Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite
Abstract
:1. Introduction
2. The Role of Orexin in REM Sleep Regulation
3. Other Functions of Orexin
3.1. Energy Homeostasis
3.2. Regulation of the Autonomic Nervous System
3.3. Cognitive Function
4. The Relationship between Orexin, REM Sleep, and Appetite
5. Treatment Perspectives
6. Conclusions
- In consideration of the multiple functions of orexinergic circuits in sleep and metabolic disorders, it should be assessed the possible use of orexinergic receptor antagonists in other pathologies, in addition to the current indications;
- If orexin receptor antagonists could be a viable option for the treatment of eating disorders and metabolic disorders should be addressed with specific studies;
- Considering the interactions found with dopaminergic circuits, further studies should be carried out in humans to test the possible use of drugs acting on orexinergic circuits for the treatment of anxiety, post-traumatic stress disorder and addiction (also often associated with eating disorders);
- Considering the reports on the association between nocturnal sleep eating disorders and REM and NREM sleep, probably highly related to the modulation of orexinergic circuits, further studies on humans are desirable to better understand the pathogenetic and therapeutic role of orexin in these disorders;
- More attention should be paid to the effect of the use of orexinergic antagonists in insomnia on the appetite of these patients.
Author Contributions
Funding
Conflicts of Interest
References
- Mukai, Y.; Yamanaka, A. Functional roles of REM sleep. Neurosci. Res. 2023, 189, 44–53. [Google Scholar] [CrossRef]
- McGinty, D.; Szymusiak, R. Chapter 7—Neural Control of Sleep in Mammals. In Principles and Practice of Sleep Medicine, 6th ed.; Kryger, M., Roth, T., Dement, W.C., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; pp. 62–77.e65. [Google Scholar] [CrossRef]
- Scammell, T.E.; Arrigoni, E.; Lipton, J.O. Neural Circuitry of Wakefulness and Sleep. Neuron 2017, 93, 747–765. [Google Scholar] [CrossRef]
- Sasaki, K.; Suzuki, M.; Mieda, M.; Tsujino, N.; Roth, B.; Sakurai, T. Pharmacogenetic modulation of orexin neurons alters sleep/wakefulness states in mice. PLoS ONE 2011, 6, e20360. [Google Scholar] [CrossRef]
- Schone, C.; Apergis-Schoute, J.; Sakurai, T.; Adamantidis, A.; Burdakov, D. Coreleased orexin and glutamate evoke nonredundant spike outputs and computations in histamine neurons. Cell Rep. 2014, 7, 697–704. [Google Scholar] [CrossRef]
- Sakurai, T.; Amemiya, A.; Ishii, M.; Matsuzaki, I.; Chemelli, R.M.; Tanaka, H.; Williams, S.C.; Richardson, J.A.; Kozlowski, G.P.; Wilson, S.; et al. Orexins and orexin receptors: A family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Cell 1998, 92, 573–585. [Google Scholar] [CrossRef]
- de Lecea, L.; Kilduff, T.S.; Peyron, C.; Gao, X.; Foye, P.E.; Danielson, P.E.; Fukuhara, C.; Battenberg, E.L.; Gautvik, V.T.; Bartlett, F.S., 2nd; et al. The hypocretins: Hypothalamus-specific peptides with neuroexcitatory activity. Proc. Natl. Acad. Sci. USA 1998, 95, 322–327. [Google Scholar] [CrossRef]
- Lang, M.; Soll, R.M.; Durrenberger, F.; Dautzenberg, F.M.; Beck-Sickinger, A.G. Structure-activity studies of orexin a and orexin B at the human orexin 1 and orexin 2 receptors led to orexin 2 receptor selective and orexin 1 receptor preferring ligands. J. Med. Chem. 2004, 47, 1153–1160. [Google Scholar] [CrossRef]
- Mediavilla, C. Bidirectional gut-brain communication: A role for orexin-A. Neurochem. Int. 2020, 141, 104882. [Google Scholar] [CrossRef]
- Ono, D.; Yamanaka, A. Hypothalamic regulation of the sleep/wake cycle. Neurosci. Res. 2017, 118, 74–81. [Google Scholar] [CrossRef]
- Zeitzer, J.M.; Buckmaster, C.L.; Parker, K.J.; Hauck, C.M.; Lyons, D.M.; Mignot, E. Circadian and homeostatic regulation of hypocretin in a primate model: Implications for the consolidation of wakefulness. J. Neurosci. Off. J. Soc. Neurosci. 2003, 23, 3555–3560. [Google Scholar] [CrossRef]
- Narita, N.; Yamada, R.; Kakehi, M.; Kimura, H. Diurnal Fluctuations of Orexin-A and -B in Cynomolgus Monkey Cerebrospinal Fluid Determined by a Novel Analytical Method Using Antiadsorptive Additive Treatment Followed by Nanoflow Liquid Chromatography-High-Resolution Mass Spectrometry. ACS Chem. Neurosci. 2023, 14, 609–618. [Google Scholar] [CrossRef] [PubMed]
- Poceta, J.S.; Parsons, L.; Engelland, S.; Kripke, D.F. Circadian rhythm of CSF monoamines and hypocretin-1 in restless legs syndrome and Parkinson’s disease. Sleep Med. 2009, 10, 129–133. [Google Scholar] [CrossRef] [PubMed]
- Salomon, R.M.; Ripley, B.; Kennedy, J.S.; Johnson, B.; Schmidt, D.; Zeitzer, J.M.; Nishino, S.; Mignot, E. Diurnal variation of cerebrospinal fluid hypocretin-1 (Orexin-A) levels in control and depressed subjects. Biol. Psychiatry 2003, 54, 96–104. [Google Scholar] [CrossRef]
- Grady, S.P.; Nishino, S.; Czeisler, C.A.; Hepner, D.; Scammell, T.E. Diurnal variation in CSF orexin-A in healthy male subjects. Sleep 2006, 29, 295–297. [Google Scholar] [CrossRef]
- Borbely, A. The two-process model of sleep regulation: Beginnings and outlook. J. Sleep Res. 2022, 31, e13598. [Google Scholar] [CrossRef] [PubMed]
- Hung, C.; Yamanaka, A. The role of orexin neuron activity in sleep/wakefulness regulation. Peptides 2023, 165, 171007. [Google Scholar] [CrossRef]
- Mogavero, M.P.; Silvani, A.; Lanza, G.; DelRosso, L.M.; Ferini Strambi, L.; Ferri, R. Targeting Orexin Receptors for the Treatment of Insomnia: From Physiological Mechanisms to Current Clinical Evidence and Recommendations. Nat. Sci. Sleep 2023, 15, 17–38. [Google Scholar] [CrossRef]
- Grady, F.S.; Boes, A.D.; Geerling, J.C. A Century Searching for the Neurons Necessary for Wakefulness. Front. Neurosci. 2022, 16, 930514. [Google Scholar] [CrossRef]
- Clark, J.W.; Brian, M.L.; Drummond, S.P.A.; Hoyer, D.; Jacobson, L.H. Effects of orexin receptor antagonism on human sleep architecture: A systematic review. Sleep Med. Rev. 2020, 53, 101332. [Google Scholar] [CrossRef] [PubMed]
- Saitoh, T.; Sakurai, T. The present and future of synthetic orexin receptor agonists. Peptides 2023, 167, 171051. [Google Scholar] [CrossRef]
- Tupone, D.; Madden, C.J.; Cano, G.; Morrison, S.F. An orexinergic projection from perifornical hypothalamus to raphe pallidus increases rat brown adipose tissue thermogenesis. J. Neurosci. Off. J. Soc. Neurosci. 2011, 31, 15944–15955. [Google Scholar] [CrossRef] [PubMed]
- Sellayah, D.; Bharaj, P.; Sikder, D. Orexin is required for brown adipose tissue development, differentiation, and function. Cell Metab. 2011, 14, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.Y.; Lee, H.S. Dual projections of single orexin- or CART-immunoreactive, lateral hypothalamic neurons to the paraventricular thalamic nucleus and nucleus accumbens shell in the rat: Light microscopic study. Brain Res. 2016, 1634, 104–118. [Google Scholar] [CrossRef]
- Hara, J.; Beuckmann, C.T.; Nambu, T.; Willie, J.T.; Chemelli, R.M.; Sinton, C.M.; Sugiyama, F.; Yagami, K.; Goto, K.; Yanagisawa, M.; et al. Genetic ablation of orexin neurons in mice results in narcolepsy, hypophagia, and obesity. Neuron 2001, 30, 345–354. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Sunanaga, J.; Takahashi, Y.; Mori, T.; Sakurai, T.; Kanmura, Y.; Kuwaki, T. Orexin neurons are indispensable for stress-induced thermogenesis in mice. J. Physiol. 2010, 588, 4117–4129. [Google Scholar] [CrossRef]
- Maruyama, T.; Ueta, Y. Internal and external modulation factors of the orexin system (REVIEW). Peptides 2023, 165, 171009. [Google Scholar] [CrossRef]
- Funato, H.; Tsai, A.L.; Willie, J.T.; Kisanuki, Y.; Williams, S.C.; Sakurai, T.; Yanagisawa, M. Enhanced orexin receptor-2 signaling prevents diet-induced obesity and improves leptin sensitivity. Cell Metab. 2009, 9, 64–76. [Google Scholar] [CrossRef]
- Adeghate, E.; Lotfy, M.; D’Souza, C.; Alseiari, S.M.; Alsaadi, A.A.; Qahtan, S.A. Hypocretin/orexin modulates body weight and the metabolism of glucose and insulin. Diabetes/Metab. Res. Rev. 2020, 36, e3229. [Google Scholar] [CrossRef]
- Klockars, A.; Levine, A.S.; Olszewski, P.K. Hypothalamic Integration of the Endocrine Signaling Related to Food Intake. Curr. Top. Behav. Neurosci. 2019, 43, 239–269. [Google Scholar] [CrossRef]
- Alvente, S.; Berteotti, C.; Bastianini, S.; Lo Martire, V.; Matteoli, G.; Silvani, A.; Zoccoli, G. Autonomic mechanisms of blood pressure alterations during sleep in orexin/hypocretin-deficient narcoleptic mice. Sleep 2021, 44, 22. [Google Scholar] [CrossRef]
- Messina, A.; De Fusco, C.; Monda, V.; Esposito, M.; Moscatelli, F.; Valenzano, A.; Carotenuto, M.; Viggiano, E.; Chieffi, S.; De Luca, V.; et al. Role of the Orexin System on the Hypothalamus-Pituitary-Thyroid Axis. Front. Neural Circuits 2016, 10, 66. [Google Scholar] [CrossRef]
- Sargin, D. The role of the orexin system in stress response. Neuropharmacology 2019, 154, 68–78. [Google Scholar] [CrossRef] [PubMed]
- Bigalke, J.A.; Shan, Z.; Carter, J.R. Orexin, Sleep, Sympathetic Neural Activity, and Cardiovascular Function. Hypertension 2022, 79, 2643–2655. [Google Scholar] [CrossRef] [PubMed]
- Verberne, A.J.M.; Mussa, B.M. Neural control of pancreatic peptide hormone secretion. Peptides 2022, 152, 170768. [Google Scholar] [CrossRef]
- Meusel, M.; Voss, J.; Krapalis, A.; Machleidt, F.; Vonthein, R.; Hallschmid, M.; Sayk, F. Intranasal orexin A modulates sympathetic vascular tone: A pilot study in healthy male humans. J. Neurophysiol. 2022, 127, 548–558. [Google Scholar] [CrossRef]
- Kuwaki, T. Orexin (hypocretin) participates in central autonomic regulation during fight-or-flight response. Peptides 2021, 139, 170530. [Google Scholar] [CrossRef] [PubMed]
- Ballotta, D.; Talami, F.; Pizza, F.; Vaudano, A.E.; Benuzzi, F.; Plazzi, G.; Meletti, S. Hypothalamus and amygdala functional connectivity at rest in narcolepsy type 1. NeuroImage. Clin. 2021, 31, 102748. [Google Scholar] [CrossRef] [PubMed]
- Chieffi, S.; Carotenuto, M.; Monda, V.; Valenzano, A.; Villano, I.; Precenzano, F.; Tafuri, D.; Salerno, M.; Filippi, N.; Nuccio, F.; et al. Orexin System: The Key for a Healthy Life. Front. Physiol. 2017, 8, 357. [Google Scholar] [CrossRef] [PubMed]
- Tsujino, N.; Sakurai, T. Role of orexin in modulating arousal, feeding, and motivation. Front. Behav. Neurosci. 2013, 7, 28. [Google Scholar] [CrossRef]
- Fadel, J.; Burk, J.A. Orexin/hypocretin modulation of the basal forebrain cholinergic system: Role in attention. Brain Res. 2010, 1314, 112–123. [Google Scholar] [CrossRef]
- Abounoori, M.; Maddah, M.M.; Ardeshiri, M.R. Orexin neuropeptides modulate the hippocampal-dependent memory through basolateral amygdala interconnections. Cereb. Circ. Cogn. Behav. 2022, 3, 100035. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.Y.; Yu, L.; Zhuang, Q.X.; Zhu, J.N.; Wang, J.J. Central functions of the orexinergic system. Neurosci. Bull. 2013, 29, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Horne, J.A. Human REM sleep: Influence on feeding behaviour, with clinical implications. Sleep Med. 2015, 16, 910–916. [Google Scholar] [CrossRef] [PubMed]
- Teske, J.A.; Billington, C.J.; Kotz, C.M. Mechanisms underlying obesity resistance associated with high spontaneous physical activity. Neuroscience 2014, 256, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Aston-Jones, G.; Smith, R.J.; Moorman, D.E.; Richardson, K.A. Role of lateral hypothalamic orexin neurons in reward processing and addiction. Neuropharmacology 2009, 56 (Suppl. 1), 112–121. [Google Scholar] [CrossRef]
- Poli, F.; Plazzi, G.; Di Dalmazi, G.; Ribichini, D.; Vicennati, V.; Pizza, F.; Mignot, E.; Montagna, P.; Pasquali, R.; Pagotto, U. Body mass index-independent metabolic alterations in narcolepsy with cataplexy. Sleep 2009, 32, 1491–1497. [Google Scholar] [CrossRef]
- Willie, J.T.; Chemelli, R.M.; Sinton, C.M.; Yanagisawa, M. To eat or to sleep? Orexin in the regulation of feeding and wakefulness. Annu. Rev. Neurosci. 2001, 24, 429–458. [Google Scholar] [CrossRef]
- Irfan, M.; Schenck, C.H.; Howell, M.J. NonREM Disorders of Arousal and Related Parasomnias: An Updated Review. Neurother. J. Am. Soc. Exp. Neurother. 2021, 18, 124–139. [Google Scholar] [CrossRef]
- Leu-Semenescu, S.; Maranci, J.B.; Lopez, R.; Drouot, X.; Dodet, P.; Gales, A.; Groos, E.; Barateau, L.; Franco, P.; Lecendreux, M.; et al. Comorbid parasomnias in narcolepsy and idiopathic hypersomnia: More REM than NREM parasomnias. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2022, 18, 1355–1364. [Google Scholar] [CrossRef]
- Loddo, G.; Zanardi, M.; Caletti, M.T.; Mignani, F.; Petroni, M.L.; Chiaro, G.; Marchesini, G.; Provini, F. Searching food during the night: The role of video-polysomnography in the characterization of the night eating syndrome. Sleep Med. 2019, 64, 85–91. [Google Scholar] [CrossRef]
- Kim, E.M.; Quinn, J.G.; Reid, R.E.; O’Hare, E. Evidence for a feeding related association between melanocortin in the NTS and Neuropeptide-Y in the PVN. Appetite 2023, 188, 106618. [Google Scholar] [CrossRef] [PubMed]
- Mogavero, M.P.; Silvani, A.; DelRosso, L.M.; Salemi, M.; Ferri, R. Focus on the Complex Interconnection between Cancer, Narcolepsy and Other Neurodegenerative Diseases: A Possible Case of Orexin-Dependent Inverse Comorbidity. Cancers 2021, 13, 2612. [Google Scholar] [CrossRef] [PubMed]
- Alain, C.; Pascal, N.; Valerie, G.; Thierry, V. Orexins/Hypocretins and Cancer: A Neuropeptide as Emerging Target. Molecules 2021, 26, 4849. [Google Scholar] [CrossRef]
- Couvineau, A.; Dayot, S.; Nicole, P.; Gratio, V.; Rebours, V.; Couvelard, A.; Voisin, T. The Anti-tumoral Properties of Orexin/Hypocretin Hypothalamic Neuropeptides: An Unexpected Therapeutic Role. Front. Endocrinol. 2018, 9, 573. [Google Scholar] [CrossRef]
- Ten-Blanco, M.; Flores, A.; Cristino, L.; Pereda-Perez, I.; Berrendero, F. Targeting the orexin/hypocretin system for the treatment of neuropsychiatric and neurodegenerative diseases: From animal to clinical studies. Front. Neuroendocrinol. 2023, 69, 101066. [Google Scholar] [CrossRef]
- Liguori, C.; Spanetta, M.; Izzi, F.; Franchini, F.; Nuccetelli, M.; Sancesario, G.M.; Di Santo, S.; Bernardini, S.; Mercuri, N.B.; Placidi, F. Sleep-Wake Cycle in Alzheimer’s Disease Is Associated with Tau Pathology and Orexin Dysregulation. J. Alzheimer’s Dis. JAD 2020, 74, 501–508. [Google Scholar] [CrossRef] [PubMed]
- Godos, J.; Grosso, G.; Castellano, S.; Galvano, F.; Caraci, F.; Ferri, R. Association between diet and sleep quality: A systematic review. Sleep Med. Rev. 2021, 57, 101430. [Google Scholar] [CrossRef]
- Thompson, H.J.; Lutsiv, T.; McGinley, J.N.; Hussan, H.; Playdon, M.C. Dietary Oncopharmacognosy as a Crosswalk between Precision Oncology and Precision Nutrition. Nutrients 2023, 15, 2219. [Google Scholar] [CrossRef]
- Caruso, G.; Torrisi, S.A.; Mogavero, M.P.; Currenti, W.; Castellano, S.; Godos, J.; Ferri, R.; Galvano, F.; Leggio, G.M.; Grosso, G.; et al. Polyphenols and neuroprotection: Therapeutic implications for cognitive decline. Pharmacol. Ther. 2022, 232, 108013. [Google Scholar] [CrossRef]
- Alrouji, M.; Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Zaafar, D.; Batiha, G.E. Orexin pathway in Parkinson’s disease: A review. Mol. Biol. Rep. 2023, 50, 6107–6120. [Google Scholar] [CrossRef]
- Couvineau, A.; Voisin, T.; Nicole, P.; Gratio, V.; Abad, C.; Tan, Y.V. Orexins as Novel Therapeutic Targets in Inflammatory and Neurodegenerative Diseases. Front. Endocrinol. 2019, 10, 709. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Meng, Y.; Chu, B.; Shen, Y.; Liu, X.; Ding, M.; Song, C.; Cao, X.; Wang, P.; Xu, L.; et al. Orexin-A aggravates cytotoxicity and mitochondrial impairment in SH-SY5Y cells transfected with APPswe via p38 MAPK pathway. Ann. Transl. Med. 2020, 8, 5. [Google Scholar] [CrossRef] [PubMed]
- Salemi, M.; Lanza, G.; Mogavero, M.P.; Cosentino, F.I.I.; Borgione, E.; Iorio, R.; Ventola, G.M.; Marchese, G.; Salluzzo, M.G.; Ravo, M.; et al. A Transcriptome Analysis of mRNAs and Long Non-Coding RNAs in Patients with Parkinson’s Disease. Int. J. Mol. Sci. 2022, 23, 1535. [Google Scholar] [CrossRef] [PubMed]
- Salemi, M.; Mogavero, M.P.; Lanza, G.; Mongioi, L.M.; Calogero, A.E.; Ferri, R. Examples of Inverse Comorbidity between Cancer and Neurodegenerative Diseases: A Possible Role for Noncoding RNA. Cells 2022, 11, 1930. [Google Scholar] [CrossRef]
- Flores-Dorantes, M.T.; Diaz-Lopez, Y.E.; Gutierrez-Aguilar, R. Environment and Gene Association with Obesity and Their Impact on Neurodegenerative and Neurodevelopmental Diseases. Front. Neurosci. 2020, 14, 863. [Google Scholar] [CrossRef] [PubMed]
- Curtis, J.A.; Molfenter, S.; Troche, M.S. Predictors of Residue and Airway Invasion in Parkinson’s Disease. Dysphagia 2020, 35, 220–230. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Q.; Ji, B.; Pan, Y.; Xu, C.; Cheng, B.; Bai, B.; Chen, J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front. Mol. Neurosci. 2018, 11, 220. [Google Scholar] [CrossRef]
- Marcos, P.; Coveñas, R. Involvement of the Orexinergic System in Cancer: Antitumor Strategies and Future Perspectives. Appl. Sci. 2023, 13, 7569. [Google Scholar] [CrossRef]
- Caruso, A.; Gelsomino, L.; Panza, S.; Accattatis, F.M.; Naimo, G.D.; Barone, I.; Giordano, C.; Catalano, S.; Ando, S. Leptin: A Heavyweight Player in Obesity-Related Cancers. Biomolecules 2023, 13, 1084. [Google Scholar] [CrossRef]
- Ozturk, O.; Cebeci, D.; Sahin, U.; Tuluceoglu, E.E.; Calapoglu, N.S.; Gonca, T.; Calapoglu, M. Circulating levels of ghrelin, galanin, and orexin-A orexigenic neuropeptides in obstructive sleep apnea syndrome. Sleep Breath. Schlaf Atm. 2022, 26, 1209–1218. [Google Scholar] [CrossRef]
- Moore, M.W.; Akladious, A.; Hu, Y.; Azzam, S.; Feng, P.; Strohl, K.P. Effects of orexin 2 receptor activation on apnea in the C57BL/6J mouse. Respir. Physiol. Neurobiol. 2014, 200, 118–125. [Google Scholar] [CrossRef] [PubMed]
- Bogan, R.K.; Maynard, J.P.; Neuwirth, R.; Faessel, H.; Swick, T.; Olsson, T. Safety and pharmacodynamics of a single infusion of danavorexton in adults with obstructive sleep apnea experiencing excessive daytime sleepiness despite adequate use of CPAP. Sleep Med. 2023, 107, 229–235. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Palcza, J.; Card, D.; Gipson, A.; Rosenberg, R.; Kryger, M.; Lines, C.; Wagner, J.A.; Troyer, M.D. Effects of Suvorexant, an Orexin Receptor Antagonist, on Respiration during Sleep In Patients with Obstructive Sleep Apnea. J. Clin. Sleep Med. JCSM Off. Publ. Am. Acad. Sleep Med. 2016, 12, 9–17. [Google Scholar] [CrossRef]
- Faesel, N.; Koch, M.; Fendt, M. Sex-dependent role of orexin deficiency in feeding behavior and affective state of mice following intermittent access to a Western diet—Implications for binge-like eating behavior. Physiol. Behav. 2023, 260, 114069. [Google Scholar] [CrossRef]
- Li, Z.; Wang, W.; Li, J.; Ru, S. New insight on the mechanism of eating disorder in females based on metabolic differences of bisphenol S in female and male zebrafish. Environ. Pollut. 2023, 317, 120820. [Google Scholar] [CrossRef] [PubMed]
- Siegel, J.M. Sleep function: An evolutionary perspective. Lancet. Neurol. 2022, 21, 937–946. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Ravichandran, M. Orexin receptors: Targets and applications. Fundam. Clin. Pharmacol. 2022, 36, 72–80. [Google Scholar] [CrossRef]
- Abdel-Magid, A.F. Antagonists of Orexin Receptors as Potential Treatment of Sleep Disorders, Obesity, Eating Disorders, and Other Neurological and Psychiatric Disorders. ACS Med. Chem. Lett. 2016, 7, 876–877. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.R.; Yang, Y.; Ward, R.; Gao, L.; Liu, Y. Orexin receptors: Multi-functional therapeutic targets for sleeping disorders, eating disorders, drug addiction, cancers and other physiological disorders. Cell. Signal. 2013, 25, 2413–2423. [Google Scholar] [CrossRef]
- Ren, J.; Chen, Y.; Fang, X.; Wang, D.; Wang, Y.; Yu, L.; Wu, Z.; Liu, R.; Zhang, C. Correlation of Orexin-A and brain-derived neurotrophic factor levels in metabolic syndrome and cognitive impairment in schizophrenia treated with clozapine. Neurosci. Lett. 2022, 782, 136695. [Google Scholar] [CrossRef]
- Chen, P.Y.; Chang, C.K.; Chen, C.H.; Fang, S.C.; Mondelli, V.; Chiu, C.C.; Lu, M.L.; Hwang, L.L.; Huang, M.C. Orexin-a elevation in antipsychotic-treated compared to drug-free patients with schizophrenia: A medication effect independent of metabolic syndrome. J. Formos. Med. Assoc. Taiwan Yi Zhi 2022, 121, 2172–2181. [Google Scholar] [CrossRef] [PubMed]
- Rilling, F.L.; Reyes, M.; Blanco, E.; Burrows, R.; Peirano, P.; Algarin, C.; Merono, T.; Gahagan, S. Association of fasting Orexin-A levels with energy intake at breakfast and subsequent snack in Chilean adolescents. Psychoneuroendocrinology 2022, 140, 105718. [Google Scholar] [CrossRef] [PubMed]
- Zlebnik, N.E.; Holtz, N.A.; Lepak, V.C.; Saykao, A.T.; Zhang, Y.; Carroll, M.E. Age-specific treatment effects of orexin/hypocretin-receptor antagonism on methamphetamine-seeking behavior. Drug Alcohol Depend. 2021, 224, 108719. [Google Scholar] [CrossRef] [PubMed]
- Ziemichod, W.; Kurowska, A.; Grabowska, K.; Kurowska, M.; Biala, G. Characteristics of Seltorexant-Innovative Agent Targeting Orexin System for the Treatment of Depression and Anxiety. Molecules 2023, 28, 3575. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Yuan, K.; Zheng, Y.; Lu, L. Orexin Receptor Antagonists as Emerging Treatments for Psychiatric Disorders. Neurosci. Bull. 2020, 36, 432–448. [Google Scholar] [CrossRef]
- Pintwala, S.K.; Fraigne, J.J.; Belsham, D.D.; Peever, J.H. Immortal orexin cell transplants restore motor-arousal synchrony during cataplexy. Curr. Biol. 2023, 33, 1550–1564.e5. [Google Scholar] [CrossRef]
- Boushra, A.F.; Mahmoud, R.H.; Ayoub, S.E.; Mohammed, R.A.; Shamardl, H.A.; El Amin Ali, A.M. The Potential Therapeutic Effect of Orexin-Treated versus Orexin-Untreated Adipose Tissue-Derived Mesenchymal Stem Cell Therapy on Insulin Resistance in Type 2 Diabetic Rats. J. Diabetes Res. 2022, 2022, 9832212. [Google Scholar] [CrossRef]
- Xue, T.; Wang, S.; Chen, S.; Wang, H.; Liu, C.; Shi, L.; Bai, Y.; Zhang, C.; Han, C.; Zhang, J. Subthalamic nucleus stimulation attenuates motor seizures via modulating the nigral orexin pathway. Front. Neurosci. 2023, 17, 1157060. [Google Scholar] [CrossRef]
- Rogers, A.A.; Aiani, L.M.; Blanpain, L.T.; Yuxian, S.; Moore, R.; Willie, J.T. Deep brain stimulation of hypothalamus for narcolepsy-cataplexy in mice. Brain Stimul. 2020, 13, 1305–1316. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mogavero, M.P.; Godos, J.; Grosso, G.; Caraci, F.; Ferri, R. Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite. Nutrients 2023, 15, 3679. https://doi.org/10.3390/nu15173679
Mogavero MP, Godos J, Grosso G, Caraci F, Ferri R. Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite. Nutrients. 2023; 15(17):3679. https://doi.org/10.3390/nu15173679
Chicago/Turabian StyleMogavero, Maria P., Justyna Godos, Giuseppe Grosso, Filippo Caraci, and Raffaele Ferri. 2023. "Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite" Nutrients 15, no. 17: 3679. https://doi.org/10.3390/nu15173679
APA StyleMogavero, M. P., Godos, J., Grosso, G., Caraci, F., & Ferri, R. (2023). Rethinking the Role of Orexin in the Regulation of REM Sleep and Appetite. Nutrients, 15(17), 3679. https://doi.org/10.3390/nu15173679