Associations of Dietary Zinc–Vitamin B6 Ratio with All-Cause Mortality and Cardiovascular Disease Mortality Based on National Health and Nutrition Examination Survey 1999–2016
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Population
2.2. Ethics
2.3. Dietary and Exposure Assessment
2.4. Ascertainment of Incident Hypertension
2.5. Other Covariates
2.6. Statistical Analysis
3. Results
3.1. Subsection
3.2. Dietary Zinc and Vitamin B6 Intake Levels in Association with CVD Mortality and All-Cause Mortality
3.3. The Association of Dietary Zinc Intake and Vitamin B6 Interactions with CVD Mortality and All-Cause Mortality
3.4. Dietary Zinc–Vitamin B6 Ratio and Risk of All-Cause and CVD Mortality
3.5. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lang, X.; Li, Y.; Zhang, D.; Zhang, Y.; Wu, N.; Zhang, Y. FT3/FT4 ratio is correlated with all-cause mortality, cardiovascular mortality, and cardiovascular disease risk: NHANES 2007-2012. Front. Endocrinol. 2022, 13, 964822. [Google Scholar] [CrossRef] [PubMed]
- Milton, A.H.; Vashum, K.P.; McEvoy, M.; Hussain, S.; McElduff, P.; Byles, J.; Attia, J. Prospective Study of Dietary Zinc Intake and Risk of Cardiovascular Disease in Women. Nutrients 2018, 10, 38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pompano, L.M.; Boy, E. Effects of Dose and Duration of Zinc Interventions on Risk Factors for Type 2 Diabetes and Cardiovascular Disease: A Systematic Review and Meta-Analysis. Adv. Nutr. 2021, 12, 141–160. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Becerra-Tomás, N.; García-Gavilán, J.F.; Bulló, M.; Barrubés, L. Mediterranean Diet and Cardiovascular Disease Prevention: What Do We Know? Prog. Cardiovasc. Dis. 2018, 61, 62–67. [Google Scholar] [CrossRef]
- Foster, M.; Samman, S. Zinc and redox signaling: Perturbations associated with cardiovascular disease and diabetes mellitus. Antioxid. Redox Signal. 2010, 13, 1549–1573. [Google Scholar] [CrossRef] [PubMed]
- Choi, S.; Liu, X.; Pan, Z. Zinc deficiency and cellular oxidative stress: Prognostic implications in cardiovascular diseases. Acta Pharmacol. Sin. 2018, 39, 1120–1132. [Google Scholar] [CrossRef] [Green Version]
- Mohammad, M.K.; Zhou, Z.; Cave, M.; Barve, A.; McClain, C.J. Zinc and liver disease. Nutr. Clin. Pract. 2012, 27, 8–20. [Google Scholar] [CrossRef]
- Stamoulis, I.; Kouraklis, G.; Theocharis, S. Zinc and the liver: An active interaction. Dig. Dis. Sci. 2007, 52, 1595–1612. [Google Scholar] [CrossRef]
- Tamura, Y. The Role of Zinc Homeostasis in the Prevention of Diabetes Mellitus and Cardiovascular Diseases. J. Atheroscler. Thromb. 2021, 28, 1109–1122. [Google Scholar] [CrossRef]
- Fukunaka, A.; Fujitani, Y. Role of Zinc Homeostasis in the Pathogenesis of Diabetes and Obesity. Int. J. Mol. Sci. 2018, 19, 476. [Google Scholar] [CrossRef]
- Gao, J.W.; Zhang, S.L.; Hao, Q.Y.; Huang, F.F.; Liu, Z.Y.; Zhang, H.F.; Yan, L.; Wang, J.F.; Liu, P.M. Association of dietary zinc intake with coronary artery calcium progression: The Multi-Ethnic Study of Atherosclerosis (MESA). Eur. J. Nutr. 2021, 60, 2759–2767. [Google Scholar] [CrossRef] [PubMed]
- Hotz, C. Evidence for the usefulness of in vitro dialyzability, Caco-2 cell models, animal models, and algorithms to predict zinc bioavailability in humans. Int. J. Vitam. Nutr. Res. 2005, 75, 423–435. [Google Scholar] [CrossRef]
- Lee, D.H.; Folsom, A.R.; Jacobs, D.R., Jr. Iron, zinc, and alcohol consumption and mortality from cardiovascular diseases: The Iowa Women’s Health Study. Am. J. Clin. Nutr. 2005, 81, 787–791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Evans, G.W.; Johnson, E.C. Effect of iron, vitamin B-6 and picolinic acid on zinc absorption in the rat. J. Nutr. 1981, 111, 68–75. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Mason, A.M.; Carter, P.; Burgess, S.; Larsson, S.C. Homocysteine, B vitamins, and cardiovascular disease: A Mendelian randomization study. BMC Med. 2021, 19, 97. [Google Scholar] [CrossRef]
- Johnson, C.L.; Paulose-Ram, R.; Ogden, C.L.; Carroll, M.D.; Kruszon-Moran, D.; Dohrmann, S.M.; Curtin, L.R. National Health and Nutrition Examination Survey: Analytic Guidelines, 1999–2010; Vital and Health Statistics. Series 2; Data Evaluation and Methods Research; National Center for Health Statistics: Washington, DC, USA, 2013; pp. 1–24.
- NHANES Survey Methods and Analytic Guidelines. Available online: https://wwwn.cdc.gov/nchs/nhanes/analyticguidelines.aspx#plan-and-operations (accessed on 3 January 2023).
- Dominguez, L.J.; Gea, A.; Ruiz-Estigarribia, L.; Sayón-Orea, C.; Fresán, U.; Barbagallo, M.; Ruiz-Canela, M.; Martínez-González, M.A. Low Dietary Magnesium and Overweight/Obesity in a Mediterranean Population: A Detrimental Synergy for the Development of Hypertension. The SUN Project. Nutrients 2020, 13, 125. [Google Scholar] [CrossRef]
- Yang, T.; Yi, J.; He, Y.; Zhang, J.; Li, X.; Ke, S.; Xia, L.; Liu, L. Associations of Dietary Fats with All-Cause Mortality and Cardiovascular Disease Mortality among Patients with Cardiometabolic Disease. Nutrients 2022, 14, 3608. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Du, M.; Blumberg, J.B.; Ho Chui, K.K.; Ruan, M.; Rogers, G.; Shan, Z.; Zeng, L.; Zhang, F.F. Association Among Dietary Supplement Use, Nutrient Intake, and Mortality Among U.S. Adults: A Cohort Study. Ann. Intern. Med. 2019, 170, 604–613. [Google Scholar] [CrossRef]
- Eshak, E.S.; Iso, H.; Yamagishi, K.; Maruyama, K.; Umesawa, M.; Tamakoshi, A. Associations between copper and zinc intakes from diet and mortality from cardiovascular disease in a large population-based prospective cohort study. J. Nutr. Biochem. 2018, 56, 126–132. [Google Scholar] [CrossRef]
- Basnet, T.B.; Srijana, G.C.; Basnet, R.; Neupane, B.; Thapa, G. Causal effects of dietary calcium, zinc and iron intakes on coronary artery disease in men: G-estimation and inverse probability of treatment weighting (IPTW) analyses. Clin. Nutr. ESPEN 2021, 42, 73–81. [Google Scholar] [CrossRef]
- Shi, Z.; Chu, A.; Zhen, S.; Taylor, A.W.; Dai, Y.; Riley, M.; Samman, S. Association between dietary zinc intake and mortality among Chinese adults: Findings from 10-year follow-up in the Jiangsu Nutrition Study. Eur. J. Nutr. 2018, 57, 2839–2846. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Humphries, K.H.; Gotay, C.; Mena-Sánchez, G.; Salas-Salvadó, J.; Esmaillzadeh, A.; Ignaszewski, A.; Sarrafzadegan, N. Trace minerals intake: Risks and benefits for cardiovascular health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1334–1346. [Google Scholar] [CrossRef] [PubMed]
- Gać, P.; Czerwińska, K.; Macek, P.; Jaremków, A.; Mazur, G.; Pawlas, K.; Poręba, R. The importance of selenium and zinc deficiency in cardiovascular disorders. Environ. Toxicol. Pharmacol. 2021, 82, 103553. [Google Scholar] [CrossRef] [PubMed]
- Khoury, M.; Urbina, E.M. Hypertension in adolescents: Diagnosis, treatment, and implications. Lancet. Child Adolesc. Health 2021, 5, 357–366. [Google Scholar] [CrossRef] [PubMed]
- Messerli, F.H.; Williams, B.; Ritz, E. Essential hypertension. Lancet 2007, 370, 591–603. [Google Scholar] [CrossRef]
- Cui, R.; Iso, H.; Date, C.; Kikuchi, S.; Tamakoshi, A. Dietary folate and vitamin b6 and B12 intake in relation to mortality from cardiovascular diseases: Japan collaborative cohort study. Stroke 2010, 41, 1285–1289. [Google Scholar] [CrossRef] [Green Version]
- Wu, S.; Feng, P.; Li, W.; Zhuo, S.; Lu, W.; Chen, P.; Sui, Y.; Fang, S.; Yang, Z.; Ye, Y. Dietary Folate, Vitamin B6 and Vitamin B12 and Risk of Cardiovascular Diseases among Individuals with Type 2 Diabetes: A Case-Control Study. Ann. Nutr. Metab. 2022, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.; Park, K. Dietary Vitamin B(6) Intake Associated with a Decreased Risk of Cardiovascular Disease: A Prospective Cohort Study. Nutrients 2019, 11, 1484. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.G.; Shu, X.O.; Li, H.L.; Gao, J.; Han, L.H.; Wang, J.; Fang, J.; Gao, Y.T.; Zheng, W.; Xiang, Y.B. Prospective cohort studies of dietary vitamin B6 intake and risk of cause-specific mortality. Clin. Nutr. 2019, 38, 1180–1187. [Google Scholar] [CrossRef] [PubMed]
- Schalinske, K.L.; Smazal, A.L. Homocysteine imbalance: A pathological metabolic marker. Adv. Nutr. 2012, 3, 755–762. [Google Scholar] [CrossRef] [PubMed]
- Ulvik, A.; Midttun, Ø.; Pedersen, E.R.; Eussen, S.J.; Nygård, O.; Ueland, P.M. Evidence for increased catabolism of vitamin B-6 during systemic inflammation. Am. J. Clin. Nutr. 2014, 100, 250–255. [Google Scholar] [CrossRef] [Green Version]
- Kannan, K.; Jain, S.K. Effect of vitamin B6 on oxygen radicals, mitochondrial membrane potential, and lipid peroxidation in H2O2-treated U937 monocytes. Free. Radic. Biol. Med. 2004, 36, 423–428. [Google Scholar] [CrossRef]
- Saposnik, G.; Ray, J.G.; Sheridan, P.; McQueen, M.; Lonn, E. Homocysteine-lowering therapy and stroke risk, severity, and disability: Additional findings from the HOPE 2 trial. Stroke 2009, 40, 1365–1372. [Google Scholar] [CrossRef] [PubMed]
- Jung, S.K.; Kim, M.K.; Lee, Y.H.; Shin, D.H.; Shin, M.H.; Chun, B.Y.; Choi, B.Y. Lower zinc bioavailability may be related to higher risk of subclinical atherosclerosis in Korean adults. PLoS ONE 2013, 8, e80115. [Google Scholar] [CrossRef] [PubMed]
- Ebadi, M.; Gessert, C.F.; Al-Sayegh, A. Drug-pyridoxal phosphate interactions. Q. Rev. Drug Metab. Drug Interact. 1982, 4, 289–331. [Google Scholar] [CrossRef] [PubMed]
- Mackraj, I.; Channa, M.L.; Burger, F.J.; Ubbink, J.B.; Smyth, P. Zinc, copper and iron levels in tissues of the vitamin B6 deficient rat. Int. J. Vitam. Nutr. Res. 1997, 67, 102–105. [Google Scholar] [PubMed]
- Maret, W.; Sandstead, H.H. Zinc requirements and the risks and benefits of zinc supplementation. J. Trace Elem. Med. Biol. 2006, 20, 3–18. [Google Scholar] [CrossRef] [PubMed]
- Fosmire, G.J. Zinc toxicity. Am. J. Clin. Nutr. 1990, 51, 225–227. [Google Scholar] [CrossRef]
- Lupoli, R.; Vitale, M.; Calabrese, I.; Giosuè, A.; Riccardi, G.; Vaccaro, O. White Meat Consumption, All-Cause Mortality, and Cardiovascular Events: A Meta-Analysis of Prospective Cohort Studies. Nutrients 2021, 13, 676. [Google Scholar] [CrossRef]
- Riccardi, G.; Giosuè, A.; Calabrese, I.; Vaccaro, O. Dietary recommendations for prevention of atherosclerosis. Cardiovasc. Res. 2022, 118, 1188–1204. [Google Scholar] [CrossRef] [PubMed]
- Antoine, T.; Georgé, S.; Leca, A.; Desmarchelier, C.; Halimi, C.; Gervais, S.; Aupy, F.; Marconot, G.; Reboul, E. Reduction of pulse “antinutritional” content by optimizing pulse canning process is insufficient to improve fat-soluble vitamin bioavailability. Food Chem. 2022, 370, 131021. [Google Scholar] [CrossRef] [PubMed]
- Hunt, J.R. Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am. J. Clin. Nutr. 2003, 78, 633s–639s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldmann, A.; Dörr, B.; Koschizke, J.W.; Leitzmann, C.; Hahn, A. Dietary intake of vitamin B6 and concentration of vitamin B6 in blood samples of German vegans. Public Health Nutr. 2006, 9, 779–784. [Google Scholar] [CrossRef] [PubMed]
Participants, n (%) | ||||||
---|---|---|---|---|---|---|
Zinc Level, mg/day | Vitamin B6 Level, mg/day | |||||
Characteristics | <9.87 | ≥9.87 | p | <1.73 | ≥1.73 | p |
Age, mean (SD), years | 46.72 (17.07) | 44.68 (15.66) | <0.001 | 45.98 (16.70) | 45.32 (16.04) | 0.005 |
Sex, % | ||||||
Male | 5196 (31.1) | 11,295 (58.3) | <0.001 | 5573 (32.6) | 10,916 (57.5) | <0.001 |
Female | 11,511 (68.9) | 8079 (41.7) | 11,523 (67.4) | 8069 (42.5) | ||
BMI, % | ||||||
<30 kg/m2 | 11,010 (65.9) | 12,923 (66.7) | 0.323 | 11,027 (64.5) | 12,891 (67.9) | <0.001 |
≥30 kg/m2 | 5697 (34.1) | 6451 (33.3) | 6069 (35.5) | 6094 (32.1) | ||
Education level, % | ||||||
<High school | 3169 (19.0) | 2727 (14.1) | <0.001 | 3313 (19.4) | 2579 (13.6) | <0.001 |
High school | 4037 (24.2) | 4256 (22) | 4235 (24.8) | 4077 (21.5) | ||
College or above | 9458 (56.7) | 12,361 (63.9) | 9511 (55.7) | 12,306 (64.9) | ||
Race/Ethnicity, % | ||||||
Mexican American | 1320 (7.9) | 1666 (8.6) | <0.001 | 1368 (8.0) | 1614 (8.5) | <0.001 |
Non-Hispanic white | 10,926 (65.4) | 13,930 (71.9) | 11,437 (66.9) | 13,422 (70.7) | ||
Non-Hispanic black | 2239 (13.4) | 1686 (8.7) | 2205 (12.9) | 1728 (9.1) | ||
Other | 2222 (13.3) | 2092 (10.8) | 2086 (12.2) | 2221 (11.7) | ||
Family income–poverty ratio, % | ||||||
<1.0 | 2508 (16.3) | 2105 (11.8) | <0.001 | 2583 (16.4) | 2029 (11.6) | <0.001 |
1.0–3.0 | 5800 (37.7) | 5780 (32.4) | 5875 (37.3) | 5685 (32.5) | ||
>3.0 | 7077 (46.0) | 9973 (55.9) | 7293 (46.3) | 9760 (55.8) | ||
Smoking, % | ||||||
Never | 8496 (50.9) | 9504 (49.1) | <0.001 | 8352 (48.9) | 9655 (50.9) | <0.001 |
Ever | 3205 (19.2) | 4413 (22.8) | 3211 (18.8) | 4419 (23.3) | ||
Currently | 4991 (29.9) | 5439 (28.1) | 5534 (32.4) | 4894 (25.8) | ||
Alcohol, % | ||||||
Yes | 11,133 (70.8) | 14,442 (79.2) | <0.001 | 11,392 (70.8) | 14,170 (79.3) | <0.001 |
No | 4592 (29.2) | 3793 (20.8) | 4699 (29.2) | 3699 (20.7) | ||
HbA1c, % | ||||||
<7% | 13,451 (95.4) | 15,680 (95.9) | 0.06 | 13,750 (95.3) | 15,397 (96.1) | 0.006 |
≥7% | 649 (4.6) | 670 (4.1) | 678 (4.7) | 625 (3.9) | ||
High blood pressure, % | ||||||
Yes | 4808 (28.9) | 4939 (25.6) | <0.001 | 4903 (28.8) | 4859 (25.7) | <0.001 |
No | 11,830 (71.1) | 14,355 (74.4) | 12,122 (71.2) | 14,048 (74.3) | ||
High cholesterol, % | ||||||
Yes | 5148 (34.9) | 6089 (35.6) | 0.409 | 5268 (34.9) | 5984 (35.7) | 0.246 |
No | 9602 (65.1) | 11,015 (64.4) | 9826 (65.1) | 10,777 (64.3) |
Hazard Ratio (95% CI) | ||||
---|---|---|---|---|
Zinc Level, mg | B6 Level, mg | |||
Low (<9.89 mg/day) | High (≥9.89 mg/day) | Low (<1.73 mg/day) | High (≥1.73 mg/day) | |
Diseases of heart mortality | ||||
Deaths, No./Total No. | 620/16,208 | 443/16,179 | 643/16,194 | 420/16,193 |
Model 1 a | 1.00 [Reference] | 0.76 (0.73,0.79) | 1.00 [Reference] | 0.71 (0.63,0.80) |
Model 2 b | 1.00 [Reference] | 0.85 (0.83,0.87) | 1.00 [Reference] | 0.91 (0.86,0.96) |
All-cause mortality | ||||
Deaths, No./Total No. | 2680/18,043 | 2077/18,038 | 2705/18,042 | 2052/18,039 |
Model 1 a | 1.00 [Reference] | 0.91 (0.90,0.91) | 1.00 [Reference] | 0.84 (0.83,0.84) |
Model 2 b | 1.00 [Reference] | 0.93 (0.87,1.00) | 1.00 [Reference] | 0.91 (0.90,0.93) |
Dietary Zinc | Vitamin B6 | HR (95% CI) | HR (95% CI) |
---|---|---|---|
Diseases of Heart | All Cause | ||
Model 1 a | |||
Low | Low | 1.56 (1.40,1.72) | 1.21 (1.20,1.23) |
Low | High | 1.41 (1.32,1.50) | 1.03 (0.95,1.11) |
High | Low | 1.59 (1.42,1.78) | 1.19 (1.10,1.28) |
High | High | 1.00 [Reference] | 1.00 [Reference] |
p Interaction | <0.001 | 0.966 | |
Model 2 b | |||
Low | Low | 1.21 (1.12,1.29) | 1.12 (1.07,1.17) |
Low | High | 1.42 (1.34,1.50) | 1.05 (1.00,1.10) |
High | Low | 1.28 (1.14,1.45) | 1.09(0.98,1.23) |
High | High | 1.00 [Reference] | 1.00 [Reference] |
p Interaction | <0.001 | 0.559 |
Hazard Ratio (95% CI) | |||
---|---|---|---|
Zinc/B6 Level | |||
Low (<4.48) | Medium (4.48–7.54) | High (>7.54) | |
Diseases of heart mortality | |||
Deaths, No./Total No. | 262/8074 | 511/16,140 | 289/8173 |
Model 1 a | 1.00 (0.80,1.25) | 1.00 [Reference] | 1.26 (1.22,1.30) |
Model 2 b | 1.00 (0.68,1.46) | 1.00 [Reference] | 1.27 (1.19,1.35) |
Hazard Ratio (95% CI) b | |||
---|---|---|---|
Zinc/B6 Level, mg | |||
Low (<4.48) | Medium (4.48–7.54) | High (>7.54) | |
Main analysis | 1.00 (0.68,1.46) | 1.00 [Reference] | 1.27 (1.19,1.35) |
Died within 2 years | 0.96 (0.62,1.49) | 1.00 [Reference] | 1.36 (1.25,1.49) |
Changing allowable energy limits (percentiles 1–99) | 1.01 (0.70,1.45) | 1.00 [Reference] | 1.33 (1.26,1.40) |
Adjusted for history of diabetes mellitus | 0.98 (0.69,1.39) | 1.00 [Reference] | 1.31 (1.24,1.39) |
Adjusted for dietary fiber intake | 0.96 (0.65,1.42) | 1.00 [Reference] | 1.24 (1.18,1.31) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, N.; Li, Z.; Wu, Q.; Huang, H.; Wang, S.; Liu, Y.; Chen, J.; Ma, J. Associations of Dietary Zinc–Vitamin B6 Ratio with All-Cause Mortality and Cardiovascular Disease Mortality Based on National Health and Nutrition Examination Survey 1999–2016. Nutrients 2023, 15, 420. https://doi.org/10.3390/nu15020420
Zhang N, Li Z, Wu Q, Huang H, Wang S, Liu Y, Chen J, Ma J. Associations of Dietary Zinc–Vitamin B6 Ratio with All-Cause Mortality and Cardiovascular Disease Mortality Based on National Health and Nutrition Examination Survey 1999–2016. Nutrients. 2023; 15(2):420. https://doi.org/10.3390/nu15020420
Chicago/Turabian StyleZhang, Naijian, Zhilin Li, Qingcui Wu, Huijie Huang, Siting Wang, Yuanyuan Liu, Jiageng Chen, and Jun Ma. 2023. "Associations of Dietary Zinc–Vitamin B6 Ratio with All-Cause Mortality and Cardiovascular Disease Mortality Based on National Health and Nutrition Examination Survey 1999–2016" Nutrients 15, no. 2: 420. https://doi.org/10.3390/nu15020420
APA StyleZhang, N., Li, Z., Wu, Q., Huang, H., Wang, S., Liu, Y., Chen, J., & Ma, J. (2023). Associations of Dietary Zinc–Vitamin B6 Ratio with All-Cause Mortality and Cardiovascular Disease Mortality Based on National Health and Nutrition Examination Survey 1999–2016. Nutrients, 15(2), 420. https://doi.org/10.3390/nu15020420