Associations of Parameters of the Tryptophan–Kynurenine Pathway with Cardiovascular Risk Factors in Hypertensive Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Participants
2.3. Measurements
2.4. Statistical Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khan, M.A.; Hashim, M.J.; Mustafa, H.; Baniyas, M.Y.; Al Suwaidi, S.K.B.M.; AlKatheeri, R.; Alblooshi, F.M.K.; Almatrooshi, M.E.A.H.; Alzaabi, M.E.H.; Al Darmaki, R.S.; et al. Global Epidemiology of Ischemic Heart Disease: Results from the Global Burden of Disease Study. Cureus 2020, 12, e9349. [Google Scholar] [CrossRef] [PubMed]
- Mangge, H.; Stelzer, I.; Reininghaus, E.Z.; Weghuber, D.; Postolache, T.T.; Fuchs, D. Disturbed Tryptophan Metabolism in Cardiovascular Disease. Curr. Med. Chem. 2014, 21, 1931–1937. [Google Scholar] [CrossRef] [PubMed]
- Song, P.; Ramprasath, T.; Wang, H.; Zou, M.H. Abnormal Kynurenine Pathway of Tryptophan Catabolism in Cardiovascular Diseases. Cell Mol. Life Sci. 2017, 74, 2899–2916. [Google Scholar] [CrossRef]
- Moffett, J.R.; Namboodiri, M.A. Tryptophan and the Immune Response. Immunol. Cell Biol. 2003, 81, 247–265. [Google Scholar]
- Strasser, B.; Gostner, J.M.; Fuchs, D. Mood, Food, and Cognition: Role of Tryptophan and Serotonin. Curr. Opin. Clin. Nutr. Metab. Care 2016, 19, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Nongonierma, A.B.; FitzGerald, R.J. Milk Proteins as a Source of Tryptophan-Containing Bioactive Peptides. Food Funct. 2015, 6, 2115–2127. [Google Scholar] [CrossRef] [Green Version]
- Lindseth, G.; Helland, B.; Caspers, J. The Effects of Dietary Tryptophan on Affective Disorders. Arch. Psychiatr. Nurs. 2015, 29, 102–107. [Google Scholar] [CrossRef] [Green Version]
- Agus, A.; Planchais, J.; Sokol, H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell. Host Microbe 2018, 23, 716–724. [Google Scholar] [CrossRef] [Green Version]
- Polyzos, K.A.; Ketelhuth, D.F. The Role of the Kynurenine Pathway of Tryptophan Metabolism in Cardiovascular Disease. an Emerging Field. Hamostaseologie 2015, 35, 128–136. [Google Scholar] [CrossRef]
- Gaspar, R.; Halmi, D.; Demjan, V.; Berkecz, R.; Pipicz, M.; Csont, T. Kynurenine Pathway Metabolites as Potential Clinical Biomarkers in Coronary Artery Disease. Front. Immunol. 2022, 12, 768560. [Google Scholar] [CrossRef]
- Lob, S.; Konigsrainer, A.; Zieker, D.; Brücher, B.L.; Rammensee, H.; Opelz, G.; Terness, P. IDO1 and IDO2 are Expressed in Human Tumors: Levo- but Not Dextro-1-Methyl Tryptophan Inhibits Tryptophan Catabolism. Cancer Immunol. Immunother. 2009, 58, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Mellor, A.L.; Munn, D.H. Tryptophan Catabolism and Regulation of Adaptive Immunity. J. Immunol. 2003, 170, 5809–5813. [Google Scholar] [CrossRef] [Green Version]
- Eussen, S.J.; Ueland, P.M.; Vollset, S.E.; Nygard, O.; Midttun, O.; Sulo, G.; Ulvik, A.; Meyer, K.; Pedersen, E.R.; Tell, G.S. Kynurenines as Predictors of Acute Coronary Events in the Hordaland Health Study. Int. J. Cardiol. 2015, 189, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Liu, H.; McKenzie, G.; Witting, P.K.; Stasch, J.P.; Hahn, M.; Changsirivathanathamrong, D.; Wu, B.J.; Ball, H.J.; Thomas, S.R.; et al. Kynurenine is an Endothelium-Derived Relaxing Factor Produced during Inflammation. Nat. Med. 2010, 16, 279–285. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pedersen, E.R.; Tuseth, N.; Eussen, S.J.; Ueland, P.M.; Strand, E.; Svingen, G.F.; Midttun, O.; Meyer, K.; Mellgren, G.; Ulvik, A.; et al. Associations of Plasma Kynurenines with Risk of Acute Myocardial Infarction in Patients with Stable Angina Pectoris. Arterioscler. Thromb. Vasc. Biol. 2015, 35, 455–462. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abedi, S.; Vessal, M.; Asadian, F.; Takhshid, M.A. Association of Serum kynurenine/tryptophan Ratio with Poor Glycemic Control in Patients with type2 Diabetes. J. Diabetes Metab. Disord. 2021, 20, 1521–1527. [Google Scholar] [CrossRef]
- Favennec, M.; Hennart, B.; Caiazzo, R.; Leloire, A.; Yengo, L.; Verbanck, M.; Arredouani, A.; Marre, M.; Pigeyre, M.; Bessede, A.; et al. The Kynurenine Pathway is Activated in Human Obesity and Shifted Toward Kynurenine Monooxygenase Activation. Obesity 2015, 23, 2066–2074. [Google Scholar] [CrossRef]
- Rebnord, E.W.; Strand, E.; Midttun, O.; Svingen, G.F.T.; Christensen, M.H.E.; Ueland, P.M.; Mellgren, G.; Njolstad, P.R.; Tell, G.S.; Nygard, O.K.; et al. The Kynurenine:Tryptophan Ratio as a Predictor of Incident Type 2 Diabetes Mellitus in Individuals with Coronary Artery Disease. Diabetologia 2017, 60, 1712–1721. [Google Scholar] [CrossRef] [Green Version]
- GBD 2017 Risk Factor Collaborators. Global, Regional, and National Comparative Risk Assessment of 84 Behavioural, Environmental and Occupational, and Metabolic Risks Or Clusters of Risks for 195 Countries and Territories, 1990–2017: A Systematic Analysis for the Global Burden of Disease Study 2017. Lancet 2018, 392, 1923–1994. [Google Scholar]
- Pilz, S.; Gaksch, M.; Kienreich, K.; Grubler, M.; Verheyen, N.; Fahrleitner-Pammer, A.; Treiber, G.; Drechsler, C.; Hartaigh, B.O.; Obermayer-Pietsch, B.; et al. Effects of Vitamin D on Blood Pressure and Cardiovascular Risk Factors: A Randomized Controlled Trial. Hypertension 2015, 65, 1195–1201. [Google Scholar] [CrossRef]
- Moher, D.; Hopewell, S.; Schulz, K.F.; Montori, V.; Gotzsche, P.C.; Devereaux, P.J.; Elbourne, D.; Egger, M.; Altman, D.G. CONSORT 2010 Explanation and Elaboration: Updated Guidelines for Reporting Parallel Group Randomised Trials. BMJ 2010, 340, c869. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Bohm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar] [PubMed]
- O′Brien, E.; Parati, G.; Stergiou, G. Ambulatory Blood Pressure Measurement: What is the International Consensus? Hypertension 2013, 62, 988–994. [Google Scholar] [CrossRef] [PubMed]
- Baumgart, P.; Kamp, J. Accuracy of the SpaceLabs Medical 90217 ambulatory blood pressure monitor. Blood Press Monit. 1998, 3, 303–307. [Google Scholar] [PubMed]
- Herve, C.; Beyne, P.; Jamault, H.; Delacoux, E. Determination of Tryptophan and its Kynurenine Pathway Metabolites in Human Serum by High-Performance Liquid Chromatography with Simultaneous Ultraviolet and Fluorimetric Detection. J. Chromatogr. B Biomed. Appl. 1996, 675, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Meinitzer, A.; Tomaschitz, A.; Pilz, S.; Truber, M.; Zechner, G.; Gaksch, M.; Prietl, B.; Treiber, G.; Schwarz, M.; Baranyi, A. Development of a Liquid Chromatography-Mass Spectrometry Method for the Determination of the Neurotoxic Quinolinic Acid in Human Serum. Clin. Chim. Acta 2014, 436, 268–272. [Google Scholar] [CrossRef]
- Changsirivathanathamrong, D.; Wang, Y.; Rajbhandari, D.; Maghzal, G.J.; Mak, W.M.; Woolfe, C.; Duflou, J.; Gebski, V.; dos Remedios, C.G.; Celermajer, D.S.; et al. Tryptophan Metabolism to Kynurenine is a Potential Novel Contributor to Hypotension in Human Sepsis. Crit. Care Med. 2011, 39, 2678–2683. [Google Scholar] [CrossRef]
- Wolowczuk, I.; Hennart, B.; Leloire, A.; Bessede, A.; Soichot, M.; Taront, S.; Caiazzo, R.; Raverdy, V.; Pigeyre, M.; ABOS Consortium; et al. Tryptophan Metabolism Activation by Indoleamine 2,3-Dioxygenase in Adipose Tissue of Obese Women: An Attempt to Maintain Immune Homeostasis and Vascular Tone. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2012, 303, R135–R143. [Google Scholar] [CrossRef] [Green Version]
- Boulet, M.M.; Chevrier, G.; Grenier-Larouche, T.; Pelletier, M.; Nadeau, M.; Scarpa, J.; Prehn, C.; Marette, A.; Adamski, J.; Tchernof, A. Alterations of Plasma Metabolite Profiles Related to Adipose Tissue Distribution and Cardiometabolic Risk. Am. J. Physiol. Endocrinol. Metab. 2015, 309, E736–E7346. [Google Scholar] [CrossRef] [Green Version]
- Oxenkrug, G.F. Increased Plasma Levels of Xanthurenic and Kynurenic Acids in Type 2 Diabetes. Mol. Neurobiol. 2015, 52, 805–810. [Google Scholar] [CrossRef] [Green Version]
- Scarale, M.G.; Mastroianno, M.; Prehn, C.; Copetti, M.; Salvemini, L.; Adamski, J.; De Cosmo, S.; Trischitta, V.; Menzaghi, C. Circulating Metabolites Associate with and Improve the Prediction of all-Cause Mortality in Type 2 Diabetes. Diabetes 2022, 71, 1363–1370. [Google Scholar] [CrossRef] [PubMed]
- Niinisalo, P.; Raitala, A.; Pertovaara, M.; Oja, S.S.; Lehtimaki, T.; Kahonen, M.; Reunanen, A.; Jula, A.; Moilanen, L.; Kesaniemi, Y.A.; et al. Indoleamine 2,3-Dioxygenase Activity Associates with Cardiovascular Risk Factors: The Health 2000 Study. Scand. J. Clin. Lab. Investig. 2008, 68, 767–770. [Google Scholar] [CrossRef] [PubMed]
- Pertovaara, M.; Raitala, A.; Juonala, M.; Lehtimaki, T.; Huhtala, H.; Oja, S.S.; Jokinen, E.; Viikari, J.S.; Raitakari, O.T.; Hurme, M. Indoleamine 2,3-Dioxygenase Enzyme Activity Correlates with Risk Factors for Atherosclerosis: The Cardiovascular Risk in Young Finns Study. Clin. Exp. Immunol. 2007, 148, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Ovchinnikova, O.; Jonsson, A.; Lundberg, A.M.; Berg, M.; Hansson, G.K.; Ketelhuth, D.F. The Tryptophan Metabolite 3-Hydroxyanthranilic Acid Lowers Plasma Lipids and Decreases Atherosclerosis in Hypercholesterolaemic Mice. Eur. Heart J. 2012, 33, 2025–2034. [Google Scholar] [CrossRef]
- Liu, J.J.; Movassat, J.; Portha, B. Emerging Role for Kynurenines in Metabolic Pathologies. Curr. Opin. Clin. Nutr. Metab. Care 2019, 22, 82–90. [Google Scholar] [CrossRef]
- Liu, J.; Bailbe, D.; Raynal, S.; Carbonne, C.; Zhen, D.; Dairou, J.; Gausseres, B.; Armanet, M.; Domet, T.; Pitasi, C.L.; et al. Kynurenine-3-Monooxygenase Expression is Activated in the Pancreatic Endocrine Cells by Diabetes and its Blockade Improves Glucose-Stimulated Insulin Secretion. Biochim. Biophys. Acta Mol. Basis Dis. 2022, 1868, 166509. [Google Scholar] [CrossRef]
- Deac, O.M.; Mills, J.L.; Shane, B.; Midttun, O.; Ueland, P.M.; Brosnan, J.T.; Brosnan, M.E.; Laird, E.; Gibney, E.R.; Fan, R.; et al. Tryptophan Catabolism and Vitamin B-6 Status are Affected by Gender and Lifestyle Factors in Healthy Young Adults. J. Nutr. 2015, 145, 701–707. [Google Scholar] [CrossRef] [Green Version]
- Pertovaara, M.; Heliovaara, M.; Raitala, A.; Oja, S.S.; Knekt, P.; Hurme, M. The Activity of the Immunoregulatory Enzyme Indoleamine 2,3-Dioxygenase is Decreased in Smokers. Clin. Exp. Immunol. 2006, 145, 469–473. [Google Scholar] [CrossRef]
- Naz, S.; Bhat, M.; Stahl, S.; Forsslund, H.; Skold, C.M.; Wheelock, A.M.; Wheelock, C.E. Dysregulation of the Tryptophan Pathway Evidences Gender Differences in COPD. Metabolites 2019, 9, 212. [Google Scholar] [CrossRef] [Green Version]
- Ulvik, A.; Theofylaktopoulou, D.; Midttun, O.; Nygard, O.; Eussen, S.J.; Ueland, P.M. Substrate Product Ratios of Enzymes in the Kynurenine Pathway Measured in Plasma as Indicators of Functional Vitamin B-6 Status. Am. J. Clin. Nutr. 2013, 98, 934–940. [Google Scholar] [CrossRef] [Green Version]
- Oxenkrug, G. Interferon-Gamma-Inducible Inflammation: Contribution to Aging and Aging-Associated Psychiatric Disorders. Aging Dis. 2011, 2, 474–486. [Google Scholar] [PubMed]
- Mazarei, G.; Budac, D.P.; Lu, G.; Adomat, H.; Tomlinson Guns, E.S.; Moller, T.; Leavitt, B.R. Age-Dependent Alterations of the Kynurenine Pathway in the YAC128 Mouse Model of Huntington Disease. J. Neurochem. 2013, 127, 852–867. [Google Scholar] [CrossRef] [PubMed]
- Capuron, L.; Schroecksnadel, S.; Feart, C.; Aubert, A.; Higueret, D.; Barberger-Gateau, P.; Laye, S.; Fuchs, D. Chronic Low-Grade Inflammation in Elderly Persons is Associated with Altered Tryptophan and Tyrosine Metabolism: Role in Neuropsychiatric Symptoms. Biol. Psychiatry 2011, 70, 175–182. [Google Scholar] [CrossRef] [PubMed]
- Theofylaktopoulou, D.; Midttun, O.; Ulvik, A.; Ueland, P.M.; Tell, G.S.; Vollset, S.E.; Nygard, O.; Eussen, S.J. A Community-Based Study on Determinants of Circulating Markers of Cellular Immune Activation and Kynurenines: The Hordaland Health Study. Clin. Exp. Immunol. 2013, 173, 121–130. [Google Scholar] [CrossRef] [PubMed]
Variables | All Study Participants | Women | Men |
---|---|---|---|
Numbers | 490 | 258 | 232 |
Age (years) | 62.8 (55.3–68.7) | 63.0 (56.3–68.3) | 62.6 (53.4–69.1) |
Body mass index (kg/m2) | 28.7 (26.1–32.3) | 28.4 (25.9–32.7) | 29.1 (26.3–31.9) |
Active smoker (%) | 14.9 | 14.8 | 15.1 |
Previous myocardial infarction (%) | 6.2 | 10.8 | 8.4 |
Antihypertensive drugs (n) | 2 (1–3) | 2 (1–3) | 2 (1–3) |
ACE-inhibitor (%) | 34.6 | 33.1 | 36.2 |
AT II blocker (%) | 31.7 | 31.9 | 31.5 |
Thiazide diuretic (%) | 40.5 | 41.6 | 39.2 |
Beta blocker (%) | 49.7 | 49.4 | 50.0 |
Calcium channel blocker (%) | 26.4 | 24.1 | 28.9 |
Variables | All Study Participants | Women | Men |
---|---|---|---|
Office systolic blood pressure (mmHg) | 141.0 (129.0–151.0) | 139.0 (126.5–150.5) | 141.0 (130.0–152.5) |
Office diastolic blood pressure (mmHg) | 85.0 (79.0–92.0) | 84.0 (78.0–90.0) | 86.5 (80.0–95.0) |
24 h systolic blood pressure (mmHg) | 126.1 (118.6–135.7) | 123.2 (116.0–131.4) | 128.9 (121.6–137.9) |
24 h diastolic blood pressure (mmHg) | 75.1 (70.1–82.1) | 73.8 (68.8–79.4) | 76.4 (72.7–84.3) |
Resting heart rate (beats/minute) | 61 (55–69) | 61 (56–69) | 61 (55–69) |
25-hydroxyvitamin D (ng/mL) | 26.7 (20.2–35.5) | 27.0 (20.1–35.3) | 26.6 (20.3–35.7) |
eGFR (mL/min/1.73 m2) | 79.6 ± 17.6 | 78.3 ± 17.7 | 81.2 ± 17.4 |
Diabetes mellitus (%) | 23 | 32.8 | 27.6 |
Fasting glucose (mg/dL) | 97.0 (89.0–115.0) | 95.0 (88.0–108.0) | 99.5 (90.3–131.8) |
HbA1c (mmol/mol) | 5.7 (5.4–6.3) | 5.7 (5.5–6.1) | 5.8 (5.4–6.8) |
HOMA-IR | 1.66 (1.01–3.03) | 1.61 (0.98–2.75) | 1.80 (1.03–3.54) |
Triglycerides (mg/dL) | 110 (75–152) | 99 (73–141) | 116 (77–167) |
Total cholesterol (mg/dL) | 197 (166–225) | 206 (176–233) | 186 (162–215) |
HDL-cholesterol (mg/dL) | 56 (46–69) | 62 (52–75) | 51 (43–62) |
LDL-cholesterol (mg/dL) | 112 (88–142) | 119 (90–146) | 104 (87–136) |
PWV (m/sec) | 8.2 (7.1–9.5) | 7.9 (6.8–9.2) | 8.6 (7.5–9.8) |
CRP (mg/L) | 1.8 (0.8–3.4) | 2.0 (0.9–3.7) | 1.7 (0.8–3.2) |
Variables | All Study Participants | Women | Men |
---|---|---|---|
Kynurenine (µmol/L) | 2.98 (2.63–3.54) | 2.97 (2.64–3.54) | 3.02 (2.62–3.57) |
Kynurenic acid (nmol/L) | 41.71 (34.57–54.01) | 39.50 (33.40–50.98) | 46.80 (35.99–56.94) |
Tryptophan (µmol/L) | 63.61 ± 10.14 | 61.7 ± 9.7 | 65.4 ± 10.3 |
Quinolin Acid (nmol/L) | 434.15 (360.55–565.65) | 431.75 (369.33–562.30) | 437.25 (351.85–574.20) |
Kynurenine/tryptophan ratio | 42.2 (36.4–49.5) | 42.5 (36.9–50.8) | 41.9 (35.9–49.1) |
Quartiles | p-Value | ||||
---|---|---|---|---|---|
Tryptophan quartiles | |||||
1st quartile | 2nd quartile | 3rd quartile | 4th quartile | ||
Number | 120 | 121 | 123 | 125 | |
Tryptophan (µmol/L) | <56.8 | 56.8–62.9 | 63.0–68.8 | >68.8 | |
52.0 (47.9–54.4) | 59.2 (57.8–60.7) | 65.2 (64.1–66.9) | 74.0 (71.1–78.2) | ||
24 h systolic BP (mmHg) | 128.0 (118.7–134.1) | 123.4 (116.1–134.9) | 125.8 (117.2–134.4) | 128.1 (121.5–136.8) | 0.074 |
24 h diastolic BP (mmHg) | 74.4 (70.7–80.9) | 74.9 (69.3–79.1) | 74.9 (69.1–81.8) | 78.8 (72.8–85.1) | 0.005 |
BMI (kg/m2) | 27.7 (25.4–30.6) | 30.0 (26.3–34.0) | 28.4 (26.2–31.4) | 29.3 (26.8–32.4) | 0.014 |
Total cholesterol (mg/dL) | 194 (169–228) | 198 (169–230) | 198 (162–222) | 197 (164–221) | 0.832 |
LDL cholesterol (mg/dL) | 109 (89–145) | 114 (88–142) | 113 (83–143) | 112 (89–137) | 0.897 |
HDL cholesterol (mg/dL) | 59 (52–76) | 61 (48–70) | 55 (45–68) | 53 (43–64) | 0.001 |
Diabetes mellitus (%) | 28.3 | 28.3 | 25.2 | 28.8 | 0.917 |
Active smoker (%) | 11.7 | 10 | 17.9 | 20 | 0.083 |
Kynurenine quartiles | |||||
1st quartile | 2nd quartile | 3rd quartile | 4th quartile | ||
Number | 122 | 123 | 121 | 124 | |
Kynurenine (μmol/L) | <2.24 | 2.24–2.62 | 2.63–3.17 | >3.17 | |
2.00 (1.85–2.13) | 2.44 (2.35–2.53) | 2.88 (2.77–3.04) | 3.64 (3.42–3.92) | ||
24 h systolic BP | 124.8 (117.3–132.3) | 126.7 (119.0–136.0) | 124.4 (117.3–136.4) | 128.1 (120.8–136.7) | 0.447 |
24 h diastolic BP | 76.0 (72.1–83.2) | 76.6 (69.9–83.0) | 74.9 (70.2–79.6) | 74.2 (68.2–81.1) | 0.074 |
BMI (kg/m2) | 27.0 (24.5–31.2) | 28.3 (25.9–30.7) | 28.9 (26.7–32.9) | 30.4 (27.6–34.2) | <0.001 |
Total cholesterol (mg/dL) | 204 (171–230) | 206 (177–234) | 191 (164–223) | 183 (152–218) | 0.052 |
LDL cholesterol | 115 (94–147) | 125 (98–145) | 110 (84–142) | 101 (80–134) | 0.001 |
HDL cholesterol (mg/dL) | 61 (49–76) | 59 (48–72) | 54 (44–67) | 53 (43–62) | <0.001 |
Diabetes mellitus (%) | 21.3 | 23 | 26.4 | 39.5 | 0.006 |
Active smoker (%) | 27 | 10.7 | 15.7 | 6.5 | <0.001 |
Quinolinic acid | |||||
1st quartile | 2nd quartile | 3rd quartile | 4th quartile | ||
Number | 114 | 114 | 115 | 115 | |
Quinolinic acid (nmol/L) | <361 | 361–433 | 434–565 | >565 | |
316 (287–340) | 402 (379–417) | 494 (459–521) | 669 (603–802) | ||
24 h systolic BP | 124.9 (116.9–133.9) | 124.3 (118.5–131.0) | 127.9 (118.1–136.8) | 125.7 (118.8–136.8) | 0.71 |
24 h diastolic BP | 77.3 (72.0–83.9) | 75.5 (71.7–81.5) | 73.9 (69.0–80.9) | 73.5 (68.0–80.7) | 0.004 |
BMI (kg/m2) | 27.7 (24.9–30.9) | 27.6 (25.7–30.6) | 29.4 (26.6–32.7) | 30.6 (27.5–34.2) | <0.001 |
Total cholesterol (mg/dL) | 199 (169–229) | 206 (178–231) | 198 (164–223) | 185 (155–219) | 0.041 |
LDL cholesterol (mg/dL) | 113 (89–141) | 119 (97–148) | 121 (89–142) | 107 (82–138) | 0.064 |
HDL cholesterol (mg/dL) | 58 (50–75) | 60 (48–74) | 56 (45–68) | 51 (40–62) | <0.001 |
Diabetes mellitus (%) | 26.5 | 14.9 | 21.7 | 36.5 | 0.002 |
Active smoker (%) | 24.8 | 17.5 | 9.6 | 5.2 | <0.001 |
Kynurenic acid | |||||
1st quartile | 2nd quartile | 3rd quartile | 4th quartile | ||
Number | 122 | 123 | 122 | 123 | |
Kynurenic acid (nmol/L) | <32.0 | 32.0–40.0 | 40.1–52.2 | >52.2 | |
26.2 (22.6–29.5) | 36.2 (34.2–38.3) | 46.4 (42.8–49.1) | 61.8 (55.4–72.0) | ||
24 h systolic BP | 123.1 (117.6–132.0) | 126.4 (118.0–135.2) | 125.4 (117.9–134.1) | 128.8 (120.7–139.9) | 0.104 |
24 h diastolic BP | 75.5 (70.0–80.5) | 75.0 (70.1–83.0) | 74.9 (69.0–81.8) | 75.1 (70.7–83.0) | 0.695 |
BMI (kg/m2) | 27.0 (24.4–29.8) | 29.4 (25.4–32.6) | 28.7 (26.4–31.7) | 30.3 (27.6–35.2) | <0.001 |
Total cholesterol (mg/dL) | 192 (165–220) | 199 (171–225) | 205 (166–235) | 192 (159–221) | 0.105 |
LDL cholesterol (mg/dL) | 108 (89–143) | 116 (91–139) | 118 (88–150) | 108 (87–137) | 0.057 |
HDL cholesterol (mg/dL) | 58 (48–71) | 56 (47–72) | 57 (47–71) | 54 (44–63) | 0.02 |
Diabetes mellitus (%) | 21.3 | 25.4 | 31.1 | 32.5 | 0.174 |
Active smoker (%) | 23 | 17.2 | 8.2 | 11.4 | 0.007 |
Kynurenine/tryptophan ratio | |||||
1st quartile | 2nd quartile | 3rd quartile | 4th quartile | ||
Number | 122 | 122 | 123 | 123 | |
Kynurenine/tryptophan ratio | <36.4 | 36.4–42.1 | 42.2–49.5 | >49.5 | |
32.6 (30.5–34.8) | 39.8 (38.2–41.0) | 45.6 (44.1–47.4) | 56.9 (52.8–66.3) | ||
24 h systolic BP | 124.5 (117.5–132.9) | 127.2 (119.7–138.0) | 126.3 (118.7–134.1) | 126.7 (118.3–136.5) | 0.575 |
24 h diastolic BP | 77.1 (72.8–83.3) | 75.7 (70.8–83.6) | 75.6 (70.1–80.9) | 72.9 (67.9–78.9) | <0.001 |
BMI (kg/m2) | 27.0 (24.5–30.5) | 29.3 (26.3–32.4) | 28.5 (26.6–31.3) | 30.0 (26.8–34.7) | <0.001 |
Total cholesterol (mg/dL) | 202 (171–224) | 207 (172–232) | 190 (169–227) | 183 (152–221) | 0.002 |
LDL cholesterol (mg/dL) | 115 (94–144) | 125 (97–145) | 104 (88–140) | 106 (75–137) | 0.003 |
HDL cholesterol (mg/dL) | 60 (47–72) | 57 (48–73) | 56 (48–69) | 55 (43–63) | 0.002 |
Diabetes mellitus (%) | 23.8 | 23.1 | 23.6 | 39.8 | 0.006 |
Active smoker (%) | 27.9 | 14 | 13 | 4.9 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Theiler-Schwetz, V.; Trummer, C.; Grübler, M.R.; Keppel, M.H.; Zittermann, A.; Tomaschitz, A.; März, W.; Meinitzer, A.; Pilz, S. Associations of Parameters of the Tryptophan–Kynurenine Pathway with Cardiovascular Risk Factors in Hypertensive Patients. Nutrients 2023, 15, 256. https://doi.org/10.3390/nu15020256
Theiler-Schwetz V, Trummer C, Grübler MR, Keppel MH, Zittermann A, Tomaschitz A, März W, Meinitzer A, Pilz S. Associations of Parameters of the Tryptophan–Kynurenine Pathway with Cardiovascular Risk Factors in Hypertensive Patients. Nutrients. 2023; 15(2):256. https://doi.org/10.3390/nu15020256
Chicago/Turabian StyleTheiler-Schwetz, Verena, Christian Trummer, Martin R. Grübler, Martin H. Keppel, Armin Zittermann, Andreas Tomaschitz, Winfried März, Andreas Meinitzer, and Stefan Pilz. 2023. "Associations of Parameters of the Tryptophan–Kynurenine Pathway with Cardiovascular Risk Factors in Hypertensive Patients" Nutrients 15, no. 2: 256. https://doi.org/10.3390/nu15020256
APA StyleTheiler-Schwetz, V., Trummer, C., Grübler, M. R., Keppel, M. H., Zittermann, A., Tomaschitz, A., März, W., Meinitzer, A., & Pilz, S. (2023). Associations of Parameters of the Tryptophan–Kynurenine Pathway with Cardiovascular Risk Factors in Hypertensive Patients. Nutrients, 15(2), 256. https://doi.org/10.3390/nu15020256