Circulating Apolipoprotein B-48 as a Biomarker of Parenteral Nutrition Dependence in Adult Patients with Short Bowel Syndrome
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Patient Characteristics
3.2. Relationships between ApoB-48 Concentrations and Clinical and Biological Parameters in SBS Cohort
3.3. ApoB-48 Is Lower in SBS PN-Dependent Patients than in PN-Weaned-Off Patients and Healthy Subjects
3.4. Fasting ApoB-48 Is Correlated with PNDR
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pironi, L.; Corcos, O.; Forbes, A.; Holst, M.; Joly, F.; Jonkers, C.; Jonkers, C.; Klek, S.; Lal, S.; Blaser, A.R.; et al. Intestinal failure in adults: Recommendations from the ESPEN expert groups. Clin. Nutr. Edinb. Scotl. 2018, 37, 1798–1809. [Google Scholar] [CrossRef] [PubMed]
- Cuerda, C.; Pironi, L.; Arends, J.; Bozzetti, F.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. ESPEN practical guideline: Clinical nutrition in chronic intestinal failure. Clin. Nutr. 2021, 40, 5196–5220. [Google Scholar] [CrossRef] [PubMed]
- Bielawska, B.; Allard, J.P. Parenteral Nutrition and Intestinal Failure. Nutrients 2017, 9, 466. [Google Scholar] [CrossRef]
- Joly, F.; Baxter, J.; Staun, M.; Kelly, D.G.; Hwa, Y.L.; Corcos, O.; De Francesco, A.; Agostini, F.; Klek, S.; Santarpia, L.; et al. Five-year survival and causes of death in patients on home parenteral nutrition for severe chronic and benign intestinal failure. Clin. Nutr. 2018, 37, 1415–1422. [Google Scholar] [CrossRef]
- Pironi, L.; Arends, J.; Baxter, J.; Bozzetti, F.; Peláez, R.B.; Cuerda, C.; Forbes, A.; Gabe, S.; Gillanders, L.; Holst, M.; et al. ESPEN endorsed recommendations. Definition and classification of intestinal failure in adults. Clin. Nutr. Edinb. Scotl. 2015, 34, 171–180. [Google Scholar] [CrossRef] [PubMed]
- Nightingale, J.M.D. Management of patients with a short bowel. World J. Gastroenterol. 2001, 7, 741–751. [Google Scholar] [CrossRef]
- Le Beyec, J.; Billiauws, L.; Bado, A.; Joly, F.; Le Gall, M. Short Bowel Syndrome: A Paradigm for Intestinal Adaptation to Nutrition? Annu. Rev. Nutr. 2020, 40, 299–321. [Google Scholar] [CrossRef]
- de Dreuille, B.; Fourati, S.; Joly, F.; Bihan, J.L.B.-L.; le Gall, M. Le syndrome de grêle court chez l’adulte-De l’insuffisance intestinale à l’adaptation intestinale. Médecine/Sci. 2021, 37, 742–751. [Google Scholar] [CrossRef]
- Kelly, D.G.; Tappenden, K.A.; Winkler, M.F. Short bowel syndrome: Highlights of patient management, quality of life, and survival. JPEN J. Parenter Enteral Nutr. 2014, 38, 427–437. [Google Scholar] [CrossRef]
- Jeppesen, P.B. Intestinal failure defined by measurements of intestinal energy and wet weight absorption. Gut 2000, 46, 701–706. [Google Scholar] [CrossRef]
- Basolo, A.; Parrington, S.; Ando, T.; Hollstein, T.; Piaggi, P.; Krakoff, J. Procedures for Measuring Excreted and Ingested Calories to Assess Nutrient Absorption Using Bomb Calorimetry. Obesity 2020, 28, 2315–2322. [Google Scholar] [CrossRef] [PubMed]
- Tappenden, K.A. Intestinal Adaptation Following Resection. J. Parenter Enter. Nutr. 2014, 38, 23S–31S. [Google Scholar] [CrossRef] [PubMed]
- Crenn, P.; Vahedi, K.; Lavergne-Slove, A.; Cynober, L.; Matuchansky, C.; Messing, B. Plasma citrulline: A marker of enterocyte mass in villous atrophy-associated small bowel disease. Gastroenterology 2003, 124, 1210–1219. [Google Scholar] [CrossRef] [PubMed]
- Jeppesen, P.B.; Gabe, S.M.; Seidner, D.L.; Lee, H.-M.; Olivier, C. Citrulline correlations in short bowel syndrome–intestinal failure by patient stratification: Analysis of 24 weeks of teduglutide treatment from a randomized controlled study. Clin. Nutr. 2020, 39, 2479–2486. [Google Scholar] [CrossRef] [PubMed]
- Xiao, C.; Stahel, P.; Lewis, G.F. Regulation of Chylomicron Secretion: Focus on Post-Assembly Mechanisms. Cell Mol. Gastroenterol. Hepatol. 2019, 7, 487–501. [Google Scholar] [CrossRef]
- Nakajima, K.; Nagamine, T.; Fujita, M.Q.; Ai, M.; Tanaka, A.; Schaefer, E. Apolipoprotein B-48: A unique marker of chylomicron metabolism. Adv. Clin. Chem. 2014, 64, 117–177. [Google Scholar]
- Phillips, M.L.; Pullinger, C.; Kroes, I.; Kroes, J.; Hardman, D.A.; Chen, G.; Curtiss, L.K.; Gutierrez, M.M.; Kane, J.P.; Schumaker, V.N. A single copy of apolipoprotein B-48 is present on the human chylomicron remnant. J. Lipid Res. 1997, 38, 1170–1177. [Google Scholar] [CrossRef]
- Drouin-Chartier, J.-P.; Tremblay, A.J.; Hogue, J.-C.; Lemelin, V.; Lamarche, B.; Couture, P. Plasma PCSK9 correlates with apoB-48-containing triglyceride-rich lipoprotein production in men with insulin resistance. J. Lipid Res. 2018, 59, 1501–1509. [Google Scholar] [CrossRef]
- Haidari, M.; Leung, N.; Mahbub, F.; Uffelman, K.D.; Kohen-Avramoglu, R.; Lewis, G.F.; Adeli, K. Fasting and Postprandial Overproduction of Intestinally Derived Lipoproteins in an Animal Model of Insulin Resistance: Evidence that chronic fructose feeding in the hamster is accompanied by enhanced intestinal de novo lipogenesis and apob48-containing lipoprotein overproduction. J. Biol. Chem. 2002, 277, 31646–31655. [Google Scholar]
- Seguy, D.; Vahedi, K.; Kapel, N.; Souberbielle, J.; Messing, B. Low-dose growth hormone in adult home parenteral nutrition–dependent short bowel syndrome patients: A positive study. Gastroenterology 2003, 124, 293–302. [Google Scholar] [CrossRef]
- Peters, J.H.C.; Wierdsma, N.J.; Teerlink, T.; Leeuwen, P.A.M.V.; Mulder, C.J.J.; VAN Bodegraven, A.A. The citrulline generation test: Proposal for a new enterocyte function test. Aliment. Pharmacol. Ther. 2008, 27, 1300–1310. [Google Scholar] [CrossRef] [PubMed]
- Diamanti, A.; Knafelz, D.; Panetta, F.; Bracci, F.; Gambarara, M.; Papadatou, B.; Daniele, A.; Goffredo, B.M.; Pezzi, S.; Torre, G. Plasma citrulline as surrogate marker of intestinal inflammation in pediatric and adolescent with Crohn’s disease: Preliminary report. Int. J. Colorectal Dis. 2011, 26, 1445–1451. [Google Scholar] [CrossRef] [PubMed]
- Luo, M.; Fernández-Estívariz, C.; Manatunga, A.K.; Bazargan, N.; Gu, L.H.; Jones, D.P.; Klapproth, J.-M.; Sitaraman, S.S.; Leader, L.M.; Galloway, J.R.; et al. Are Plasma Citrulline and Glutamine Biomarkers of Intestinal Absorptive Function in Patients with Short Bowel Syndrome? J. Parenter Enter. Nutr. 2007, 31, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Peters, J.H.C.; Wierdsma, N.J.; Teerlink, T.; van Leeuwen, P.A.M.; Mulder, C.J.J.; van Bodegraven, A.A. Poor Diagnostic Accuracy of a Single Fasting Plasma Citrulline Concentration to Assess Intestinal Energy Absorption Capacity. Off. J. Am. Coll. Gastroenterol. ACG 2007, 102, 2814–2819. [Google Scholar] [CrossRef] [PubMed]
- Fragkos, K.C.; Forbes, A. Citrulline as a marker of intestinal function and absorption in clinical settings: A systematic review and meta-analysis. United Eur. Gastroenterol. J. 2018, 6, 181–191. [Google Scholar] [CrossRef]
- Brubaker, P.L. Glucagon-like Peptide-2 and the Regulation of Intestinal Growth and Function. In Comprehensive Physiology, 1st ed.; Terjung, R., Ed.; Wiley: Hoboken, NJ, USA, 2018; pp. 1185–1210. [Google Scholar]
- Müller, T.D.; Finan, B.; Bloom, S.R.; D’Alessio, D.; Drucker, D.J.; Flatt, P.R.; Fritsche, A.; Gribble, F.; Grill, H.J.; Habener, J.F.; et al. Glucagon-like peptide 1 (GLP-1). Mol. Metab. 2019, 30, 72–130. [Google Scholar]
- Dahly, E.M.; Gillingham, M.B.; Guo, Z.; Murali, S.G.; Nelson, D.W.; Holst, J.J.; Ney, D.M. Role of luminal nutrients and endogenous GLP-2 in intestinal adaptation to mid-small bowel resection. Am. J. Physiol.-Gastrointest. Liver Physiol. 2003, 284, G670–G682. [Google Scholar] [CrossRef]
- Gillard, L.; Billiauws, L.; Stan-Iuga, B.; Ribeiro-Parenti, L.; Jarry, A.-C.; Cavin, J.-B.; Cluzeaud, F.; Mayeur, C.; Thomas, M.; Freund, J.-N.; et al. Enhanced Ghrelin Levels and Hypothalamic Orexigenic AgRP and NPY Neuropeptide Expression in Models of Jejuno-Colonic Short Bowel Syndrome. Sci. Rep. 2016, 6, 28345. [Google Scholar] [CrossRef]
- Dash, S.; Xiao, C.; Morgantini, C.; Connelly, P.W.; Patterson, B.W.; Lewis, G.F. Glucagon-Like Peptide-2 Regulates Release of Chylomicrons From the Intestine. Gastroenterology 2014, 147, 1275–1284.e4. [Google Scholar] [CrossRef]
- Schwartz, E.A.; Koska, J.; Mullin, M.P.; Syoufi, I.; Schwenke, D.C.; Reaven, P.D. Exenatide suppresses postprandial elevations in lipids and lipoproteins in individuals with impaired glucose tolerance and recent onset type 2 diabetes mellitus. Atherosclerosis 2010, 212, 217–222. [Google Scholar] [CrossRef]
- Vergès, B.; Duvillard, L.; Pais de Barros, J.P.; Bouillet, B.; Baillot-Rudoni, S.; Rouland, A.; Sberna, A.-L.; Petit, J.-M.; Degrace, P.; Demizieux, L. Liraglutide Reduces Postprandial Hyperlipidemia by Increasing ApoB48 (Apolipoprotein B48) Catabolism and by Reducing ApoB48 Production in Patients with Type 2 Diabetes Mellitus. Arterioscler. Thromb. Vasc. Biol. 2018, 38, 2198–2206. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Pendlebury, C.; Dodd, M.M.U.; Maximova, K.; Vine, D.F.; Jetha, M.M.; Ball, G.D.C.; Proctor, S.D. Elevated remnant lipoproteins may increase subclinical CVD risk in pre-pubertal children with obesity: A case-control study. Pediatr. Obes. 2013, 8, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Kim, Y.J.; Khang, A.R.; Eckel, R.H. Postprandial dyslipidemia after a standardized high-fat meal in BMI-matched healthy individuals, and in subjects with prediabetes or type 2 diabetes. Clin. Nutr. Edinb. Scotl. 2021, 40, 5538–5546. [Google Scholar] [CrossRef] [PubMed]
- Masuda, D.; Sugimoto, T.; Tsujii, K.-I.; Inagaki, M.; Nakatani, K.; Yuasa-Kawase, M.; Tsubakio-Yamamoto, K.; Ohama, T.; Nishida, M.; Ishigami, M.; et al. Correlation of fasting serum apolipoprotein B-48 with coronary artery disease prevalence. Eur. J. Clin. Investig. 2012, 42, 992–999. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, I.; Chauveau, P.; Guerin, V.; Bardet, J.; Parvy, P.; Kamoun, P.; Jungers, P. Early alterations of plasma free amino acids in chronic renal failure. Clin. Chim. Acta 1990, 188, 101–108. [Google Scholar] [CrossRef]
- Sakai, N.; Uchida, Y.; Ohashi, K.; Hibuse, T.; Saika, Y.; Tomari, Y.; Kihara, S.; Hiraoka, H.; Nakamura, T.; Ito, S.; et al. Measurement of fasting serum apoB-48 levels in normolipidemic and hyperlipidemic subjects by ELISA1. J. Lipid Res. 2003, 44, 1256–1262. [Google Scholar] [CrossRef]
- Otokozawa, S.; Ai, M.; Diffenderfer, M.R.; Asztalos, B.F.; Tanaka, A.; Lamon-Fava, S.; Schaefer, E.J. Fasting and postprandial apolipoprotein B-48 levels in healthy, obese, and hyperlipidemic subjects. Metabolism 2009, 58, 1536–1542. [Google Scholar] [CrossRef]
- Hogue, J.-C.; Lamarche, B.; Tremblay, A.J.; Bergeron, J.; Gagné, C.; Couture, P. Evidence of increased secretion of apolipoprotein B-48-containing lipoproteins in subjects with type 2 diabetes. J. Lipid Res. 2007, 48, 1336–1342. [Google Scholar] [CrossRef]
- Adiels, M.; Matikainen, N.; Westerbacka, J.; Söderlund, S.; Larsson, T.; Olofsson, S.-O.; Borén, J.; Taskinen, M.-R. Postprandial accumulation of chylomicrons and chylomicron remnants is determined by the clearance capacity. Atherosclerosis 2012, 222, 222–228. [Google Scholar] [CrossRef]
- Duez, H.; Lamarche, B.; Valéro, R.; Pavlic, M.; Proctor, S.; Xiao, C.; Szeto, L.; Patterson, B.W.; Lewis, G.F. Both Intestinal and Hepatic Lipoprotein Production Are Stimulated by an Acute Elevation of Plasma Free Fatty Acids in Humans. Circulation 2008, 117, 2369–2376. [Google Scholar] [CrossRef]
- Pavlic, M.; Xiao, C.; Szeto, L.; Patterson, B.W.; Lewis, G.F. Insulin Acutely Inhibits Intestinal Lipoprotein Secretion in Humans in Part by Suppressing Plasma Free Fatty Acids. Diabetes 2010, 59, 580–587. [Google Scholar] [CrossRef] [PubMed]
- López-Tejero, M.D.; Virgili, N.; Targarona, J.; Ruiz, J.; García, N.; Oró, D.; García-Villoria, J.; Creus, G.; Pita, A.M. Apo AIV and Citrulline Plasma Concentrations in Short Bowel Syndrome Patients: The Influence of Short Bowel Anatomy. PLoS ONE 2016, 11, e0163762. [Google Scholar] [CrossRef] [PubMed]
- Cavicchi, M.; Beau, P.; Crenn, P.; Degott, C.; Messing, B. Prevalence of Liver Disease and Contributing Factors in Patients Receiving Home Parenteral Nutrition for Permanent Intestinal Failure. Ann. Intern. Med. 2000, 132, 525–532. [Google Scholar] [CrossRef] [PubMed]
- Pironi, L.; Arends, J.; Bozzetti, F.; Cuerda, C.; Gillanders, L.; Jeppesen, P.B.; Joly, F.; Kelly, D.; Lal, S.; Staun, M.; et al. ESPEN guidelines on chronic intestinal failure in adults. Clin. Nutr. 2016, 35, 247–307. [Google Scholar] [PubMed]
- Massironi, S.; Cavalcoli, F.; Rausa, E.; Invernizzi, P.; Braga, M.; Vecchi, M. Understanding short bowel syndrome: Current status and future perspectives. Dig. Liver Dis. 2020, 52, 253–261. [Google Scholar] [CrossRef]
- Reber, E.; Staub, K.; Schönenberger, K.A.; Stanga, A.; Leuenberger, M.; Pichard, C.; Schuetz, P.; Mühlebach, S.; Stanga, Z. Management of Home Parenteral Nutrition: Complications and Survival. Ann. Nutr. Metab. 2021, 11, 46–55. [Google Scholar] [CrossRef]
Study Population (n = 51) | PN Weaned (n = 16) | PN Dependent (n = 35) | p-Value * | |
---|---|---|---|---|
Gender (M/F) | 25/26 | 10/6 | 15/20 | |
Age (years) | 55.4 [46–68] | 60 [53–71] | 54 [39–67] | <0.05 |
BMI (kg/m2) | 21.3 [20–23] | 22.3 [21–28] | 20.8 [20–23] | ns |
Remnant small bowel length (cm) | 70 [30–110] | 102.5 [56–158] | 48 [25–100] | <0.01 |
Remnant colon (%) | 70 [0–90] | 85 [0, 100] | 65 [0–80] | ns |
Stomy | 16 | 6 | 10 | - |
Duration from surgery (years) | 2.55 [1.7–9.3] | 3.54 [0.7–10.6] | 2.55 [1.9–9.2] | ns |
Oral intake (kcal/day) | 2450 [1775, 2681] (n = 16) | 2350 [1825, 2800] (n = 4) | 2450 [1625, 2681] (n = 12) | ns |
Anastomosis type | ||||
End-jejunostomy (type I) | 15 | 5 | 10 | - |
Jejunocolic anastomosis (type II) | 25 | 5 | 20 | - |
Jejunoileal anastomosis (type III) | 11 | 6 | 5 | - |
SBS etiology | ||||
AMI/VMI | 25 | 8 | 17 | - |
Radiation enteritis | 4 | 0 | 4 | - |
Crohn’s disease | 5 | 3 | 2 | - |
Surgical complications | 8 | 3 | 5 | - |
Trauma | 5 | 1 | 4 | - |
CIPO primary/idiopathic | 4 | 1 | 3 | - |
Biochemical measurements | ||||
Triglycerides (mmol/L) | 1.21 [0.9–1.8] | 0.99 [0.7–1.8] | 1.22 [0.9–1.9] | ns |
Total cholesterol (mmol/L) | 3.10 [2.6–4.1] | 3.59 [3.1–4.2] | 2.8 [2.3–4.1] | ns |
LDL-cholesterol (mmol/L)) | 1.60 [1.0–2.3] | 1.78 [1.3–2.6] | 1.55 [1.0–2.3] | ns |
HDL-cholesterol (mmol/L) | 0.88 [0.6–1.3] | 1.19 [0.8–1.6] | 0.70 [0.5–1.0] | <0.01 |
Creatinine (mmol/L) | 74 [64–105] | 78.5 [65–105] | 73 [61–105] | ns |
GFD (ml/min/1.73 m2) | 88 [61–109] | 82 [62–102] | 88 [51–113] | ns |
Albumin (g/L) | 37.7 [32–41] | 39.9 [37–44] | 35.3 [30–40] | ns |
Prealbumin (g/L) | 0.25 [0.2–0.3] | 0.27 [0.2–0.3] | 0.24 [0.2–0.3] | ns |
CRP (mg/L) | 1 [1–3.8] | 1.5 [1–2.5] | 1 [1–4] | ns |
Glucose (mmol/L) | 5.10 [4.7–5.8] | 4.80 [4.4–5.2] | 5.30 [4.8–6] | ns |
Leptin (ng/mL) | 4.0 [2–7] | 4.89 [1.5–7.2] | 3.58 [1.8–11] | ns |
Adiponectin (ng/mL) | 5.41 [4–11.5] | 4.72 [3.9–5.4] | 9.09 [4.6–12.8] | ns |
ApoB-48 (µg/mL) | 1.60 [0.8–2.9] | 2.35 [1.5–4.4] | 1.30 [0.7–2.4] | <0.01 |
Citrulline (µmol/L) | 21.0 [14–33] | 25.0 [20–49] | 18.0 [11–26] | <0.05 |
Correlation Matrix | ApoB-48 | ||
---|---|---|---|
Study Population (n = 51) | PN Weaned (n = 16) | PN Dependent (n = 35) | |
Triglycerides | 0.326 * | 0.488 | 0.329 |
Total cholesterol | 0.452 ** | 0.513 | 0.351 * |
LDL-cholesterol | 0.290 * | 0.445 | 0.123 |
HDL-cholesterol | 0.380 ** | 0.207 | 0.438 * |
Creatinine | 0.153 | 0.06 | 0.295 |
GFR | −0.148 | −0.240 | −0.190 |
Albumin | 0.271 | −0.148 | 0.318 |
Prealbumin | −0.077 | −0.051 | −0.071 |
CRP | 0.258 | 0.462 | 0.272 |
Glucose | −0.094 | −0.280 | 0.005 |
Leptin | 0.160 | 0.119 | 0.276 |
HMW adiponectin | −0.427 * | −0.245 | −0.539 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fourati, S.; Hamon, A.; Daclat, R.; Salem, J.-E.; Peoc’h, K.; Le Beyec, J.; Joly, F.; Lacorte, J.-M. Circulating Apolipoprotein B-48 as a Biomarker of Parenteral Nutrition Dependence in Adult Patients with Short Bowel Syndrome. Nutrients 2023, 15, 3982. https://doi.org/10.3390/nu15183982
Fourati S, Hamon A, Daclat R, Salem J-E, Peoc’h K, Le Beyec J, Joly F, Lacorte J-M. Circulating Apolipoprotein B-48 as a Biomarker of Parenteral Nutrition Dependence in Adult Patients with Short Bowel Syndrome. Nutrients. 2023; 15(18):3982. https://doi.org/10.3390/nu15183982
Chicago/Turabian StyleFourati, Salma, Annick Hamon, Rita Daclat, Joe-Elie Salem, Katell Peoc’h, Johanne Le Beyec, Francisca Joly, and Jean-Marc Lacorte. 2023. "Circulating Apolipoprotein B-48 as a Biomarker of Parenteral Nutrition Dependence in Adult Patients with Short Bowel Syndrome" Nutrients 15, no. 18: 3982. https://doi.org/10.3390/nu15183982
APA StyleFourati, S., Hamon, A., Daclat, R., Salem, J. -E., Peoc’h, K., Le Beyec, J., Joly, F., & Lacorte, J. -M. (2023). Circulating Apolipoprotein B-48 as a Biomarker of Parenteral Nutrition Dependence in Adult Patients with Short Bowel Syndrome. Nutrients, 15(18), 3982. https://doi.org/10.3390/nu15183982