Elevated Erythritol: A Marker of Metabolic Dysregulation or Contributor to the Pathogenesis of Cardiometabolic Disease?
Abstract
:1. Introduction
2. Erythritol Exposure Due to Inborn Errors of Pentose Phosphate Metabolism
3. Erythritol Exposure: Effects on Vascular Health from In Vitro Studies
4. Erythritol Exposure: Injection vs. Oral Intake
5. Erythritol Exposure: Effects on Vascular Health in High-Risk Groups
6. Erythritol Exposure: Heightened by Impaired Glycemia and High Sugar Diets?
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Regnat, K.; Mach, R.; Mach-Aigner, A. Erythritol as sweetener—Wherefrom and whereto? Appl. Microbiol. Biotechnol. 2018, 102, 587–595. [Google Scholar] [CrossRef] [PubMed]
- FDA. GRAS Notice 789: Erythritol. In GRAS Notice, US Food and Drug Administration: 2019; p GRAS Notices: Erythritol; FDA: Silverspring, MD, USA, 2019. [Google Scholar]
- Mazi, T.A.; Stanhope, K.L. Erythritol: An In-Depth Discussion of Its Potential to Be a Beneficial Dietary Component. Nutrients 2023, 15, 204. [Google Scholar] [CrossRef] [PubMed]
- Rice, T.; Zannini, E.; K. Arendt, E.; Coffey, A. A review of polyols–biotechnological production, food applications, regulation, labeling and health effects. Crit. Rev. Food Sci. Nutr. 2020, 60, 2034–2051. [Google Scholar] [CrossRef] [PubMed]
- De Cock, P.; Mäkinen, K.; Honkala, E.; Saag, M.; Kennepohl, E.; Eapen, A. Erythritol is more effective than xylitol and sorbitol in managing oral health endpoints. Int. J. Dent. 2016, 2016, 9868421. [Google Scholar] [CrossRef]
- Bordier, V.; Teysseire, F.; Senner, F.; Schlotterbeck, G.; Drewe, J.; Beglinger, C.; Wölnerhanssen, B.K.; Meyer-Gerspach, A.C. Absorption and Metabolism of the Natural Sweeteners Erythritol and Xylitol in Humans: A Dose-Ranging Study. Int. J. Mol. Sci. 2022, 23, 9867. [Google Scholar] [CrossRef] [PubMed]
- Hootman, K.C.; Trezzi, J.-P.; Kraemer, L.; Burwell, L.S.; Dong, X.; Guertin, K.A.; Jaeger, C.; Stover, P.J.; Hiller, K.; Cassano, P.A. Erythritol is a pentose-phosphate pathway metabolite and associated with adiposity gain in young adults. Proc. Natl. Acad. Sci. USA 2017, 114, E4233–E4240. [Google Scholar] [CrossRef]
- Schlicker, L.; Szebenyi, D.M.; Ortiz, S.R.; Heinz, A.; Hiller, K.; Field, M.S. Unexpected roles for ADH1 and SORD in catalyzing the final step of erythritol biosynthesis. J. Biol. Chem. 2019, 294, 16095–16108. [Google Scholar] [CrossRef]
- Menni, C.; Fauman, E.; Erte, I.; Perry, J.R.; Kastenmüller, G.; Shin, S.-Y.; Petersen, A.-K.; Hyde, C.; Psatha, M.; Ward, K.J. Biomarkers for type 2 diabetes and impaired fasting glucose using a nontargeted metabolomics approach. Diabetes 2013, 62, 4270–4276. [Google Scholar] [CrossRef]
- Rebholz, C.M.; Yu, B.; Zheng, Z.; Chang, P.; Tin, A.; Köttgen, A.; Wagenknecht, L.E.; Coresh, J.; Boerwinkle, E.; Selvin, E. Serum metabolomic profile of incident diabetes. Diabetologia 2018, 61, 1046–1054. [Google Scholar] [CrossRef]
- Chen, L.; Cheng, C.-Y.; Choi, H.; Ikram, M.K.; Sabanayagam, C.; Tan, G.S.; Tian, D.; Zhang, L.; Venkatesan, G.; Tai, E.S. Plasma metabonomic profiling of diabetic retinopathy. Diabetes 2016, 65, 1099–1108. [Google Scholar] [CrossRef]
- Witkowski, M.; Nemet, I.; Alamri, H.; Wilcox, J.; Gupta, N.; Nimer, N.; Haghikia, A.; Li, X.S.; Wu, Y.; Saha, P.P. The artificial sweetener erythritol and cardiovascular event risk. Nat. Med. 2023, 29, 710–718. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Zhu, C.; Nambi, V.; Morrison, A.C.; Folsom, A.R.; Ballantyne, C.M.; Boerwinkle, E.; Yu, B. Metabolomic pattern predicts incident coronary heart disease: Findings from the Atherosclerosis Risk in Communities Study. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 1475–1482. [Google Scholar] [CrossRef] [PubMed]
- Jové, M.; Mauri-Capdevila, G.; Suárez, I.; Cambray, S.; Sanahuja, J.; Quílez, A.; Farré, J.; Benabdelhak, I.; Pamplona, R.; Portero-Otín, M. Metabolomics predicts stroke recurrence after transient ischemic attack. Neurology 2015, 84, 36–45. [Google Scholar] [CrossRef] [PubMed]
- Shao, M.; Lu, H.; Yang, M.; Liu, Y.; Yin, P.; Li, G.; Wang, Y.; Chen, L.; Chen, Q.; Zhao, C. Serum and urine metabolomics reveal potential biomarkers of T2DM patients with nephropathy. Ann. Transl. Med. 2020, 8, 199. [Google Scholar] [CrossRef] [PubMed]
- Katakami, N.; Omori, K.; Taya, N.; Arakawa, S.; Takahara, M.; Matsuoka, T.-A.; Tsugawa, H.; Furuno, M.; Bamba, T.; Fukusaki, E. Plasma metabolites associated with arterial stiffness in patients with type 2 diabetes. Cardiovasc. Diabetol. 2020, 19, 75. [Google Scholar] [CrossRef]
- Murthy, V.L.; Yu, B.; Wang, W.; Zhang, X.; Alkis, T.; Pico, A.R.; Yeri, A.; Bhupathiraju, S.N.; Bressler, J.; Ballantyne, C.M. Molecular signature of multisystem cardiometabolic stress and its association with prognosis. JAMA Cardiol. 2020, 5, 1144–1153. [Google Scholar] [CrossRef]
- FDA. GRAS Notice 76: Erythritol. In GRAS Notice, US Food and Drug Administration: 2001; p GRAS Notices: Erythritol; FDA: Silverspring, MD, USA, 2001. [Google Scholar]
- Daza-Serna, L.; Serna-Loaiza, S.; Masi, A.; Mach, R.L.; Mach-Aigner, A.R.; Friedl, A. From the culture broth to the erythritol crystals: An opportunity for circular economy. Appl. Microbiol. Biotechnol. 2021, 105, 4467–4486. [Google Scholar] [CrossRef]
- USDA. Sugar and Sweeteners Yearbook Tables; Economic Research Services-US Department of Agriculture: Washington, DC, USA, 2018.
- Wamelink, M.M.; Williams, M. Disorders of the Pentose Phosphate Pathway and Polyol Metabolism. In Physician’s Guide to the Diagnosis, Treatment, and Follow-Up of Inherited Metabolic Diseases; Springer: Berlin/Heidelberg, Germany, 2022; pp. 701–712. [Google Scholar]
- Yildiz, M.; Onal, Z.; Yesil, G.; Kabil, T.G.; Toksoy, G.; Poyrazoglu, S.; Bas, F.; Durmaz, O.; Darendeliler, F. A Rare Cause of Hypergonadotropic Hypogonadism: Transaldolase Deficiency in Two Siblings. J. Clin. Res. Pediatr. Endocrinol. 2023. [Google Scholar] [CrossRef]
- Banne, E.; Meiner, V.; Shaag, A.; Katz-Brull, R.; Gamliel, A.; Korman, S.; Cederboim, S.H.; Duvdevani, M.P.; Frumkin, A.; Zilkha, A. Transaldolase deficiency: A new case expands the phenotypic spectrum. JIMD Rep. 2016, 26, 31–36. [Google Scholar] [CrossRef]
- Tylki-Szymanska, A.; Wamelink, M.M.; Stradomska, T.J.; Salomons, G.S.; Taybert, J.; Dąbrowska-Leonik, N.; Rurarz, M. Clinical and molecular characteristics of two transaldolase-deficient patients. Eur. J. Pediatr. 2014, 173, 1679–1682. [Google Scholar] [CrossRef]
- Eyaid, W.; Al Harbi, T.; Anazi, S.; Wamelink, M.M.; Jakobs, C.; Al Salammah, M.; Al Balwi, M.; Alfadhel, M.; Alkuraya, F.S. Transaldolase deficiency: Report of 12 new cases and further delineation of the phenotype. J. Inherit. Metab. Dis. Off. J. Soc. Study Inborn Errors Metab. 2013, 36, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Tylki-Szymańska, A.; Stradomska, T.J.; Wamelink, M.M.; Salomons, G.S.; Taybert, J.; Pawłowska, J.; Jakobs, C. Transaldolase deficiency in two new patients with a relative mild phenotype. Mol. Genet. Metab. 2009, 97, 15–17. [Google Scholar] [CrossRef] [PubMed]
- Wamelink, M.M.; Struys, E.A.; Salomons, G.S.; Fowler, D.; Jakobs, C.; Clayton, P.T. Transaldolase deficiency in a two-year-old boy with cirrhosis. Mol. Genet. Metab. 2008, 94, 255–258. [Google Scholar] [CrossRef]
- Valayannopoulos, V.; Verhoeven, N.M.; Mention, K.; Salomons, G.S.; Sommelet, D.; Gonzales, M.; Touati, G.; de Lonlay, P.; Jakobs, C.; Saudubray, J.-M. Transaldolase deficiency: A new cause of hydrops fetalis and neonatal multi-organ disease. J. Pediatr. 2006, 149, 713–717. [Google Scholar] [CrossRef] [PubMed]
- Verhoeven, N.M.; Huck, J.H.; Roos, B.; Struys, E.A.; Salomons, G.S.; Douwes, A.C.; Van der Knaap, M.S.; Jakobs, C. Transaldolase deficiency: Liver cirrhosis associated with a new inborn error in the pentose phosphate pathway. Am. J. Hum. Genet. 2001, 68, 1086–1092. [Google Scholar] [CrossRef]
- Boyle, L.; Wamelink, M.M.; Salomons, G.S.; Roos, B.; Pop, A.; Dauber, A.; Hwa, V.; Andrew, M.; Douglas, J.; Feingold, M. Mutations in TKT are the cause of a syndrome including short stature, developmental delay, and congenital heart defects. Am. J. Hum. Genet. 2016, 98, 1235–1242. [Google Scholar] [CrossRef]
- Fallata, E.; Alamri, A.M.; Alrabee, H.A.; Alghamdi, A.A.; Alsaearei, A.; Alamri, A.; Alrabee, H.; Alghamdi, A.; Alsaearei, A.S. Chances of Liver Transplantation in a Patient With Transaldolase Deficiency Complicated by Hepatopulmonary Syndrome. Cureus 2023, 15, e35150. [Google Scholar] [CrossRef]
- Stefanowicz, M.; Janowska, M.; Pawłowska, J.; Tylki-Szymańska, A.; Kowalski, A.; Szymczak, M.; Kaliciński, P.; Jankowska, I. Successful Liver Transplantation in Two Polish Brothers with Transaldolase Deficiency. Children 2021, 8, 746. [Google Scholar] [CrossRef]
- Williams, M.; Valayannopoulos, V.; Altassan, R.; Chung, W.K.; Heijboer, A.C.; Keng, W.T.; Lapatto, R.; McClean, P.; Mulder, M.F.; Tylki-Szymańska, A. Clinical, biochemical, and molecular overview of transaldolase deficiency and evaluation of the endocrine function: Update of 34 patients. J. Inherit. Metab. Dis. 2019, 42, 147–158. [Google Scholar] [CrossRef]
- Rodan, L.H.; Berry, G.T. N-Acetylcysteine therapy in an infant with transaldolase deficiency is well tolerated and associated with normalization of alpha fetoprotein levels. In JIMD Reports; Springer: Berlin/Heidelberg, Germany, 2016; Volume 31, pp. 73–77. [Google Scholar] [CrossRef]
- Xue, J.; Han, J.; Zhao, X.; Zhen, L.; Mei, S.; Hu, Z.; Li, X. Prenatal Diagnosis of Fetus With Transaldolase Deficiency Identifies Compound Heterozygous Variants: A Case Report. Front. Genet. 2022, 12, 2754. [Google Scholar] [CrossRef]
- Gallo, P.; Terracciani, F.; Di Pasquale, G.; Esposito, M.; Picardi, A.; Vespasiani-Gentilucci, U. Thrombocytopenia in chronic liver disease: Physiopathology and new therapeutic strategies before invasive procedures. World J. Gastroenterol. 2022, 28, 4061. [Google Scholar] [CrossRef] [PubMed]
- Lipiński, P.; Pawłowska, J.; Stradomska, T.; Ciara, E.; Jankowska, I.; Socha, P.; Tylki-Szymańska, A. Long-term systematic monitoring of four polish Transaldolase deficient patients. JIMD Rep. 2018, 42, 79–87. [Google Scholar] [CrossRef]
- Wamelink, M.M.; Ramos, R.J.; den van Elzen, A.P.; Ruijter, G.J.; Bonte, R.; Diogo, L.; Garcia, P.; Neves, N.; Nota, B.; Haschemi, A. First two unrelated cases of isolated sedoheptulokinase deficiency: A benign disorder? J. Inherit. Metab. Dis. Off. J. Soc. Study Inborn Errors Metab. 2015, 38, 889–894. [Google Scholar] [CrossRef] [PubMed]
- Kardon, T.; Stroobant, V.; Veiga-da-Cunha, M.; Schaftingen, E.V. Characterization of mammalian sedoheptulokinase and mechanism of formation of erythritol in sedoheptulokinase deficiency. FEBS Lett. 2008, 582, 3330–3334. [Google Scholar] [CrossRef]
- Dong, X.-H.; Sun, X.; Jiang, G.-J.; Chen, A.F.; Xie, H.-H. Dietary intake of sugar substitutes aggravates cerebral ischemic injury and impairs endothelial progenitor cells in mice. Stroke 2015, 46, 1714–1718. [Google Scholar] [CrossRef] [PubMed]
- Alamri, H.S.; Akiel, M.A.; Alghassab, T.S.; Alfhili, M.A.; Alrfaei, B.M.; Aljumaa, M.; Barhoumi, T. Erythritol modulates the polarization of macrophages: Potential role of tumor necrosis factor-α and Akt pathway. J. Food Biochem. 2022, 46, e13960. [Google Scholar] [CrossRef]
- Boesten, D.M.; Berger, A.; de Cock, P.; Dong, H.; Hammock, B.D.; den Hartog, G.J.; Bast, A. Multi-targeted mechanisms underlying the endothelial protective effects of the diabetic-safe sweetener erythritol. PLoS ONE 2013, 8, e65741. [Google Scholar] [CrossRef]
- Den Hartog, G.J.; Boots, A.W.; Adam-Perrot, A.; Brouns, F.; Verkooijen, I.W.; Weseler, A.R.; Haenen, G.R.; Bast, A. Erythritol is a sweet antioxidant. Nutrition 2010, 26, 449–458. [Google Scholar] [CrossRef]
- Bornet, F.; Blayo, A.; Dauchy, F.; Slama, G. Plasma and urine kinetics of erythritol after oral ingestion by healthy humans. Regul. Toxicol. Pharmacol. 1996, 24, S280–S285. [Google Scholar] [CrossRef]
- Mo, X.; Luo, X.; Li, C.; Pan, X.; Zhou, L. Effect of mannitol injection by intravenous catheter on ear vein endothelial cell apoptosis and venous thrombus in rabbits. Eur. Rev. Med. Pharmacol. Sci. 2015, 19, 491–497. [Google Scholar]
- Rovere, A.; Raynald, A.; Berman, J.; San Roman, A.; Garcia, C. Early effect of Crotalus durissus terrificus venom on kidney circulation. Acta Physiol. Lat. Am. 1978, 28, 133–139. [Google Scholar]
- Lina, B.; Bos-Kuijpers, M.; Til, H.; Bär, A. Chronic toxicity and carcinogenicity study of erythritol in rats. Regul. Toxicol. Pharmacol. 1996, 24, S264–S279. [Google Scholar] [CrossRef]
- Til, H.; Modderman, J. Four-week oral toxicity study with erythritol in rats. Regul. Toxicol. Pharmacol. 1996, 24, S214–S220. [Google Scholar] [CrossRef] [PubMed]
- Til, H.; Kuper, C.; Falke, H.; Bär, A. Subchronic oral toxicity studies with erythritol in mice and rats. Regul. Toxicol. Pharmacol. 1996, 24, S221–S231. [Google Scholar] [CrossRef] [PubMed]
- Dean, I.; Jackson, F.; Greenough, R. Chronic (1-year) oral toxicity study of erythritol in dogs. Regul. Toxicol. Pharmacol. 1996, 24, S254–S260. [Google Scholar] [CrossRef] [PubMed]
- Flint, N.; Hamburg, N.M.; Holbrook, M.; G Dorsey, P.; LeLeiko, R.M.; Berger, A.; de Cock, P.; Bosscher, D.; Vita, J.A. Effects of erythritol on endothelial function in patients with type 2 diabetes mellitus: A pilot study. Acta Diabetol. 2014, 51, 513–516. [Google Scholar] [CrossRef]
- Msomi, N.Z.; Erukainure, O.L.; Salau, V.F.; Olofinsan, K.A.; Islam, M.S. Comparative effects of xylitol and erythritol on modulating blood glucose; inducing insulin secretion; reducing dyslipidemia and redox imbalance in a type 2 diabetes rat model. Food Sci. Hum. Wellness 2023, 12, 2052–2060. [Google Scholar] [CrossRef]
- Kawano, R.; Okamura, T.; Hashimoto, Y.; Majima, S.; Senmaru, T.; Ushigome, E.; Asano, M.; Yamazaki, M.; Takakuwa, H.; Sasano, R.; et al. Erythritol Ameliorates Small Intestinal Inflammation Induced by High-Fat Diets and Improves Glucose Tolerance. Int. J. Mol. Sci. 2021, 22, 5558. [Google Scholar] [CrossRef]
- Collaboration, E.R.F. Diabetes mellitus, fasting blood glucose concentration, and risk of vascular disease: A collaborative meta-analysis of 102 prospective studies. Lancet 2010, 375, 2215–2222. [Google Scholar] [CrossRef]
- Sinha, A.; Ning, H.; Ahmad, F.S.; Bancks, M.P.; Carnethon, M.R.; O’Brien, M.J.; Allen, N.B.; Wilkins, J.T.; Lloyd-Jones, D.M.; Khan, S.S. Association of fasting glucose with lifetime risk of incident heart failure: The Lifetime Risk Pooling Project. Cardiovasc. Diabetol. 2021, 20, 66. [Google Scholar] [CrossRef]
- Ahmadizar, F.; Wang, K.; Aribas, E.; Fani, L.; Heshmatollah, A.; Ikram, M.K.; Kavousi, M. Impaired fasting glucose, type 2 diabetes mellitus, and lifetime risk of cardiovascular disease among women and men: The Rotterdam Study. BMJ Open Diabetes Res. Care 2021, 9, e002406. [Google Scholar] [CrossRef] [PubMed]
- Stanhope, K.L. Sugar consumption, metabolic disease and obesity: The state of the controversy. Crit. Rev. Clin. Lab. Sci. 2016, 53, 52–67. [Google Scholar] [CrossRef] [PubMed]
- Wölnerhanssen, B.K.; Drewe, J.; Verbeure, W.; le Roux, C.W.; Dellatorre-Teixeira, L.; Rehfeld, J.F.; Holst, J.J.; Hartmann, B.; Tack, J.; Peterli, R. Gastric emptying of solutions containing the natural sweetener erythritol and effects on gut hormone secretion in humans: A pilot dose-ranging study. Diabetes Obes. Metab. 2021, 23, 1311–1321. [Google Scholar] [CrossRef] [PubMed]
- Teysseire, F.; Bordier, V.; Budzinska, A.; Van Oudenhove, L.; Weltens, N.; Beglinger, C.; Wölnerhanssen, B.K.; Meyer-Gerspach, A.C. Metabolic Effects and Safety Aspects of Acute D-allulose and Erythritol Administration in Healthy Subjects. Nutrients 2023, 15, 458. [Google Scholar] [CrossRef] [PubMed]
- Ishikawa, M.; Miyashita, M.; Kawashima, Y.; Nakamura, T.; Saitou, N.; Modderman, J. Effects of oral administration of erythritol on patients with diabetes. Regul. Toxicol. Pharmacol. 1996, 24, S303–S308. [Google Scholar] [CrossRef] [PubMed]
- Ortiz, S.R.; Heinz, A.; Hiller, K.; Field, M.S. Erythritol synthesis is elevated in response to oxidative stress and regulated by the non-oxidative pentose phosphate pathway in A549 cells. Front. Nutr. 2022, 9, 953056. [Google Scholar] [CrossRef]
- Ortiz, S.R.; Field, M.S. Sucrose intake elevates erythritol in plasma and urine in male mice. J. Nutr. 2023, 153, 1889–1902. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazi, T.A.; Stanhope, K.L. Elevated Erythritol: A Marker of Metabolic Dysregulation or Contributor to the Pathogenesis of Cardiometabolic Disease? Nutrients 2023, 15, 4011. https://doi.org/10.3390/nu15184011
Mazi TA, Stanhope KL. Elevated Erythritol: A Marker of Metabolic Dysregulation or Contributor to the Pathogenesis of Cardiometabolic Disease? Nutrients. 2023; 15(18):4011. https://doi.org/10.3390/nu15184011
Chicago/Turabian StyleMazi, Tagreed A., and Kimber L. Stanhope. 2023. "Elevated Erythritol: A Marker of Metabolic Dysregulation or Contributor to the Pathogenesis of Cardiometabolic Disease?" Nutrients 15, no. 18: 4011. https://doi.org/10.3390/nu15184011
APA StyleMazi, T. A., & Stanhope, K. L. (2023). Elevated Erythritol: A Marker of Metabolic Dysregulation or Contributor to the Pathogenesis of Cardiometabolic Disease? Nutrients, 15(18), 4011. https://doi.org/10.3390/nu15184011