Higher Adherence to the AMED, DASH, and CHFP Dietary Patterns Is Associated with Better Cognition among Chinese Middle-Aged and Elderly Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Measures
2.2.1. Outcome Variable: Cognitive Function
2.2.2. Dietary Consumption
2.2.3. Dietary Pattern and Score Derivation
2.2.4. Covariates
2.3. Statistical Analysis
3. Results
3.1. Descriptive Results
3.2. Association between Dietary Patterns and Poor Cognition
3.3. Subgroup Analysis of the Association between Dietary Patterns and Poor Cognition
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chételat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- WHO. Dementia; WHO: Geneva, Switzerland, 2022.
- 2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023, 19, 1598–1695. [CrossRef] [PubMed]
- Jia, J.; Wei, C.; Chen, S.; Li, F.; Tang, Y.; Qin, W.; Zhao, L.; Jin, H.; Xu, H.; Wang, F.; et al. The cost of Alzheimer’s disease in China and re-estimation of costs worldwide. Alzheimers Dement. 2018, 14, 483–491. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Ke, P.; Wang, C.; Xia, W.; Meng, X.; Di, H.; Gan, Y.; He, Y.; Tian, Q.; Jiang, H.; et al. Association of food groups with the risk of cognitive impairment in Chinese older adults. J. Affect. Disord. 2022, 309, 266–273. [Google Scholar] [CrossRef] [PubMed]
- Wei, K.; Yang, J.; Lin, S.; Mei, Y.; An, N.; Cao, X.; Jiang, L.; Liu, C.; Li, C. Dietary Habits Modify the Association of Physical Exercise with Cognitive Impairment in Community-Dwelling Older Adults. J. Clin. Med. 2022, 11, 5122. [Google Scholar] [CrossRef] [PubMed]
- Solfrizzi, V.; Custodero, C.; Lozupone, M.; Imbimbo, B.P.; Valiani, V.; Agosti, P.; Schilardi, A.; D’Introno, A.; La Montagna, M.; Calvani, M.; et al. Relationships of Dietary Patterns, Foods, and Micro- and Macronutrients with Alzheimer’s Disease and Late-Life Cognitive Disorders: A Systematic Review. J. Alzheimers Dis. 2017, 59, 815–849. [Google Scholar] [CrossRef] [PubMed]
- Chu, C.Q.; Yu, L.L.; Qi, G.Y.; Mi, Y.S.; Wu, W.Q.; Lee, Y.K.; Zhai, Q.X.; Tian, F.W.; Chen, W. Can dietary patterns prevent cognitive impairment and reduce Alzheimer’s disease risk: Exploring the underlying mechanisms of effects. Neurosci. Biobehav. Rev. 2022, 135, 104556. [Google Scholar] [CrossRef] [PubMed]
- Valls-Pedret, C.; Sala-Vila, A.; Serra-Mir, M.; Corella, D.; de la Torre, R.; Martínez-González, M.Á.; Martínez-Lapiscina, E.H.; Fitó, M.; Pérez-Heras, A.; Salas-Salvadó, J.; et al. Mediterranean Diet and Age-Related Cognitive Decline: A Randomized Clinical Trial. JAMA Intern. Med. 2015, 175, 1094–1103. [Google Scholar] [CrossRef]
- Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019, 47, 529–542. [Google Scholar] [CrossRef]
- Kesse-Guyot, E.; Andreeva, V.A.; Lassale, C.; Ferry, M.; Jeandel, C.; Hercberg, S.; Galan, P. Mediterranean diet and cognitive function: A French study. Am. J. Clin. Nutr. 2013, 97, 369–376. [Google Scholar] [CrossRef]
- Smith, P.J.; Blumenthal, J.A.; Babyak, M.A.; Craighead, L.; Welsh-Bohmer, K.A.; Browndyke, J.N.; Strauman, T.A.; Sherwood, A. Effects of the dietary approaches to stop hypertension diet, exercise, and caloric restriction on neurocognition in overweight adults with high blood pressure. Hypertension 2010, 55, 1331–1338. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kady, V.; Han, E.; Montan, K.; Normuminova, M.; Rovito, M.J. Healthy Eating and Mortality among Breast Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies. Int. J. Environ. Res. Public Health 2022, 19, 7579. [Google Scholar] [CrossRef] [PubMed]
- Zhai, F.Y.; Du, S.F.; Wang, Z.H.; Zhang, J.G.; Du, W.W.; Popkin, B.M. Dynamics of the Chinese diet and the role of urbanicity, 1991–2011. Obes. Rev. 2014, 15 (Suppl. S1), 16–26. [Google Scholar] [CrossRef] [PubMed]
- Popkin, B.M.; Du, S.; Zhai, F.; Zhang, B. Cohort Profile: The China Health and Nutrition Survey--monitoring and understanding socio-economic and health change in China, 1989–2011. Int. J. Epidemiol. 2010, 39, 1435–1440. [Google Scholar] [CrossRef] [PubMed]
- Duff, K.; Tometich, D.; Dennett, K. The Modified Telephone Interview for Cognitive Status is More Predictive of Memory Abilities Than the Mini-Mental State Examination. J. Geriatr. Psychiatry Neurol. 2015, 28, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Plassman, B.L.; Welsh, K.A.; Helms, M.; Brandt, J.; Page, W.F.; Breitner, J.C. Intelligence and education as predictors of cognitive state in late life: A 50-year follow-up. Neurology 1995, 45, 1446–1450. [Google Scholar] [CrossRef] [PubMed]
- Potter, G.G.; Helms, M.J.; Plassman, B.L. Associations of job demands and intelligence with cognitive performance among men in late life. Neurology 2008, 70, 1803–1808. [Google Scholar] [CrossRef] [PubMed]
- Yao, Y.; Wang, K.; Xiang, H. Association between cognitive function and ambient particulate matters in middle-aged and elderly Chinese adults: Evidence from the China Health and Retirement Longitudinal Study (CHARLS). Sci. Total Environ. 2022, 828, 154297. [Google Scholar] [CrossRef]
- Ding, D.; Zhao, Q.; Guo, Q.; Meng, H.; Wang, B.; Luo, J.; Mortimer, J.A.; Borenstein, A.R.; Hong, Z. Prevalence of mild cognitive impairment in an urban community in China: A cross-sectional analysis of the Shanghai Aging Study. Alzheimers Dement. 2015, 11, 300–309. [Google Scholar] [CrossRef]
- Zhao, R.; Zhao, L.; Gao, X.; Yang, F.; Yang, Y.; Fang, H.; Ju, L.; Xu, X.; Guo, Q.; Li, S.; et al. Geographic Variations in Dietary Patterns and Their Associations with Overweight/Obesity and Hypertension in China: Findings from China Nutrition and Health Surveillance (2015–2017). Nutrients 2022, 14, 3949. [Google Scholar] [CrossRef]
- Yu, D.; Zhao, L.; Zhao, W. Status and trends in consumption of grains and dietary fiber among Chinese adults (1982–2015). Nutr. Rev. 2020, 78, 43–53. [Google Scholar] [CrossRef] [PubMed]
- Trichopoulou, A.; Costacou, T.; Bamia, C.; Trichopoulos, D. Adherence to a Mediterranean diet and survival in a Greek population. N. Engl. J. Med. 2003, 348, 2599–2608. [Google Scholar] [CrossRef] [PubMed]
- Fung, T.T.; Hu, F.B.; McCullough, M.L.; Newby, P.K.; Willett, W.C.; Holmes, M.D. Diet quality is associated with the risk of estrogen receptor-negative breast cancer in postmenopausal women. J. Nutr. 2006, 136, 466–472. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.C.; Koh, W.P.; Neelakantan, N.; Yuan, J.M.; Qin, L.Q.; van Dam, R.M. Diet Quality Indices and Risk of Type 2 Diabetes Mellitus: The Singapore Chinese Health Study. Am. J. Epidemiol. 2018, 187, 2651–2661. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, S.; Li, H.; Yu, D.; Gao, J.; Gao, Y.; Tran, H.; Xiang, Y.B.; Zheng, W.; Shu, X.O. Adherence to dietary recommendations and colorectal cancer risk: Results from two prospective cohort studies. Int. J. Epidemiol. 2020, 49, 270–280. [Google Scholar] [CrossRef]
- Qin, B.; Adair, L.S.; Plassman, B.L.; Batis, C.; Edwards, L.J.; Popkin, B.M.; Mendez, M.A. Dietary Patterns and Cognitive Decline Among Chinese Older Adults. Epidemiology 2015, 26, 758–768. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.; Jiang, H.; Zhang, B.; Wang, H.; Jia, X.; Huang, F.; Wang, L.; Wang, Z. Threshold-Effect Association of Dietary Cholesterol Intake with Dyslipidemia in Chinese Adults: Results from the China Health and Nutrition Survey in 2015. Nutrients 2019, 11, 2885. [Google Scholar] [CrossRef]
- Gao, M.; Wei, Y.X.; Lyu, J.; Yu, C.Q.; Guo, Y.; Bian, Z.; Pei, P.; Du, H.D.; Chen, J.S.; Chen, Z.M.; et al. The cut-off points of body mass index and waist circumference for predicting metabolic risk factors in Chinese adults. Zhonghua Liu Xing Bing Xue Za Zhi 2019, 40, 1533–1540. [Google Scholar] [PubMed]
- Limongi, F.; Siviero, P.; Bozanic, A.; Noale, M.; Veronese, N.; Maggi, S. The Effect of Adherence to the Mediterranean Diet on Late-Life Cognitive Disorders: A Systematic Review. J. Am. Med. Dir. Assoc. 2020, 21, 1402–1409. [Google Scholar] [CrossRef]
- Coelho-Júnior, H.J.; Trichopoulou, A.; Panza, F. Cross-sectional and longitudinal associations between adherence to Mediterranean diet with physical performance and cognitive function in older adults: A systematic review and meta-analysis. Ageing Res. Rev. 2021, 70, 101395. [Google Scholar] [CrossRef] [PubMed]
- Fu, J.; Tan, L.J.; Lee, J.E.; Shin, S. Association between the mediterranean diet and cognitive health among healthy adults: A systematic review and meta-analysis. Front. Nutr. 2022, 9, 946361. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Parsaik, A.K.; Mielke, M.M.; Erwin, P.J.; Knopman, D.S.; Petersen, R.C.; Roberts, R.O. Association of mediterranean diet with mild cognitive impairment and Alzheimer’s disease: A systematic review and meta-analysis. J. Alzheimers Dis. 2014, 39, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Galiot, A.; Goñi, I. Adherence to the Mediterranean diet pattern, cognitive status and depressive symptoms in an elderly non-institutionalized population. Nutr. Hosp. 2017, 34, 338–344. [Google Scholar] [CrossRef] [PubMed]
- Gardener, S.; Gu, Y.; Rainey-Smith, S.R.; Keogh, J.B.; Clifton, P.M.; Mathieson, S.L.; Taddei, K.; Mondal, A.; Ward, V.K.; Scarmeas, N.; et al. Adherence to a Mediterranean diet and Alzheimer’s disease risk in an Australian population. Transl. Psychiatry 2012, 2, e164. [Google Scholar] [CrossRef] [PubMed]
- Carlos, S.; De La Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Razquin, C.; Rico-Campà, A.; Martínez-González, M.A.; Ruiz-Canela, M. Mediterranean Diet and Health Outcomes in the SUN Cohort. Nutrients 2018, 10, 439. [Google Scholar] [CrossRef] [PubMed]
- Shannon, O.M.; Stephan, B.; Granic, A.; Lentjes, M.; Hayat, S.; Mulligan, A.; Brayne, C.; Khaw, K.T.; Bundy, R.; Aldred, S.; et al. Mediterranean diet adherence and cognitive function in older UK adults: The European Prospective Investigation into Cancer and Nutrition-Norfolk (EPIC-Norfolk) Study. Am. J. Clin. Nutr. 2019, 110, 938–948. [Google Scholar] [CrossRef] [PubMed]
- Bhushan, A.; Fondell, E.; Ascherio, A.; Yuan, C.; Grodstein, F.; Willett, W. Adherence to Mediterranean diet and subjective cognitive function in men. Eur. J. Epidemiol. 2018, 33, 223–234. [Google Scholar] [CrossRef]
- Féart, C.; Samieri, C.; Rondeau, V.; Amieva, H.; Portet, F.; Dartigues, J.F.; Scarmeas, N.; Barberger-Gateau, P. Adherence to a Mediterranean diet, cognitive decline, and risk of dementia. JAMA 2009, 302, 638–648. [Google Scholar] [CrossRef]
- Charisis, S.; Ntanasi, E.; Yannakoulia, M.; Anastasiou, C.A.; Kosmidis, M.H.; Dardiotis, E.; Hadjigeorgiou, G.; Sakka, P.; Scarmeas, N. Mediterranean diet and risk for dementia and cognitive decline in a Mediterranean population. J. Am. Geriatr. Soc. 2021, 69, 1548–1559. [Google Scholar] [CrossRef]
- Brouwer-Brolsma, E.M.; Benati, A.; van de Wiel, A.; van Lee, L.; de Vries, J.; Feskens, E.; van de Rest, O. Higher Mediterranean Diet scores are not cross-sectionally associated with better cognitive scores in 20- to 70-year-old Dutch adults: The NQplus study. Nutr. Res. 2018, 59, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Samieri, C.; Grodstein, F.; Rosner, B.A.; Kang, J.H.; Cook, N.R.; Manson, J.E.; Buring, J.E.; Willett, W.C.; Okereke, O.I. Mediterranean diet and cognitive function in older age. Epidemiology 2013, 24, 490–499. [Google Scholar] [CrossRef] [PubMed]
- Morris, M.C.; Tangney, C.C.; Wang, Y.; Sacks, F.M.; Bennett, D.A.; Aggarwal, N.T. MIND diet associated with reduced incidence of Alzheimer’s disease. Alzheimers Dement. 2015, 11, 1007–1014. [Google Scholar] [CrossRef] [PubMed]
- Wengreen, H.; Munger, R.G.; Cutler, A.; Quach, A.; Bowles, A.; Corcoran, C.; Tschanz, J.T.; Norton, M.C.; Welsh-Bohmer, K.A. Prospective study of Dietary Approaches to Stop Hypertension- and Mediterranean-style dietary patterns and age-related cognitive change: The Cache County Study on Memory, Health and Aging. Am. J. Clin. Nutr. 2013, 98, 1263–1271. [Google Scholar] [CrossRef] [PubMed]
- Shakersain, B.; Rizzuto, D.; Larsson, S.C.; Faxén-Irving, G.; Fratiglioni, L.; Xu, W.L. The Nordic Prudent Diet Reduces Risk of Cognitive Decline in the Swedish Older Adults: A Population-Based Cohort Study. Nutrients 2018, 10, 229. [Google Scholar] [CrossRef] [PubMed]
- Haring, B.; Wu, C.; Mossavar-Rahmani, Y.; Snetselaar, L.; Brunner, R.; Wallace, R.B.; Neuhouser, M.L.; Wassertheil-Smoller, S. No Association between Dietary Patterns and Risk for Cognitive Decline in Older Women with 9-Year Follow-Up: Data from the Women’s Health Initiative Memory Study. J. Acad. Nutr. Diet. 2016, 116, 921–930. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Cai, H.; Gu, K.; Shi, L.; Yu, D.; Zhang, M.; Zheng, W.; Zheng, Y.; Bao, P.; Shu, X.O. Adherence to Dietary Recommendations among Long-Term Breast Cancer Survivors and Cancer Outcome Associations. Cancer Epidemiol. Biomark. Prev. 2020, 29, 386–395. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Leepromrath, S.; Zhou, D. Dietary diversity indices versus dietary guideline-based indices and their associations with non-communicable diseases, overweight and energy intake: Evidence from China. Public Health Nutr. 2022, 26, 911–933. [Google Scholar] [CrossRef]
- Yu, D.; Zhang, X.; Xiang, Y.B.; Yang, G.; Li, H.; Gao, Y.T.; Zheng, W.; Shu, X.O. Adherence to dietary guidelines and mortality: A report from prospective cohort studies of 134,000 Chinese adults in urban Shanghai. Am. J. Clin. Nutr. 2014, 100, 693–700. [Google Scholar] [CrossRef]
- Zhu, J.; Xiang, Y.B.; Cai, H.; Li, H.; Gao, Y.T.; Zheng, W.; Shu, X.O. A Prospective Investigation of Dietary Intake and Functional Impairments Among the Elderly. Am. J. Epidemiol. 2018, 187, 2372–2386. [Google Scholar] [CrossRef]
- Scarmeas, N.; Anastasiou, C.A.; Yannakoulia, M. Nutrition and prevention of cognitive impairment. Lancet Neurol. 2018, 17, 1006–1015. [Google Scholar] [CrossRef] [PubMed]
- Mohammadzadeh, H.N.; Saedisomeolia, A.; Abdolahi, M.; Shayeganrad, A.; Taheri, S.G.; Hassanzadeh, R.B.; Muench, G. Molecular Anti-inflammatory Mechanisms of Retinoids and Carotenoids in Alzheimer’s Disease: A Review of Current Evidence. J. Mol. Neurosci. 2017, 61, 289–304. [Google Scholar] [CrossRef] [PubMed]
- Lakey-Beitia, J.; Kumar, D.J.; Hegde, M.L.; Rao, K.S. Carotenoids as Novel Therapeutic Molecules Against Neurodegenerative Disorders: Chemistry and Molecular Docking Analysis. Int. J. Mol. Sci. 2019, 20, 5553. [Google Scholar] [CrossRef] [PubMed]
- Zeqaj, I.; Piffero, R.; Calzaducca, E.; Pirisi, M.; Bellan, M. The Potential Role of Vitamin D Supplementation In Cognitive Impairment Prevention. In CNS & Neurological Disorders—Drug Targets; Bentham Science Publishers: Sharjah, United Arab Emirates, 2023. [Google Scholar]
- Cryan, J.F.; O’Riordan, K.J.; Sandhu, K.; Peterson, V.; Dinan, T.G. The gut microbiome in neurological disorders. Lancet Neurol. 2020, 19, 179–194. [Google Scholar] [CrossRef]
- Fang, P.; Kazmi, S.A.; Jameson, K.G.; Hsiao, E.Y. The Microbiome as a Modifier of Neurodegenerative Disease Risk. Cell Host Microbe 2020, 28, 201–222. [Google Scholar] [CrossRef] [PubMed]
- Agirman, G.; Yu, K.B.; Hsiao, E.Y. Signaling inflammation across the gut-brain axis. Science 2021, 374, 1087–1092. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, A.; Geurts, L.; Hoyles, L.; Iozzo, P.; Kraneveld, A.D.; La Fata, G.; Miani, M.; Patterson, E.; Pot, B.; Shortt, C.; et al. The microbiota-gut-brain axis: Pathways to better brain health. Perspectives on what we know, what we need to investigate and how to put knowledge into practice. Cell. Mol. Life Sci. 2022, 79, 80. [Google Scholar] [CrossRef]
- Wang, D.D.; Nguyen, L.H.; Li, Y.; Yan, Y.; Ma, W.; Rinott, E.; Ivey, K.L.; Shai, I.; Willett, W.C.; Hu, F.B.; et al. The gut microbiome modulates the protective association between a Mediterranean diet and cardiometabolic disease risk. Nat. Med. 2021, 27, 333–343. [Google Scholar] [CrossRef]
- Meslier, V.; Laiola, M.; Roager, H.M.; De Filippis, F.; Roume, H.; Quinquis, B.; Giacco, R.; Mennella, I.; Ferracane, R.; Pons, N.; et al. Mediterranean diet intervention in overweight and obese subjects lowers plasma cholesterol and causes changes in the gut microbiome and metabolome independently of energy intake. Gut 2020, 69, 1258–1268. [Google Scholar] [CrossRef]
- Bailey, M.A.; Holscher, H.D. Microbiome-Mediated Effects of the Mediterranean Diet on Inflammation. Adv. Nutr. 2018, 9, 193–206. [Google Scholar] [CrossRef]
- Bourdeau-Julien, I.; Castonguay-Paradis, S.; Rochefort, G.; Perron, J.; Lamarche, B.; Flamand, N.; Di Marzo, V.; Veilleux, A.; Raymond, F. The diet rapidly and differentially affects the gut microbiota and host lipid mediators in a healthy population. Microbiome 2023, 11, 26. [Google Scholar] [CrossRef] [PubMed]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef]
- Ghosh, T.S.; Rampelli, S.; Jeffery, I.B.; Santoro, A.; Neto, M.; Capri, M.; Giampieri, E.; Jennings, A.; Candela, M.; Turroni, S.; et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut 2020, 69, 1218–1228. [Google Scholar] [CrossRef] [PubMed]
- Jia, J.; Wang, F.; Wei, C.; Zhou, A.; Jia, X.; Li, F.; Tang, M.; Chu, L.; Zhou, Y.; Zhou, C.; et al. The prevalence of dementia in urban and rural areas of China. Alzheimer’s Dement. J. Alzheimer’s Assoc. 2014, 10, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cheng, C.; Yang, C.Y.; Inder, K.; Wai-Chi Chan, S. Urban-rural differences in mental health among Chinese patients with multiple chronic conditions. Int. J. Ment. Health Nurs. 2020, 29, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Li, Y.; Gao, H.; Zhang, Y. Difference in bypass for inpatient care and its determinants between rural and urban residents in China. Int. J. Equity Health 2022, 21, 132. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zhang, X.; Sang, H.; Niu, X.; Liu, T.; Liu, W.; Li, J. Urban-rural differences in risk factors for ischemic stroke in northern China. Medicine 2019, 98, e15782. [Google Scholar] [CrossRef]
- Cao, L.J.; Yan, X.K. Urban-Rural Differences in Returns to education: A Phased Study. Fudan Educ. Forum 2016, 81–88. [Google Scholar]
Global Cognition Scores < 7 (N = 658) | Global Cognition Scores ≥ 7 (N = 2695) | Overall (N = 3353) | p | |
---|---|---|---|---|
Age (years), mean ± SD | 71.3 ± 9.1 | 64.0 ± 7.3 | 65.5 ± 8.2 | <0.001 |
Sex | <0.001 | |||
Male | 209 (31.8) | 1388 (51.5) | 1597 (47.6) | |
Female | 449 (68.2) | 1307 (48.5) | 1756 (52.4) | |
Residential region | <0.001 | |||
City | 182 (27.7) | 1048 (38.9) | 1230 (36.7) | |
Rural | 476 (72.3) | 1647 (61.1) | 2123 (63.3) | |
Geographic location | <0.001 | |||
North | 215 (32.7) | 1164 (43.2) | 1379 (41.1) | |
South | 443 (67.3) | 1531 (56.8) | 1974 (58.9) | |
Education | <0.001 | |||
Low | 613 (93.2) | 786 (29.2) | 2347 (70.0) | |
Medium | 27 (4.1) | 907 (33.7) | 516 (15.4) | |
High | 18 (2.7) | 1002 (37.2) | 490 (14.6) | |
Income (CNY), median (IQR) | 3617.53 (1999.5, 7472.0) | 6703.7 (3105.1, 12,906.0) | 5835.3 (2711.7, 11,627.6) | <0.001 |
Marital status | <0.001 | |||
Never married | 8 (1.2) | 18 (0.7) | 26 (0.8) | |
Married | 386 (58.7) | 2246 (83.3) | 2632 (78.5) | |
Divorced, widowed, or separated | 264 (40.1) | 431 (16.0) | 695 (20.7) | |
Smoking status | <0.001 | |||
Never | 509 (77.4) | 1723 (63.9) | 2232 (66.6) | |
Ever | 43 (6.5) | 221 (8.2) | 264 (7.9) | |
Current | 106 (16.1) | 751 (27.9) | 857 (25.6) | |
Energy intake | <0.001 | |||
Low | 329 (50.5) | 788 (29.2) | 1117 (33.3) | |
Medium | 193 (29.3) | 926 (34.4) | 1119 (33.4) | |
High | 136 (20.7) | 981 (36.4) | 1117 (33.3) | |
Hypertension | 0.039 | |||
No | 368 (55.9) | 1626 (60.3) | 1994 (59.5) | |
Yes | 290 (44.1) | 1069 (39.7) | 1359 (40.5) | |
Diabetes | 0.426 | |||
No | 630 (95.7) | 2598 (96.4) | 3228 (96.3) | |
Yes | 28 (4.3) | 97 (3.6) | 125 (3.7) | |
Stroke | <0.001 | |||
No | 618 (93.9) | 2644 (98.1) | 3262 (97.3) | |
Yes | 40 (6.1) | 51 (1.9) | 91 (2.7) | |
BMI | <0.001 | |||
Underweight | 73 (11.1) | 172 (6.4) | 245 (7.3) | |
Normal weight | 409 (62.2) | 1414 (52.5) | 1823 (54.4) | |
Overweight and obesity | 176 (26.7) | 1109 (41.2) | 1285 (38.3) |
N (%) | Prevalence of Poor Cognition | Crude | Model 1 | Model 2 | Model 3 | |
---|---|---|---|---|---|---|
AMED | ||||||
Tertile 1 | 1442 (43.0) | 26.0 | Ref | Ref | Ref | Ref |
Tertile 2 | 836 (24.9) | 19.3 | 0.679 (0.551, 0.836) | 0.834 (0.660, 1.054) | 0.862 (0.680, 1.092) | 0.862 (0.678, 1.095) |
Tertile 3 | 1075 (32.1) | 11.1 | 0.364 (0.292, 0.455) | 0.572 (0.446, 0.734) | 0.605 (0.468, 0.782) | 0.594 (0.458, 0.771) |
p for trend | <0.001 | <0.001 | <0.001 | <0.001 | ||
DASH | ||||||
Tertile 1 | 1313 (39.2) | 23.2 | Ref | Ref | Ref | Ref |
Tertile 2 | 1050 (31.3) | 20.8 | 0.866 (0.711, 1.054) | 0.914 (0.732, 1.142) | 0.926 (0.741, 1.158) | 0.930 (0.742, 1.164) |
Tertile 3 | 990 (29.5) | 13.6 | 0.522 (0.418, 0.652) | 0.643 (0.500, 0.827) | 0.664 (0.515, 0.855) | 0.652 (0.504, 0.843) |
p for trend | <0.001 | 0.001 | 0.002 | 0.001 | ||
CHFP | ||||||
Tertile 1 | 1163 (34.7) | 20.9 | Ref | Ref | Ref | Ref |
Tertile 2 | 1755 (52.3) | 20.6 | 0.984 (0.820, 1.181) | 1.020 (0.829, 1.254) | 0.982 (0.797, 1.210) | 1.004 (0.813, 1.239) |
Tertile 3 | 435 (13.0) | 12.2 | 0.525 (0.381, 0.724) | 0.634 (0.444, 0.906) | 0.590 (0.412, 0.845) | 0.599 (0.417, 0.861) |
p for trend | <0.001 | 0.024 | 0.007 | 0.011 |
AMED | p for Trend | p for Interaction | |||
---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | |||
Sex | 0.743 | ||||
Male | Ref | 0.998 (0.671, 1.485) | 0.581 (0.370, 0.912) | 0.031 | |
Female | Ref | 0.798 (0.589, 1.081) | 0.599 (0.434, 0.828) | 0.002 | |
Residential region | 0.045 | ||||
City | Ref | 0.701 (0.448, 1.095) | 0.413 (0.259, 0.658) | <0.001 | |
Rural | Ref | 0.957 (0.717, 1.276) | 0.730 (0.532, 1.002) | 0.067 | |
Geographic location | 0.287 | ||||
North | Ref | 0.913 (0.603, 1.382) | 0.793 (0.515, 1.223) | 0.297 | |
South | Ref | 0.839 (0.623, 1.129) | 0.501 (0.358, 0.699) | <0.001 | |
Education | 0.974 | ||||
Low | Ref | 0.872 (0.679, 1.119) | 0.603 (0.458, 0.795) | <0.001 | |
Medium | Ref | 1.002 (0.331, 3.030) | 0.435 (0.127, 1.495) | 0.218 | |
High | Ref | 0.453 (0.106, 1.933) | 0.392 (0.111, 1.385) | 0.144 | |
Hypertension | 0.983 | ||||
No | Ref | 0.839 (0.610, 1.155) | 0.577 (0.402, 0.828) | 0.003 | |
Yes | Ref | 0.890 (0.618, 1.283) | 0.613 (0.417, 0.900) | 0.015 | |
BMI | 0.530 | ||||
Underweight | Ref | 1.083 (0.445, 2.640) | 0.929 (0.362, 2.384) | 0.935 | |
Normal weight | Ref | 0.784 (0.573, 1.073) | 0.548 (0.386, 0.779) | <0.001 | |
Overweight and obesity | Ref | 0.993 (0.650, 1.517) | 0.581 (0.368, 0.917) | 0.026 |
DASH | p for Trend | p for Interaction | |||
---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | |||
Sex | 0.593 | ||||
Male | Ref | 0.783 (0.535, 1.146) | 0.626 (0.401, 0.979) | 0.035 | |
Female | Ref | 1.023 (0.771, 1.357) | 0.662 (0.482, 0.908) | 0.014 | |
Residential region | 0.003 | ||||
City | Ref | 0.781 (0.512, 1.190) | 0.362 (0.218, 0.601) | <0.001 | |
Rural | Ref | 1.035 (0.790, 1.356) | 0.857 (0.632, 1.163) | 0.354 | |
Geographic location | 0.325 | ||||
North | Ref | 1.135 (0.749, 1.720) | 0.832 (0.541, 1.279) | 0.351 | |
South | Ref | 0.877 (0.668, 1.152) | 0.584 (0.418, 0.817) | 0.002 | |
Education | 0.048 | ||||
Low | Ref | 0.992 (0.784, 1.257) | 0.742 (0.567, 0.971) | 0.036 | |
Medium | Ref | 0.360 (0.114, 1.137) | 0.277 (0.077, 0.999) | 0.034 | |
High | Ref | 0.593 (0.182, 1.932) | 0.036 (0.004, 0.340) | 0.001 | |
Hypertension | 0.958 | ||||
No | Ref | 0.960 (0.715, 1.289) | 0.631 (0.441, 0.903) | 0.016 | |
Yes | Ref | 0.884 (0.620, 1.261) | 0.651 (0.446, 0.948) | 0.026 | |
BMI | 0.103 | ||||
Underweight | Ref | 1.607 (0.751, 3.439) | 1.060 (0.443, 2.540) | 0.806 | |
Normal weight | Ref | 0.742 (0.550, 1.000) | 0.597 (0.425, 0.839) | 0.002 | |
Overweight and obesity | Ref | 1.143 (0.761, 1.719) | 0.635 (0.399, 1.010) | 0.059 |
CHFP | p for Trend | p for Interaction | |||
---|---|---|---|---|---|
Tertile 1 | Tertile 2 | Tertile 3 | |||
Sex | 0.214 | ||||
Male | Ref | 0.793 (0.555, 1.133) | 0.580 (0.324, 1.037) | 0.056 | |
Female | Ref | 1.155 (0.888, 1.503) | 0.588 (0.369, 0.939) | 0.070 | |
Residential region | <0.001 | ||||
City | Ref | 1.297 (0.855, 1.967) | 0.228 (0.104, 0.500) | <0.001 | |
Rural | Ref | 0.907 (0.707, 1.164) | 0.992 (0.645, 1.525) | 0.812 | |
Geographic location | 0.342 | ||||
North | Ref | 0.919 (0.636, 1.329) | 0.765 (0.422, 1.385) | 0.372 | |
South | Ref | 1.058 (0.817, 1.372) | 0.522 (0.327, 0.832) | 0.015 | |
Education | 0.790 | ||||
Low | Ref | 0.981 (0.787, 1.223) | 0.580 (0.393, 0.857) | 0.012 | |
Medium | Ref | 1.014 (0.377, 2.727) | 0.561 (0.136, 2.305) | 0.416 | |
High | Ref | 2.468 (0.610, 9.991) | 1.166 (0.189, 7.201) | 0.947 | |
Hypertension | 0.840 | ||||
No | Ref | 1.001 (0.757, 1.324) | 0.515 (0.307, 0.864) | 0.023 | |
Yes | Ref | 0.993 (0.718, 1.374) | 0.666 (0.395, 1.122) | 0.149 | |
BMI | 0.329 | ||||
Underweight | Ref | 1.145 (0.579, 2.264) | 0.480 (0.106, 2.180) | 0.539 | |
Normal weight | Ref | 0.917 (0.697, 1.208) | 0.737 (0.463, 1.172) | 0.195 | |
Overweight and obesity | Ref | 1.169 (0.789, 1.732) | 0.448 (0.227, 0.886) | 0.031 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Cheng, F.; Du, Y.; Zheng, J.; An, Y.; Lu, Y. Higher Adherence to the AMED, DASH, and CHFP Dietary Patterns Is Associated with Better Cognition among Chinese Middle-Aged and Elderly Adults. Nutrients 2023, 15, 3974. https://doi.org/10.3390/nu15183974
Song Y, Cheng F, Du Y, Zheng J, An Y, Lu Y. Higher Adherence to the AMED, DASH, and CHFP Dietary Patterns Is Associated with Better Cognition among Chinese Middle-Aged and Elderly Adults. Nutrients. 2023; 15(18):3974. https://doi.org/10.3390/nu15183974
Chicago/Turabian StyleSong, Ying, Fangxiao Cheng, Yage Du, Jie Zheng, Yu An, and Yanhui Lu. 2023. "Higher Adherence to the AMED, DASH, and CHFP Dietary Patterns Is Associated with Better Cognition among Chinese Middle-Aged and Elderly Adults" Nutrients 15, no. 18: 3974. https://doi.org/10.3390/nu15183974
APA StyleSong, Y., Cheng, F., Du, Y., Zheng, J., An, Y., & Lu, Y. (2023). Higher Adherence to the AMED, DASH, and CHFP Dietary Patterns Is Associated with Better Cognition among Chinese Middle-Aged and Elderly Adults. Nutrients, 15(18), 3974. https://doi.org/10.3390/nu15183974