP (Q) | 0.88 (0.67–1.16) | 0.36456 | |
Hypertension prevalence vs. | |||
Healthy Dietary Pattern 2) | Healthy DP (L) | 0.79 (0.62–1.01) | 0.0611 |
Healthy DP (C) | 0.84 (0.69–1.02) | 0.0864 | |
Healthy DP (Q) | 1.03 (0.84–1.26) | 0.7852 | |
Unhealthy Dietary Pattern 2) | Unhealthy DP (L) | 0.77 (0.62–0.95) | 0.01550 |
Unhealthy DP (C) | 0.96 (0.79–1.17) | 0.70046 | |
Unhealthy DP (Q) | 1.11 (0.91–1.36) | 0.29305 | |
Traditional Dietary Pattern 2) | Traditional DP (L) | 0.96 (0.77–1.19) | 0.71454 |
Traditional DP (C) | 1.00 (0.82–1.22) | 0.99471 | |
Traditional DP (Q) | 1.06 (0.87–1.30) | 0.54251 | |
Diabetes prevalence vs. | |||
Healthy Dietary Pattern 1) | Healthy DP (L) | 0.72 (0.48–1.07) | 0.10792 |
Healthy DP (C) | 1.00 (0.72–1.39) | 0.98100 | |
Healthy DP (Q) | 1.19 (0.86–1.66) | 0.29413 | |
Unhealthy Dietary Pattern 1) | Unhealthy DP (L) | 0.47 (0.31–0.70) | 0.00026 |
Unhealthy DP (C) | 0.80 (0.57–1.11) | 0.17884 | |
Unhealthy DP (Q) | 1.34 (0.96–1.85) | 0.08238 | |
Traditional Dietary Pattern 1) | Traditional DP (L) | 2.00 (1.33–3.02) | 0.00093 |
Traditional DP (C) | 1.05 (0.77–1.44) | 0.74857 | |
Traditional DP (Q) | 1.00 (0.71–1.41) | 0.99898 | |
Impaired fasting glucose (IFG) prevalence | |||
Healthy Dietary Pattern 1) | Healthy DP (L) | 0.96 (0.76–1.22) | 0.74915 |
Healthy DP (C) | 1.01 (0.81–1.26) | 0.94157 | |
Healthy DP (Q) | 1.09 (0.87–1.36) | 0.46593 | |
Unhealthy Dietary Pattern 1) | Unhealthy DP (L) | 0.97 (0.75–1.26) | 0.82719 |
Unhealthy DP (C) | 0.86 (0.69–1.08) | 0.18673 | |
Unhealthy DP (Q) | 1.19 (0.95–1.49) | 0.12158 | |
Traditional Dietary Pattern 1) | Traditional DP (L) | 1.14 (0.90–1.44) | 0.28332 |
Traditional DP (C) | 0.99 (0.79–1.24) | 0.91353 | |
Traditional DP (Q) | 1.26 (1.00–1.58) | 0.04730 |
Model | Predictors | OR (95% CI) | p |
---|---|---|---|
Visceral obesity prevalence vs. | |||
Healthy Dietary Pattern 1) | Healthy DP (L) | 0.68 (0.49–0.94) | 0.02100 |
Healthy DP (C) | 1.11 (0.83–1.48) | 0.48976 | |
Healthy DP (Q) | 0.83 (0.62–1.10) | 0.19463 | |
Unhealthy Dietary Pattern 1) | Unhealthy DP (L) | 1.44 (0.97–2.12) | 0.06949 |
Unhealthy DP (C) | 1.08 (0.82–1.44) | 0.57688 | |
Unhealthy DP (Q) | 1.02 (0.76–1.37) | 0.88244 | |
Traditional Dietary Pattern 1) | Traditional DP (L) | 0.90 (0.66–1.23) | 0.52298 |
Traditional DP (C) | 1.04 (0.78–1.40) | 0.77353 | |
Traditional DP (Q) | 1.07 (0.80–1.43) | 0.63778 | |
Overweight and obesity prevalence vs. | |||
Healthy Dietary Pattern 1) | Healthy DP (L) | 1.06 (0.83–1.36) | 0.6361 |
Healthy DP (C) | 0.96 (0.78–1.17) | 0.6581 | |
Healthy DP (Q) | 0.91 (0.74–1.12) | 0.3766 | |
Unhealthy Dietary Pattern 1) | Unhealthy DP (L) | 0.72 (0.56–0.93) | 0.01114 |
Unhealthy DP (C) | 1.20 (0.98–1.46) | 0.07436 | |
Unhealthy DP (Q) | 1.26 (1.03–1.54) | 0.02613 | |
Traditional Dietary Pattern 1) | Traditional DP (L) | 1.59 (1.24–2.03) | 0.00022 |
Traditional DP (C) | 0.88 (0.72–1.08) | 0.20943 | |
Traditional DP (Q) | 0.96 (0.78–1.18) | 0.72838 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różańska, D.; Kujawa, K.; Szuba, A.; Zatońska, K.; Regulska-Ilow, B. Dietary Patterns and the Prevalence of Noncommunicable Diseases in the PURE Poland Study Participants. Nutrients 2023, 15, 3524. https://doi.org/10.3390/nu15163524
Różańska D, Kujawa K, Szuba A, Zatońska K, Regulska-Ilow B. Dietary Patterns and the Prevalence of Noncommunicable Diseases in the PURE Poland Study Participants. Nutrients. 2023; 15(16):3524. https://doi.org/10.3390/nu15163524
Chicago/Turabian StyleRóżańska, Dorota, Krzysztof Kujawa, Andrzej Szuba, Katarzyna Zatońska, and Bożena Regulska-Ilow. 2023. "Dietary Patterns and the Prevalence of Noncommunicable Diseases in the PURE Poland Study Participants" Nutrients 15, no. 16: 3524. https://doi.org/10.3390/nu15163524
APA StyleRóżańska, D., Kujawa, K., Szuba, A., Zatońska, K., & Regulska-Ilow, B. (2023). Dietary Patterns and the Prevalence of Noncommunicable Diseases in the PURE Poland Study Participants. Nutrients, 15(16), 3524. https://doi.org/10.3390/nu15163524