Biomarkers and Functional Assays of Epithelial Barrier Disruption and Gastrointestinal Dysmotility in Critical Illness—A Narrative Review
Abstract
:1. Introduction
2. Epithelial Barrier
2.1. Markers of Cellular Health
2.2. Tight Junction Markers
2.3. Indirect Markers of Epithelial Barrier Health
2.4. Functional Assays of Epithelial Barrier Health
2.5. Markers of Epithelial Barrier Health and Enteral Nutrition
3. Gastrointestinal Motility
3.1. Non-Invasive Functional Assays of Gastrointestinal Motility
3.2. Bedside Assessment of Gastrointestinal Motility
3.3. Biomarkers of Gastrointestinal Motility
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bechard, L.J.; Staffa, S.J.; Zurakowski, D.; Mehta, N.M. Time to achieve delivery of nutrition targets is associated with clinical outcomes in critically ill children. Am. J. Clin. Nutr. 2021, 114, 1859–1867. [Google Scholar] [CrossRef] [PubMed]
- Mehta, N.M.; Skillman, H.E.; Irving, S.Y.; Coss-Bu, J.A.; Vermilyea, S.; Farrington, E.A.; McKeever, L.; Hall, A.M.; Goday, P.S.; Braunschweig, C. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Pediatric Critically Ill Patient: Society of Critical Care Medicine and American Society for Parenteral and Enteral Nutrition. Pediatr. Crit. Care Med. 2017, 18, 675–715. [Google Scholar] [CrossRef] [PubMed]
- Fivez, T.; Kerklaan, D.; Mesotten, D.; Verbruggen, S.; Wouters, P.J.; Vanhorebeek, I.; Debaveye, Y.; Vlasselaers, D.; Desmet, L.; Casaer, M.P.; et al. Early versus Late Parenteral Nutrition in Critically Ill Children. N. Engl. J. Med. 2016, 374, 1111–1122. [Google Scholar] [CrossRef] [PubMed]
- Otani, S.; Coopersmith, C.M. Gut integrity in critical illness. J. Intensive Care 2019, 7, 17. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.E.; Douglas, K.; Nurko, S.; Mehta, N.M. Gastric Dysmotility in Critically Ill Children: Pathophysiology, Diagnosis, and Management. Pediatr. Crit. Care Med. 2015, 16, 828–836. [Google Scholar] [CrossRef]
- Evan, D.C.; Martindale, R.G. Intestinal Dysmotility of Critical Illness. In Diet and Nutrition in Critical Care; Rajendram, R.P.V., Patel, V.B., Eds.; Springer: New York, NY, USA, 2015; pp. 1035–1047. [Google Scholar]
- Martinez, E.E.; Fasano, A.; Mehta, N.M. Gastrointestinal Function in critical illness—A complex interplay between the nervous and the enteroendocrine systems. Pediatr. Med. 2020, 3, 23. [Google Scholar] [CrossRef]
- Martinez, E.E.; Pereira, L.M.; Gura, K.; Stenquist, N.; Ariagno, K.; Nurko, S.; Mehta, N.M. Gastric Emptying in Critically Ill Children. J. Parenter. Enter. Nutr. 2017, 41, 1100–1109. [Google Scholar] [CrossRef]
- Eveleens, R.D.; Joosten, K.F.M.; de Koning, B.A.E.; Hulst, J.M.; Verbruggen, S. Definitions, predictors and outcomes of feeding intolerance in critically ill children: A systematic review. Clin. Nutr. 2020, 39, 685–693. [Google Scholar] [CrossRef] [PubMed]
- Typpo, K.V.; Larmonier, C.B.; Deschenes, J.; Redford, D.; Kiela, P.R.; Ghishan, F.K. Clinical characteristics associated with postoperative intestinal epithelial barrier dysfunction in children with congenital heart disease. Pediatr. Crit. Care Med. 2015, 16, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Odenwald, M.A.; Turner, J.R. The intestinal epithelial barrier: A therapeutic target? Nat. Rev. Gastroenterol. Hepatol. 2017, 14, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Chawla, L.S.; Fink, M.; Goldstein, S.L.; Opal, S.; Gomez, A.; Murray, P.; Gomez, H.; Kellum, J.A. The Epithelium as a Target in Sepsis. Shock 2016, 45, 249–258. [Google Scholar] [CrossRef] [PubMed]
- Pathan, N.; Burmester, M.; Adamovic, T.; Berk, M.; Ng, K.W.; Betts, H.; Macrae, D.; Waddell, S.; Paul-Clark, M.; Nuamah, R.; et al. Intestinal injury and endotoxemia in children undergoing surgery for congenital heart disease. Am. J. Resp. Crit. Care Med. 2011, 184, 1261–1269. [Google Scholar] [CrossRef] [PubMed]
- Crenn, P.; Messing, B.; Cynober, L. Citrulline as a biomarker of intestinal failure due to enterocyte mass reduction. Clin. Nutr. 2008, 27, 328–339. [Google Scholar] [CrossRef]
- Sun, D.L.; Cen, Y.Y.; Li, S.M.; Li, W.M.; Lu, Q.P.; Xu, P.Y. Accuracy of the serum intestinal fatty-acid-binding protein for diagnosis of acute intestinal ischemia: A meta-analysis. Sci. Rep. 2016, 6, 34371. [Google Scholar] [CrossRef]
- Coufal, S.; Kokesova, A.; Tlaskalova-Hogenova, H.; Snajdauf, J.; Rygl, M.; Kverka, M. Urinary Intestinal Fatty Acid-Binding Protein Can Distinguish Necrotizing Enterocolitis from Sepsis in Early Stage of the Disease. J. Immunol. Res. 2016, 2016, 5727312. [Google Scholar] [CrossRef]
- Piton, G.; Belon, F.; Cypriani, B.; Regnard, J.; Puyraveau, M.; Manzon, C.; Navellou, J.C.; Capellier, G. Enterocyte damage in critically ill patients is associated with shock condition and 28-day mortality. Crit. Care Med. 2013, 41, 2169–2176. [Google Scholar] [CrossRef]
- Donmez-Altuntas, H.; Sahin Ergul, S.; Altin-Celik, P.; Bulut, K.; Eciroglu, H.; Uzen, R.; Sahin, G.G.; Ozer, N.T.; Temel, S.; Arikan, T.B.; et al. Gut barrier protein levels in serial blood samples from critically ill trauma patients during and after intensive care unit stay. Eur. J. Trauma Emerg. Surg. 2023. [Google Scholar] [CrossRef] [PubMed]
- Yokoyama, H.; Sekino, M.; Funaoka, H.; Sato, S.; Araki, H.; Egashira, T.; Yano, R.; Matsumoto, S.; Ichinomiya, T.; Higashijima, U.; et al. Association between enterocyte injury and fluid balance in patients with septic shock: A post hoc exploratory analysis of a prospective observational study. BMC Anesthesiol. 2021, 21, 293. [Google Scholar] [CrossRef]
- Greis, C.; Rasuly, Z.; Janosi, R.A.; Kordelas, L.; Beelen, D.W.; Liebregts, T. Intestinal T lymphocyte homing is associated with gastric emptying and epithelial barrier function in critically ill: A prospective observational study. Crit. Care 2017, 21, 70. [Google Scholar] [CrossRef]
- Lu, Z.; Ding, L.; Lu, Q.; Chen, Y.H. Claudins in intestines: Distribution and functional significance in health and diseases. Tissue Barriers 2013, 1, e24978. [Google Scholar] [CrossRef]
- Vermette, D.; Hu, P.; Canarie, M.F.; Funaro, M.; Glover, J.; Pierce, R.W. Tight junction structure, function, and assessment in the critically ill: A systematic review. Intensive Care Med. Exp. 2018, 6, 37. [Google Scholar] [CrossRef] [PubMed]
- Fasano, A. Zonulin and its regulation of intestinal barrier function: The biological door to inflammation, autoimmunity, and cancer. Physiol. Rev. 2011, 91, 151–175. [Google Scholar] [CrossRef]
- Klaus, D.A.; Motal, M.C.; Burger-Klepp, U.; Marschalek, C.; Schmidt, E.M.; Lebherz-Eichinger, D.; Krenn, C.G.; Roth, G.A. Increased plasma zonulin in patients with sepsis. Biochem. Med. 2013, 23, 107–111. [Google Scholar] [CrossRef]
- Martinez, E.E.; Zurakowski, D.; Pereira, L.; Freire, R.; Emans, J.B.; Nurko, S.; Duggan, C.P.; Fasano, A.; Mehta, N.M. Interleukin-10 and Zonulin Are Associated With Postoperative Delayed Gastric Emptying in Critically Ill Surgical Pediatric Patients: A Prospective Pilot Study. J. Parenter. Enter. Nutr. 2020, 44, 1407–1416. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.E.; Lan, J.; Konno, T.; Miranda-Ribera, A.; Fiorentino, M.; Mehta, N.M.; Fasano, A. Novel role of zonulin in the pathophysiology of gastro-duodenal transit: A clinical and translational study. Sci. Rep. 2021, 11, 22462. [Google Scholar] [CrossRef]
- Fukui, H. Endotoxin and other microbial translocation markers in the blood—A clue to understand leaky gut syndrome. Cell. Mol. Med. 2016, 2, 14. [Google Scholar] [CrossRef]
- Ziegler, T.R.; Luo, M.; Estívariz, C.F.; Moore, I.I.I.D.A.; Sitaraman, S.V.; Hao, L.; Bazargan, N.; Klapproth, J.M.; Tian, J.; Galloway, J.R.; et al. Detectable serum flagellin and lipopolysaccharide and upregulated anti-flagellin and lipopolysaccharide immunoglobulins in human short bowel syndrome. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2008, 294, R402–R410. [Google Scholar] [CrossRef] [PubMed]
- Giron, L.B.; Dweep, H.; Yin, X.; Wang, H.; Damra, M.; Goldman, A.R.; Gorman, N.; Palmer, C.S.; Tang, H.Y.; Shaikh, M.W.; et al. Plasma Markers of Disrupted Gut Permeability in Severe COVID-19 Patients. Front. Immunol. 2021, 12, 686240. [Google Scholar] [CrossRef]
- Yonker, L.M.; Gilboa, T.; Ogata, A.F.; Senussi, Y.; Lazarovits, R.; Boribong, B.P.; Bartsch, Y.C.; Loiselle, M.; Rivas, M.N.; Porritt, R.A.; et al. Multisystem inflammatory syndrome in children is driven by zonulin-dependent loss of gut mucosal barrier. J. Clin. Investig. 2021, 131, e149633. [Google Scholar] [CrossRef] [PubMed]
- Harris, C.E.; Griffiths, R.D.; Freestone, N.; Billington, D.; Atherton, S.T.; Macmillan, R.R. Intestinal permeability in the critically ill. Intensive Care Med. 1992, 18, 38–41. [Google Scholar] [CrossRef]
- Doig, C.J.; Sutherland, L.R.; Sandham, J.D.; Fick, G.H.; Verhoef, M.; Meddings, J.B. Increased intestinal permeability is associated with the development of multiple organ dysfunction syndrome in critically ill ICU patients. Am. J. Respir. Crit. Care Med. 1998, 158, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Musa, M.A.; Kabir, M.; Hossain, M.I.; Ahmed, E.; Siddique, A.; Rashid, H.; Mahfuz, M.; Mondal, D.; Ahmed, T.; Petri, W.A.; et al. Measurement of intestinal permeability using lactulose and mannitol with conventional five hours and shortened two hours urine collection by two different methods: HPAE-PAD and LC-MSMS. PLoS ONE 2019, 14, e0220397. [Google Scholar] [CrossRef] [PubMed]
- Kompan, L.; Kremzar, B.; Gadzijev, E.; Prosek, M. Effects of early enteral nutrition on intestinal permeability and the development of multiple organ failure after multiple injury. Intensive Care Med. 1999, 25, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Padar, M.; Starkopf, J.; Starkopf, L.; Forbes, A.; Hiesmayr, M.; Jakob, S.M.; Rooijackers, O.; Wernerman, J.; Ojavee, S.E.; Blaser, A.R. Enteral nutrition and dynamics of citrulline and intestinal fatty acid-binding protein in adult ICU patients. Clin. Nutr. ESPEN 2021, 45, 322–332. [Google Scholar] [CrossRef]
- Balihar, K.; Kotyza, J.; Zdrhova, L.; Kozeluhova, J.; Krcma, M.; Matejovic, M. Characterization of esophageal motor activity, gastroesophageal reflux, and evaluation of prokinetic effectiveness in mechanically ventilated critically ill patients: A high-resolution impedance manometry study. Crit. Care 2021, 25, 54. [Google Scholar] [CrossRef]
- Nguyen, N.Q.; Bryant, L.K.; Burgstad, C.M.; Chapman, M.; Deane, A.; Bellon, M.; Lange, K.; Bartholomeuz, D.; Horowitz, M.; Holloway, R.H.; et al. Gastric emptying measurement of liquid nutrients using the (13)C-octanoate breath test in critically ill patients: A comparison with scintigraphy. Intensive Care Med. 2013, 39, 1238–1246. [Google Scholar] [CrossRef]
- Mancilla Asencio, C.; Galvez-Arevalo, L.R.; Tobar Almonacid, E.; Landskron-Ramos, G.; Madrid-Silva, A.M. Evaluation of gastric motility through surface electrogastrography in critically ill septic patients. Comparison of metoclopramide and domperidone effects: A pilot randomized clinical trial. Rev. Gastroenterol. Mex. 2019, 84, 149–157. [Google Scholar] [CrossRef]
- Carson, D.A.; O’Grady, G.; Du, P.; Gharibans, A.A.; Andrews, C.N. Body surface mapping of the stomach: New directions for clinically evaluating gastric electrical activity. Neurogastroenterol. Motil. 2021, 33, e14048. [Google Scholar] [CrossRef]
- Valla, F.V.; Tume, L.N.; Jotterand Chaparro, C.; Arnold, P.; Alrayashi, W.; Morice, C.; Nabialek, T.; Rouchaud, A.; Cercueil, E.; Bouvet, L. Gastric Point-of-Care Ultrasound in Acutely and Critically Ill Children (POCUS-ped): A Scoping Review. Front. Pediatr. 2022, 10, 921863. [Google Scholar] [CrossRef]
- Valla, F.V.; Cercueil, E.; Morice, C.; Tume, L.N.; Bouvet, L. Point-of-Care Gastric Ultrasound Confirms the Inaccuracy of Gastric Residual Volume Measurement by Aspiration in Critically Ill Children: GastriPed Study. Front. Pediatr. 2022, 10, 903944. [Google Scholar] [CrossRef]
- Schmitz, A.; Schmidt, A.R.; Buehler, P.K.; Schraner, T.; Frühauf, M.; Weiss, M.; Klaghofer, R.; Kellenberger, C.J. Gastric ultrasound as a preoperative bedside test for residual gastric contents volume in children. Paediatr. Anaesth. 2016, 26, 1157–1164. [Google Scholar] [CrossRef]
- Gao, L.; Li, S.; Li, H.; Guo, Q.; Yan, J.; Shi, Q. Effectiveness of the improved B-ultrasound method for measuring the antral section to guide enteral nutrition in patients with sepsis in a randomized controlled trial. Asia Pac. J. Clin. Nutr. 2021, 30, 224–230. [Google Scholar]
- Liu, Y.; Gao, Y.K.; Yao, L.; Li, L. Modified B-ultrasound method for measurement of antral section only to assess gastric function and guide enteral nutrition in critically ill patients. World J. Gastroenterol. 2017, 23, 5229–5236. [Google Scholar] [CrossRef]
- Typpo, K.V.; Irving, S.Y.; Prince, J.M.; Pathan, N.; Brown, A.M.; Pediatric Organ Dysfunction Information Update Mandate (PODIUM) Collaborative. Gastrointestinal Dysfunction Criteria in Critically Ill Children: The PODIUM Consensus Conference. Pediatrics 2022, 149, S53–S58. [Google Scholar] [CrossRef]
- Tume, L.N.; Bickerdike, A.; Latten, L.; Davies, S.; Lefèvre, M.H.; Nicolas, G.W.; Valla, F.V. Routine gastric residual volume measurement and energy target achievement in the PICU: A comparison study. Eur. J. Pediatr. 2017, 176, 1637–1644. [Google Scholar] [CrossRef]
- Deane, A.M.; Ali Abdelhamid, Y.; Plummer, M.P.; Fetterplace, K.; Moore, C.; Reintam Blaser, A. Are Classic Bedside Exam Findings Required to Initiate Enteral Nutrition in Critically Ill Patients: Emphasis on Bowel Sounds and Abdominal Distension. Nutr. Clin. Pract. 2021, 36, 67–75. [Google Scholar] [CrossRef] [PubMed]
- Ogawa, M.; Namikawa, T.; Oki, T.; Munekage, M.; Maeda, H.; Kitagawa, H.; Dabanaka, K.; Sugimoto, T.; Kobayashi, M.; Sakata, O.; et al. Evaluation of Perioperative Intestinal Motility Using a Newly Developed Real-Time Monitoring System During Surgery. World J. Surg. 2021, 45, 451–458. [Google Scholar] [CrossRef] [PubMed]
- Goto, J.; Matsuda, K.; Harii, N.; Moriguchi, T.; Yanagisawa, M.; Sakata, O. Usefulness of a real-time bowel sound analysis system in patients with severe sepsis (pilot study). J. Artif. Organs 2015, 18, 86–91. [Google Scholar] [CrossRef] [PubMed]
- Ljungqvist, O.; Scott, M.; Fearon, K.C. Enhanced Recovery After Surgery: A Review. JAMA Surg. 2017, 152, 292–298. [Google Scholar] [CrossRef]
- Reintam Blaser, A.; Starkopf, L.; Deane, A.M.; Poeze, M.; Starkopf, J. Comparison of different definitions of feeding intolerance: A retrospective observational study. Clin. Nutr. 2015, 34, 956–961. [Google Scholar] [CrossRef]
- Blaser, A.R.; Malbrain, M.L.N.G.; Starkopf, J.; Fruhwald, S.; Jakob, S.M.; De Waele, J.; Braun, J.-P.; Poeze, M.; Spies, C. Gastrointestinal function in intensive care patients: Terminology, definitions and management. Recommendations of the ESICM Working Group on Abdominal Problems. Intensive Care Med. 2012, 38, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.; Li, Y.; Ding, L.; Fu, Y.; Dong, X.; Li, H. Prevalence and outcome of acute gastrointestinal injury in critically ill patients: A systematic review and meta-analysis. Medicine 2018, 97, e12970. [Google Scholar] [CrossRef]
- Dhochak, N.; Singh, A.; Malik, R.; Jat, K.R.; Sankar, J.; Makharia, G.; Kabra, S.K.; Lodha, R. Acute gastrointestinal injury in critically ill children: Impact on clinical outcome. J. Paediatr. Child Health 2022, 58, 649–654. [Google Scholar] [CrossRef]
- Blaser, A.R.; Padar, M.; Mändul, M.; Elke, G.; Engel, C.; Fischer, K.; Giabicani, M.; Gold, T.; Hess, B.; Hiesmayr, M.; et al. Development of the Gastrointestinal Dysfunction Score (GIDS) for critically ill patients—A prospective multicenter observational study (iSOFA study). Clin. Nutr. 2021, 40, 4932–4940. [Google Scholar] [CrossRef]
- Onuk, S.; Ozer, N.T.; Ozel, M.; Sipahioglu, H.; Kahriman, G.; Baskol, G.; Temel, S.; Gundogan, K.; Akin, A. Gastric ultrasound, citrulline, and intestinal fatty acid-binding protein as markers of gastrointestinal dysfunction in critically ill patients: A pilot prospective cohort study. J. Parenter. Enter. Nutr. 2023, 47, 429–436. [Google Scholar] [CrossRef] [PubMed]
- McDonald, D.; Ackermann, G.; Khailova, L.; Baird, C.; Heyland, D.; Kozar, R.; Lemieux, M.; Derenski, K.; King, J.; Vis-Kampen, C.; et al. Extreme Dysbiosis of the Microbiome in Critical Illness. mSphere 2016, 1, e00199-16. [Google Scholar] [CrossRef] [PubMed]
- Burmeister, D.M.; Johnson, T.R.B.; Lai, Z.; Scroggins, S.R.; DeRosa, M.C.; Jonas, R.B.; Zhu, C.B.; Scherer, E.; Stewart, R.M.M.; Schwacha, M.G.; et al. The gut microbiome distinguishes mortality in trauma patients upon admission to the emergency department. J. Trauma Acute Care Surg. 2020, 88, 579–587. [Google Scholar] [CrossRef] [PubMed]
- Rogers, M.B.; Simon, D.; Firek, B.; Silfies, L.; Fabio, A.; Bell, M.J.; Yeh, A.; Azar, J.; Cheek, R.; Kochanek, P.M.; et al. Temporal and Spatial Changes in the Microbiome Following Pediatric Severe Traumatic Brain Injury. Pediatr. Crit. Care Med. 2022, 23, 425–434. [Google Scholar] [CrossRef]
- Weiss, S.L.M.; Bittinger, K.; Lee, J.-J.; Friedman, E.S.; Mattei, L.M.; Graham, K.B.; Zhang, D.B.; Bush, J.R.; Balamuth, F.M.; McGowan, F.X.J.; et al. Decreased Intestinal Microbiome Diversity in Pediatric Sepsis: A Conceptual Framework for Intestinal Dysbiosis to Influence Immunometabolic Function. Crit. Care Explor. 2021, 3, e0360. [Google Scholar] [CrossRef]
- Wijeyesekera, A.; Wagner, J.; De Goffau, M.; Thurston, S.; Sabino, A.R.; Zaher, S.; White, D.; Ridout, J.; Peters, M.J.; Ramnarayan, P.; et al. Multi-Compartment Profiling of Bacterial and Host Metabolites Identifies Intestinal Dysbiosis and Its Functional Consequences in the Critically Ill Child. Crit. Care Med. 2019, 47, e727–e734. [Google Scholar] [CrossRef]
- Bo, L.; Li, J.; Tao, T.; Bai, Y.; Ye, X.; Hotchkiss, R.S.; Kollef, M.H.; Crooks, N.H.; Deng, X. Probiotics for preventing ventilator-associated pneumonia. Cochrane Database Syst. Rev. 2014, 10, CD009066. [Google Scholar] [CrossRef] [PubMed]
- David, L.A.; Maurice, C.F.; Carmody, R.N.; Gootenberg, D.B.; Button, J.E.; Wolfe, B.E.; Ling, A.V.; Devlin, A.S.; Varma, Y.; Fischbach, M.A.; et al. Diet rapidly and reproducibly alters the human gut microbiome. Nature 2014, 505, 559–563. [Google Scholar] [CrossRef]
- Fan, L.; Lee, J.H. Enteral feeding and the microbiome in critically ill children: A narrative review. Transl. Pediatr. 2021, 10, 2778–2791. [Google Scholar] [CrossRef] [PubMed]
- Martinez, E.E.; Panciotti, C.; Pereira, L.M.; Kellogg, M.D.; Stylopoulos, N.; Mehta, N.M. Gastrointestinal Hormone Profiles Associated With Enteral Nutrition Tolerance and Gastric Emptying in Pediatric Critical Illness: A Pilot Study. J. Parenter. Enter. Nutr. 2020, 44, 472–480. [Google Scholar] [CrossRef] [PubMed]
Marker | Physiologic Function | Expected Pathophysiologic Finding * |
---|---|---|
Cellular Health | ||
Citrulline | Amino acid produced by enterocytes, not integrated into proteins | Epithelial barrier atrophy would be associated with low levels |
Intestinal Fatty Acid Binding Protein | Enterocyte intracellular protein that participates in lipid metabolism | Epithelial barrier injury and associated cell death would be associated with high levels |
Tight junction proteins | ||
Claudins | Family of transmembrane proteins; pore- or barrier-forming; present throughout multiple epithelial barriers, some are specific to the intestine | Increase or decrease in levels could be present depending on which claudin is being upregulated |
Junctional Adhesion Molecules | Transmembrane protein | Loss of epithelial barrier integrity would be associated with low levels |
Zonula occludens | Scaffolding protein | Loss of epithelial barrier integrity would be associated with low levels |
Occludin | Transmembrane protein present in multiple epithelial/endothelial barriers | Loss of epithelial barrier integrity would be associated with low levels |
Zonulin | Dynamic scaffolding protein that triggers phosphorylation of occludin and its disassembly from the tight junction apparatus | Loss of epithelial barrier would be associated with increased levels |
Indirect markers | ||
Lipopolysaccharide (LPS) | Outer membrane component of gram-negative bacteria | Loss of epithelial barrier integrity would be associated with detection in circulation |
LPS-Binding Protein | Acute phase reactant, LPS scavenging protein | Increased in setting of exposure to LPS |
Soluble CD14 | Soluble glycoprotein serves as co-receptor for LPS | Increased in setting of exposure to LPS |
Flagellin | Component of bacterial flagella | Loss of epithelial barrier integrity would be associated with detection |
Score | Definition | Potential Clinical Signs and Symptoms |
---|---|---|
0 | No symptoms/No injury | - |
1 | Self-limiting or transient symptoms from known cause | Post-operative nausea and vomiting, GI dysmotility in septic shock |
2 | Symptoms requiring treatment or Gl dysfunction impeding nutrition but not affecting the patient systemically | Inability to advance nutrition past “trophic” volume, ileus |
3 | Persistent severe symptoms or Gl dysfunction not responsive to therapies and/or with systemic symptoms | Evolving intra-abdominal hypertension, persistent enteral nutrition intolerance despite treatment, evolving multiorgan dysfunction syndrome |
4 | Life-threatening symptoms | Bowel ischemia with necrosis, GI bleed with hemorrhagic shock, abdominal compartment syndrome requiring surgical intervention |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martinez, J.; Rodriguez Hovnanian, K.M.; Martinez, E.E. Biomarkers and Functional Assays of Epithelial Barrier Disruption and Gastrointestinal Dysmotility in Critical Illness—A Narrative Review. Nutrients 2023, 15, 4052. https://doi.org/10.3390/nu15184052
Martinez J, Rodriguez Hovnanian KM, Martinez EE. Biomarkers and Functional Assays of Epithelial Barrier Disruption and Gastrointestinal Dysmotility in Critical Illness—A Narrative Review. Nutrients. 2023; 15(18):4052. https://doi.org/10.3390/nu15184052
Chicago/Turabian StyleMartinez, Julianna, K. Marco Rodriguez Hovnanian, and Enid E. Martinez. 2023. "Biomarkers and Functional Assays of Epithelial Barrier Disruption and Gastrointestinal Dysmotility in Critical Illness—A Narrative Review" Nutrients 15, no. 18: 4052. https://doi.org/10.3390/nu15184052
APA StyleMartinez, J., Rodriguez Hovnanian, K. M., & Martinez, E. E. (2023). Biomarkers and Functional Assays of Epithelial Barrier Disruption and Gastrointestinal Dysmotility in Critical Illness—A Narrative Review. Nutrients, 15(18), 4052. https://doi.org/10.3390/nu15184052