Garcinia dulcis Flower Extract Alters Gut Microbiota and Fecal Metabolomic Profiles of 2K1C Hypertensive Rats
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Induction of Hypertensive Model
2.3. Treatment of GD Flower Extract
2.4. Indirect BP and BW Measurement
2.5. Stool Sample Collection and DNA Extraction
2.6. Metagenomic Sequencing and Bioinformatic Analysis
2.7. Fecal Metabolite Analysis
2.8. Statistical Analysis
3. Results
3.1. Effects of GD Extract on Changes in Body Weight and SBP Levels
3.2. Effects of GD Extract on Alteration of Gut Microbiota
3.3. Taxonomic Structure of the Bacterial Communities
3.4. Effects of GD Extract on Fecal Metabolite Profiles
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
2K1C | 2-kidneys-1 clip |
ASVs | Amplicon sequence variants |
BW | Body weight |
CO | Corn oil |
GD | Garcinia dulcis |
LEfSe | Linear discriminant analysis effect size |
NMDS | Non-metric multidimensional scaling |
PCoA | Principal coordinate analysis |
PERMANOVA | Permutational multivariate analysis of variance |
PD | Phylogenetic diversity |
RVH | Renovascular hypertension |
SBP | Systolic blood pressure |
SCFA | Short chain fatty acid |
SO | Sham operation |
UHPLC | Ultra-high performance liquid chromatography |
References
- Lim, T.K. Garcinia dulcis. In Edible Medicinal and Non-Medicinal Plants: Volume 2, Fruits; Lim, T.K., Ed.; Springer: Dordrecht, The Netherlands, 2012; pp. 35–40. [Google Scholar]
- John, O.D.; Mouatt, P.; Majzoub, M.E.; Thomas, T.; Panchal, S.K.; Brown, L. Physiological and Metabolic Effects of Yellow Mangosteen (Garcinia dulcis) Rind in Rats with Diet-Induced Metabolic Syndrome. Int. J. Mol. Sci. 2019, 21, 272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khamthong, N.; Hutadilok-Towatana, N. Phytoconstituents and Biological Activities of Garcinia dulcis (Clusiaceae): A Review. Nat. Prod. Commun. 2017, 12, 453–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abu Bakar, M.F.; Ahmad, N.E.; Suleiman, M.; Rahmat, A.; Isha, A. Garcinia dulcis Fruit Extract Induced Cytotoxicity and Apoptosis in HepG2 Liver Cancer Cell Line. BioMed Res. Int. 2015, 2015, 916902. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, N.; Gogoi, A.; Neog, B.; Baruah, D.; Singh, K.D. Evaluation of Antioxidant and Hepatoprotective Activity of Fruit Rind Extract of Garcinia dulcis (Roxburgh) Kurz. Pharmacogn. Res. 2017, 9, 266–272. [Google Scholar]
- Thongsepee, N.; Mahabusarakam, W.; Ekarattanawong, S.; Srisawat, U.; Martviset, P.; Suttirak, N.; Hiranyachattada, S. Oral Administration of Garcinia dulcis Flower Extract Lowers Arterial Blood Pressure of 2-kidneys-1-clip Renovascular Hypertensive Rat. Sains Malays. 2022, 51, 847–858. [Google Scholar] [CrossRef]
- Masenga, S.K.; Hamooya, B.; Hangoma, J.; Hayumbu, V.; Ertuglu, L.A.; Ishimwe, J.; Rahman, S.; Saleem, M.; Laffer, C.L.; Elijovich, F.; et al. Recent advances in modulation of cardiovascular diseases by the gut microbiota. J. Hum. Hypertens. 2022, 36, 952–959. [Google Scholar] [CrossRef]
- Senitko, M.; Fenves, A.Z. An Update on Renovascular Hypertension. Curr. Cardiol. Rep. 2005, 7, 405–411. [Google Scholar] [CrossRef]
- Matavelli, L.C.; Huang, J.; Siragy, H.M. Angiotensin AT2 receptor stimulation inhibits early renal inflammation in renovascular hypertension. Hypertension 2011, 57, 308–313. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.K.; Zhao, T.; Ni, M.; Li, D.J.; Tao, X.; Shen, F.M. Downregulation of alpha7 nicotinic acetylcholine receptor in two-kidney one-clip hypertensive rats. BMC Cardiovasc. Disord. 2012, 12, 38. [Google Scholar] [CrossRef] [Green Version]
- Nishi, E.E.; Lopes, N.R.; Gomes, G.N.; Perry, J.C.; Sato, A.Y.S.; Naffah-Mazzacoratti, M.G.; Bergamaschi, C.T.; Campos, R.R. Renal denervation reduces sympathetic overactivation, brain oxidative stress, and renal injury in rats with renovascular hypertension independent of its effects on reducing blood pressure. Hypertens. Res. 2019, 42, 628–640. [Google Scholar] [CrossRef]
- Cuevas, C.A.; Tapia-Rojas, C.; Cespedes, C.; Inestrosa, N.C.; Vio, C.P. beta-Catenin-Dependent Signaling Pathway Contributes to Renal Fibrosis in Hypertensive Rats. BioMed Res. Int. 2015, 2015, 726012. [Google Scholar] [CrossRef] [PubMed]
- Muralitharan, R.R.; Jama, H.A.; Xie, L.; Peh, A.; Snelson, M.; Marques, F.Z. Microbial Peer Pressure: The Role of the Gut Microbiota in Hypertension and Its Complications. Hypertension 2020, 76, 1674–1687. [Google Scholar] [CrossRef] [PubMed]
- Avery, E.G.; Bartolomaeus, H.; Maifeld, A.; Marko, L.; Wiig, H.; Wilck, N.; Rosshart, S.P.; Forslund, S.K.; Muller, D.N. The Gut Microbiome in Hypertension: Recent Advances and Future Perspectives. Circ. Res. 2021, 128, 934–950. [Google Scholar] [CrossRef] [PubMed]
- Yang, T.; Santisteban, M.M.; Rodriguez, V.; Li, E.; Ahmari, N.; Carvajal, J.M.; Zadeh, M.; Gong, M.; Qi, Y.; Zubcevic, J.; et al. Gut dysbiosis is linked to hypertension. Hypertension 2015, 65, 1331–1340. [Google Scholar] [CrossRef] [Green Version]
- Qin, L.; Wang, Z.L.; Feng, Y.; Chen, Z.Z.; Yu, H. Analysis of structural features of gut microbiota in two-kidney-one-clip hypertensive rats based on high-throughput sequencing technology. Zhonghua Xin Xue Guan Bing Za Zhi 2018, 46, 706–712. [Google Scholar]
- Yu, H.; Qin, L.; Hu, H.; Wang, Z. Alteration of the Gut Microbiota and Its Effect on AMPK/NADPH Oxidase Signaling Pathway in 2K1C Rats. BioMed Res. Int. 2019, 2019, 8250619. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hermann, M.; Flammer, A.; Luscher, T.F. Nitric oxide in hypertension. J. Clin. Hypertens. 2006, 8 (Suppl. S4), 17–29. [Google Scholar] [CrossRef] [PubMed]
- Tian, Y.; Su, L.; Wang, J.; Duan, X.; Jiang, X. Fruit and vegetable consumption and risk of the metabolic syndrome: A meta-analysis. Public Health Nutr. 2018, 21, 756–765. [Google Scholar] [CrossRef]
- Thongsepee, N.; Srisawat, U.; Mahabussarakam, W.; Ekarattanawong, S.; Suttirak, N.; Hiranyachattada, S. Effects of oral administration of Garcinia dulcis flower extract on arterial blood pressure and renal excretory functions in rats. Sci. Asia 2020, 46, 671–678. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.; Holmes, S.P. DADA2: High-resolution sample inference from Illumina amplicon data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef] [PubMed]
- Jovel, J.; Patterson, J.; Wang, W.; Hotte, N.; O’Keefe, S.; Mitchel, T.; Perry, T.; Kao, D.; Mason, A.L.; Madsen, K.L.; et al. Characterization of the Gut Microbiome Using 16S or Shotgun Metagenomics. Front. Microbiol. 2016, 7, 459. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Psychogios, N.; Young, N.; Wishart, D.S. MetaboAnalyst: A web server for metabolomic data analysis and interpretation. Nucleic Acids Res. 2009, 37, W652–W660. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Smiljanec, K.; Lennon, S.L. Sodium, hypertension, and the gut: Does the gut microbiota go salty? Am. J. Physiol. Heart Circ. Physiol. 2019, 317, H1173–H1182. [Google Scholar] [CrossRef]
- Walter, J.; Britton, R.A.; Roos, S. Host-microbial symbiosis in the vertebrate gastrointestinal tract and the Lactobacillus reuteri paradigm. Proc. Natl. Acad. Sci. USA 2011, 108 (Suppl. S1), 4645–4652. [Google Scholar] [CrossRef] [Green Version]
- Yang, G.; Jiang, Y.; Yang, W.; Du, F.; Yao, Y.; Shi, C.; Wang, C. Effective treatment of hypertension by recombinant Lactobacillus plantarum expressing angiotensin converting enzyme inhibitory peptide. Microb. Cell Fact. 2015, 14, 202. [Google Scholar] [CrossRef] [Green Version]
- Seppo, L.; Jauhiainen, T.; Poussa, T.; Korpela, R. A fermented milk high in bioactive peptides has a blood pressure-lowering effect in hypertensive subjects. Am. J. Clin. Nutr. 2003, 77, 326–330. [Google Scholar] [CrossRef] [Green Version]
- Hao, Y.; Ji, Z.; Shen, Z.; Xue, Y.; Zhang, B.; Yu, D.; Liu, T.; Luo, D.; Xing, G.; Tang, J.; et al. Increase Dietary Fiber Intake Ameliorates Cecal Morphology and Drives Cecal Species-Specific of Short-Chain Fatty Acids in White Pekin Ducks. Front. Microbiol. 2022, 13, 853797. [Google Scholar] [CrossRef]
- Molino, S.; Lerma-Aguilera, A.; Jimenez-Hernandez, N.; Rufian Henares, J.A.; Francino, M.P. Evaluation of the Effects of a Short Supplementation With Tannins on the Gut Microbiota of Healthy Subjects. Front. Microbiol. 2022, 13, 848611. [Google Scholar] [CrossRef]
- Ma, L.; Ni, Y.; Wang, Z.; Tu, W.; Ni, L.; Zhuge, F.; Zheng, A.; Hu, L.; Zhao, Y.; Zheng, L.; et al. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes 2020, 12, 1–19. [Google Scholar] [CrossRef]
- Xia, T.; Duan, W.; Zhang, Z.; Li, S.; Zhao, Y.; Geng, B.; Zheng, Y.; Yu, J.; Wang, M. Polyphenol-rich vinegar extract regulates intestinal microbiota and immunity and prevents alcohol-induced inflammation in mice. Food Res. Int. 2021, 140, 110064. [Google Scholar] [CrossRef] [PubMed]
- Louis, P.; Flint, H.J. Formation of propionate and butyrate by the human colonic microbiota. Environ. Microbiol. 2017, 19, 29–41. [Google Scholar] [CrossRef] [PubMed]
- Shahi, S.K.; Freedman, S.N.; Mangalam, A.K. Gut microbiome in multiple sclerosis: The players involved and the roles they play. Gut Microbes 2017, 8, 607–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calderon-Perez, L.; Gosalbes, M.J.; Yuste, S.; Valls, R.M.; Pedret, A.; Llaurado, E.; Jimenez-Hernandez, N.; Artacho, A.; Pla-Paga, L.; Companys, J.; et al. Gut metagenomic and short chain fatty acids signature in hypertension: A cross-sectional study. Sci. Rep. 2020, 10, 6436. [Google Scholar] [CrossRef] [Green Version]
- Marques, F.Z.; Nelson, E.; Chu, P.Y.; Horlock, D.; Fiedler, A.; Ziemann, M.; Tan, J.K.; Kuruppu, S.; Rajapakse, N.W.; El-Osta, A.; et al. High-Fiber Diet and Acetate Supplementation Change the Gut Microbiota and Prevent the Development of Hypertension and Heart Failure in Hypertensive Mice. Circulation 2017, 135, 964–977. [Google Scholar] [CrossRef]
- Bier, A.; Braun, T.; Khasbab, R.; Di Segni, A.; Grossman, E.; Haberman, Y.; Leibowitz, A. A High Salt Diet Modulates the Gut Microbiota and Short Chain Fatty Acids Production in a Salt-Sensitive Hypertension Rat Model. Nutrients 2018, 10, 1154. [Google Scholar] [CrossRef] [Green Version]
- Razavi, A.C.; Potts, K.S.; Kelly, T.N.; Bazzano, L.A. Sex, gut microbiome, and cardiovascular disease risk. Biol. Sex Differ. 2019, 10, 29. [Google Scholar] [CrossRef] [Green Version]
- Bolognini, D.; Tobin, A.B.; Milligan, G.; Moss, C.E. The Pharmacology and Function of Receptors for Short-Chain Fatty Acids. Mol. Pharmacol. 2016, 89, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Zhu, Q.; Lu, A.; Liu, X.; Zhang, L.; Xu, C.; Liu, X.; Li, H.; Yang, T. Sodium butyrate suppresses angiotensin II-induced hypertension by inhibition of renal (pro)renin receptor and intrarenal renin-angiotensin system. J. Hypertens. 2017, 35, 1899–1908. [Google Scholar] [CrossRef]
- Yang, T.; Richards, E.M.; Pepine, C.J.; Raizada, M.K. The gut microbiota and the brain-gut-kidney axis in hypertension and chronic kidney disease. Nat. Rev. Nephrol. 2018, 14, 442–456. [Google Scholar] [CrossRef]
- Dikalov, S.I.; Nazarewicz, R.R.; Bikineyeva, A.; Hilenski, L.; Lassegue, B.; Griendling, K.K.; Harrison, D.G.; Dikalova, A.E. Nox2-induced production of mitochondrial superoxide in angiotensin II-mediated endothelial oxidative stress and hypertension. Antioxid. Redox Signal. 2014, 20, 281–294. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skrzypecki, J.; Nieweglowska, K.; Samborowska, E. Valeric Acid, a Gut Microbiota Product, Penetrates to the Eye and Lowers Intraocular Pressure in Rats. Nutrients 2020, 12, 387. [Google Scholar] [CrossRef]
- Shen, G.; Wu, J.; Ye, B.C.; Qi, N. Gut Microbiota-Derived Metabolites in the Development of Diseases. Can. J. Infect. Dis. Med. Microbiol. 2021, 2021, 6658674. [Google Scholar] [CrossRef] [PubMed]
- Dodd, D.; Spitzer, M.H.; Van Treuren, W.; Merrill, B.D.; Hryckowian, A.J.; Higginbottom, S.K.; Le, A.; Cowan, T.M.; Nolan, G.P.; Fischbach, M.A.; et al. A gut bacterial pathway metabolizes aromatic amino acids into nine circulating metabolites. Nature 2017, 551, 648–652. [Google Scholar] [CrossRef] [PubMed]
Group | Sample ID | Raw Reads | Quality Reads | OTUs | Chao | Shannon | PD_Whole_Tree |
---|---|---|---|---|---|---|---|
SO + CO | SO + CO-1 | 59,079 | 50,854 | 171 | 171 | 3.320187 | 28.174087 |
SO + CO-2 | 64,823 | 53,031 | 157 | 157.20 | 3.269554 | 28.537433 | |
SO + CO-3 | 62,658 | 52,104 | 181 | 181 | 3.593931 | 28.849749 | |
SO + CO-4 | 79,871 | 67,816 | 167 | 168 | 3.203351 | 28.555159 | |
SO + CO-5 | 57,408 | 48,821 | 187 | 187 | 3.515880 | 31.249474 | |
SO + CO-6 | 64,583 | 54,877 | 179 | 179.17 | 3.102885 | 31.079983 | |
SO + GD | SO + GD-1 | 63,538 | 50,750 | 181 | 181 | 3.544016 | 29.533213 |
SO + GD-2 | 54,975 | 46,775 | 164 | 164 | 3.259715 | 29.025979 | |
SO + GD-3 | 68,486 | 57,413 | 201 | 201.75 | 3.615350 | 31.816272 | |
SO + GD-4 | 66,992 | 55,196 | 212 | 212.60 | 3.746470 | 31.964809 | |
SO + GD-5 | 61,770 | 52,328 | 138 | 138 | 2.567783 | 27.435939 | |
SO + GD-6 | 62,700 | 52,130 | 161 | 161.25 | 3.000332 | 27.213688 | |
2K1C + CO | 2K + CO-1 | 68,480 | 59,072 | 180 | 182 | 3.230878 | 30.647059 |
2K + CO-2 | 62,608 | 52,757 | 171 | 171 | 3.227207 | 29.824251 | |
2K + CO-3 | 66,130 | 53,720 | 181 | 181 | 3.510320 | 30.163243 | |
2K + CO-4 | 62,685 | 52,017 | 152 | 152 | 3.127591 | 27.372778 | |
2K + CO-5 | 58,580 | 49,144 | 168 | 168.50 | 3.362523 | 29.371917 | |
2K + CO-6 | 67,403 | 56,003 | 153 | 153.60 | 2.997668 | 28.221158 | |
2K1C + GD | 2K + GD-1 | 51,957 | 44,729 | 134 | 134 | 3.108962 | 23.048880 |
2K + GD-2 | 76,915 | 64,610 | 184 | 184 | 2.956281 | 30.266004 | |
2K + GD-3 | 62,825 | 52,113 | 184 | 187 | 3.888140 | 30.204312 | |
2K + GD-4 | 73,201 | 62,088 | 212 | 212 | 3.618511 | 34.156697 | |
2K + GD-5 | 75,393 | 61,743 | 206 | 206.86 | 3.704636 | 33.153967 | |
2K + GD-6 | 74,875 | 63,476 | 198 | 201.33 | 3.439787 | 32.834124 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sornchuer, P.; Thongsepee, N.; Wongsaroj, L.; Saninjuk, K.; Wattanaphansak, S.; Pongpamorn, P.; Paemanee, A.; Martviset, P.; Chantree, P.; Sangpairoj, K. Garcinia dulcis Flower Extract Alters Gut Microbiota and Fecal Metabolomic Profiles of 2K1C Hypertensive Rats. Nutrients 2023, 15, 268. https://doi.org/10.3390/nu15020268
Sornchuer P, Thongsepee N, Wongsaroj L, Saninjuk K, Wattanaphansak S, Pongpamorn P, Paemanee A, Martviset P, Chantree P, Sangpairoj K. Garcinia dulcis Flower Extract Alters Gut Microbiota and Fecal Metabolomic Profiles of 2K1C Hypertensive Rats. Nutrients. 2023; 15(2):268. https://doi.org/10.3390/nu15020268
Chicago/Turabian StyleSornchuer, Phornphan, Nattaya Thongsepee, Lampet Wongsaroj, Kritsakorn Saninjuk, Suphot Wattanaphansak, Pornkanok Pongpamorn, Atchara Paemanee, Pongsakorn Martviset, Pathanin Chantree, and Kant Sangpairoj. 2023. "Garcinia dulcis Flower Extract Alters Gut Microbiota and Fecal Metabolomic Profiles of 2K1C Hypertensive Rats" Nutrients 15, no. 2: 268. https://doi.org/10.3390/nu15020268
APA StyleSornchuer, P., Thongsepee, N., Wongsaroj, L., Saninjuk, K., Wattanaphansak, S., Pongpamorn, P., Paemanee, A., Martviset, P., Chantree, P., & Sangpairoj, K. (2023). Garcinia dulcis Flower Extract Alters Gut Microbiota and Fecal Metabolomic Profiles of 2K1C Hypertensive Rats. Nutrients, 15(2), 268. https://doi.org/10.3390/nu15020268