The Mediterranean Diet: Effects on Insulin Resistance and Secretion in Individuals with Overweight or Obesity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design, Setting, and Participants
2.2. Lifestyle Habits and Anthropometric Measurements
2.3. Adherence to the Mediterranean Diet
2.4. Oral Glucose Tolerance Test
2.5. Calculation of Derived Indices of Insulin Sensitivity and Secretion
2.6. Sample Size Calculation and Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, H.J.; Ho, M.; Liu, X.; Yang, J.; Chau, P.H.; Fong, D.Y.T. Association of weight status and the risks of diabetes in adults: A systematic review and meta-analysis of prospective cohort studies. Int. J. Obes. 2022, 46, 1101–1113. [Google Scholar] [CrossRef]
- De Lorenzo, A.; Gratteri, S.; Gualtieri, P.; Cammarano, A.; Bertucci, P.; Di Renzo, L. Why primary obesity is a disease? J. Transl. Med. 2019, 17, 169. [Google Scholar] [CrossRef]
- Jastreboff, A.M.; Kotz, C.M.; Kahan, S.; Kelly, A.S.; Heymsfield, S.B. Obesity as a Disease: The Obesity Society 2018 Position Statement. Obesity 2019, 27, 7–9. [Google Scholar] [CrossRef]
- Stephenson, J.; Smith, C.M.; Kearns, B.; Haywood, A.; Bissell, P. The association between obesity and quality of life: A retrospective analysis of a large-scale population-based cohort study. BMC Public Health 2021, 21, 1990. [Google Scholar] [CrossRef]
- Fernandes Silva, L.; Vangipurapu, J.; Laakso, M. The “Common Soil Hypothesis” Revisited-Risk Factors for Type 2 Diabetes and Cardiovascular Disease. Metabolites 2021, 11, 691. [Google Scholar] [CrossRef]
- Magliano, D.J.; Boyko, E.J. IDF Diabetes Atlas, 10th ed.; International Diabetes Federation: Brussels, Belgium, 2021. [Google Scholar]
- American Diabetes Association Professional Practice Committee. 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45 (Suppl. 1), S17–S38. [Google Scholar] [CrossRef]
- Tabak, A.G.; Herder, C.; Rathmann, W.; Brunner, E.J.; Kivimaki, M. Prediabetes: A high-risk state for diabetes development. Lancet 2012, 379, 2279–2290. [Google Scholar] [CrossRef]
- Adeva-Andany, M.M.; Martinez-Rodriguez, J.; Gonzalez-Lucan, M.; Fernandez-Fernandez, C.; Castro-Quintela, E. Insulin resistance is a cardiovascular risk factor in humans. Diabetol. Metab. Syndr. 2019, 13, 1449–1455. [Google Scholar] [CrossRef]
- Utzschneider, K.M.; Van de Lagemaat, A.; Faulenbach, M.V.; Goedecke, J.H.; Carr, D.B.; Boyko, E.J.; Fujimoto, W.Y.; Kahn, S.E. Insulin resistance is the best predictor of the metabolic syndrome in subjects with a first-degree relative with type 2 diabetes. Obesity 2010, 18, 1781–1787. [Google Scholar] [CrossRef]
- Jeppesen, J.; Hansen, T.W.; Rasmussen, S.; Ibsen, H.; Torp-Pedersen, C.; Madsbad, S. Insulin resistance, the metabolic syndrome, and risk of incident cardiovascular disease: A population-based study. J. Am. Coll. Cardiol. 2007, 49, 2112–2119. [Google Scholar] [CrossRef]
- Simons, G.; Rutten, G.; Hornes, M.; Nijhuis, M.; van Asseldonk, M. Production of prochymosin in lactococci. Adv. Exp. Med. Biol. 1991, 306, 115–119. [Google Scholar]
- Mainous, A.G., 3rd; Tanner, R.J.; Jo, A.; Anton, S.D. Prevalence of Prediabetes and Abdominal Obesity Among Healthy-Weight Adults: 18-Year Trend. Ann. Fam. Med. 2016, 14, 304–310. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9(th) edition. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef]
- Mechanick, J.I.; Garber, A.J.; Grunberger, G.; Handelsman, Y.; Garvey, W.T. Dysglycemia-Based Chronic Disease: An American Association of Clinical Endocrinologists Position Statement. Endocr. Pract. 2018, 24, 995–1011. [Google Scholar] [CrossRef]
- ElSayed, N.A.; Aleppo, G.; Aroda, V.R.; Bannuru, R.R.; Brown, F.M.; Bruemmer, D.; Collins, B.S.; Hilliard, M.E.; Isaacs, D.; Johnson, E.L.; et al. 3. Prevention or Delay of Type 2 Diabetes and Associated Comorbidities: Standards of Care in Diabetes-2023. Diabetes Care 2023, 46 (Suppl. 1), S41–S48. [Google Scholar] [CrossRef]
- Zeraattalab-Motlagh, S.; Jayedi, A.; Shab-Bidar, S. Mediterranean dietary pattern and the risk of type 2 diabetes: A systematic review and dose-response meta-analysis of prospective cohort studies. Eur. J. Nutr. 2022, 61, 1735–1748. [Google Scholar] [CrossRef]
- Sarsangi, P.; Salehi-Abargouei, A.; Ebrahimpour-Koujan, S.; Esmaillzadeh, A. Association between Adherence to the Mediterranean Diet and Risk of Type 2 Diabetes: An Updated Systematic Review and Dose-Response Meta-Analysis of Prospective Cohort Studies. Adv. Nutr. 2022, 13, 1787–1798. [Google Scholar] [CrossRef]
- Barrea, L.; Vetrani, C.; Verde, L.; Frias-Toral, E.; Ceriani, F.; Cernea, S.; Docimo, A.; Graziadio, C.; Tripathy, D.; Savastano, S.; et al. Comprehensive Approach to Medical Nutrition Therapy in Patients with Type 2 Diabetes Mellitus: From Diet to Bioactive Compounds. Antioxidants 2023, 12, 904. [Google Scholar] [CrossRef]
- Vetrani, C.; Piscitelli, P.; Muscogiuri, G.; Barrea, L.; Laudisio, D.; Graziadio, C.; Marino, F.; Colao, A. “Planeterranea”: An attempt to broaden the beneficial effects of the Mediterranean diet worldwide. Front. Nutr. 2022, 9, 973757. [Google Scholar] [CrossRef]
- Vetrani, C.; Barrea, L.; Rispoli, R.; Verde, L.; De Alteriis, G.; Docimo, A.; Auriemma, R.S.; Colao, A.; Savastano, S.; Muscogiuri, G. Mediterranean Diet: What Are the Consequences for Menopause? Front. Endocrinol. 2022, 13, 886824. [Google Scholar] [CrossRef]
- Serra-Majem, L.; Tomaino, L.; Dernini, S.; Berry, E.M.; Lairon, D.; Ngo de la Cruz, J.; Bach-Faig, A.; Donini, L.M.; Medina, F.-X.; Belahsen, R.; et al. Updating the Mediterranean Diet Pyramid towards Sustainability: Focus on Environmental Concerns. Int. J. Environ. Res. Public Health 2020, 17, 8758. [Google Scholar] [CrossRef] [PubMed]
- Vandenbroucke, J.P.; von Elm, E.; Altman, D.G.; Gotzsche, P.C.; Mulrow, C.D.; Pocock, S.J.; Poole, C.; Schlesselman, J.; Egger, M. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. Int. J. Surg. 2014, 12, 1500–1524. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Di Somma, C.; Macchia, P.E.; Falco, A.; Savanelli, M.C.; Orio, F.; Colao, A.; Savastano, S. Influence of nutrition on somatotropic axis: Milk consumption in adult individuals with moderate-severe obesity. Clin. Nutr. 2017, 36, 293–301. [Google Scholar] [CrossRef]
- Muscogiuri, G.; Barrea, L.; Di Somma, C.; Altieri, B.; Vecchiarini, M.; Orio, F.; Spinosa, T.; Colao, A.; Savastano, S. Patient empowerment and the Mediterranean diet as a possible tool to tackle prediabetes associated with overweight or obesity: A pilot study. Hormones 2019, 18, 75–84. [Google Scholar] [CrossRef]
- Verde, L.; Dalamaga, M.; Capo, X.; Annunziata, G.; Hassapidou, M.; Docimo, A.; Savastano, S.; Colao, A.; Muscogiuri, G.; Barrea, L. The Antioxidant Potential of the Mediterranean Diet as a Predictor of Weight Loss after a Very Low-Calorie Ketogenic Diet (VLCKD) in Women with Overweight and Obesity. Antioxidants 2022, 12, 18. [Google Scholar] [CrossRef] [PubMed]
- Barrea, L.; Muscogiuri, G.; Aprano, S.; Vetrani, C.; de Alteriis, G.; Varcamonti, L.; Verde, L.; Colao, A.; Savastano, S. Phase angle as an easy diagnostic tool for the nutritionist in the evaluation of inflammatory changes during the active stage of a very low-calorie ketogenic diet. Int. J. Obes. 2022, 46, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Vetrani, C.; Barrea, L.; Verde, L.; Docimo, A.; Aprano, S.; Savastano, S.; Colao, A.; Muscogiuri, G. Vitamin D and chronotype: Is there any relationship in individuals with obesity? J. Endocrinol. Investig. 2023, 46, 1001–1008. [Google Scholar] [CrossRef]
- Martinez-Gonzalez, M.A.; Garcia-Arellano, A.; Toledo, E.; Salas-Salvado, J.; Buil-Cosiales, P.; Corella, D.; Covas, M.I.; Schröder, H.; Arós, F.; Gómez-Gracia, E.; et al. A 14-item Mediterranean diet assessment tool and obesity indexes among high-risk subjects: The PREDIMED trial. PLoS ONE 2012, 7, e43134. [Google Scholar] [CrossRef]
- Barrea, L.; Vetrani, C.; Altieri, B.; Verde, L.; Savastano, S.; Colao, A.; Muscogiuri, G. The Importance of Being a ‘Lark’ in Post-Menopausal Women with Obesity: A Ploy to Prevent Type 2 Diabetes Mellitus? Nutrients 2021, 13, 3762. [Google Scholar] [CrossRef]
- Pacini, G.; Mari, A. Methods for clinical assessment of insulin sensitivity and beta-cell function. Best Pract. Res. Clin. Endocrinol. Metab. 2003, 17, 305–322. [Google Scholar] [CrossRef]
- Matsuda, M.; DeFronzo, R.A. Insulin sensitivity indices obtained from oral glucose tolerance testing: Comparison with the euglycemic insulin clamp. Diabetes Care 1999, 22, 1462–1470. [Google Scholar] [CrossRef]
- Lorenzo, C.; Wagenknecht, L.E.; Rewers, M.J.; Karter, A.J.; Bergman, R.N.; Hanley, A.J.; Haffner, S.M. Disposition index, glucose effectiveness, and conversion to type 2 diabetes: The Insulin Resistance Atherosclerosis Study (IRAS). Diabetes Care 2010, 33, 2098–2103. [Google Scholar] [CrossRef]
- Wang, Q.; Jokelainen, J.; Auvinen, J.; Puukka, K.; Keinanen-Kiukaanniemi, S.; Jarvelin, M.R.; Kettunen, J.; Mäkinen, V.-P.; Ala-Korpela, M. Insulin resistance and systemic metabolic changes in oral glucose tolerance test in 5340 individuals: An interventional study. BMC Med. 2019, 17, 217. [Google Scholar] [CrossRef] [PubMed]
- Lakens, D. Calculating and reporting effect sizes to facilitate cumulative science: A practical primer for t-tests and ANOVAs. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhang, Q.; Liao, X.; Elbelt, U.; Weylandt, K.H. The effects of omega-3 fatty acids in type 2 diabetes: A systematic review and meta-analysis. Prostaglandins Leukot. Essent. Fat. Acids 2022, 182, 102456. [Google Scholar] [CrossRef]
- Gao, C.; Liu, Y.; Gan, Y.; Bao, W.; Peng, X.; Xing, Q.; Gao, X.; Lai, J.; Liu, L.; Wang, Z.; et al. Effects of fish oil supplementation on glucose control and lipid levels among patients with type 2 diabetes mellitus: A Meta-analysis of randomized controlled trials. Lipids Health Dis. 2020, 19, 87. [Google Scholar] [CrossRef]
- Puglisi, M.J.; Hasty, A.H.; Saraswathi, V. The role of adipose tissue in mediating the beneficial effects of dietary fish oil. J. Nutr. Biochem. 2011, 22, 101–108. [Google Scholar] [CrossRef] [PubMed]
- Kalupahana, N.S.; Goonapienuwala, B.L.; Moustaid-Moussa, N. Omega-3 Fatty Acids and Adipose Tissue: Inflammation and Browning. Annu. Rev. Nutr. 2020, 40, 25–49. [Google Scholar] [CrossRef] [PubMed]
- Kopecky, J.; Rossmeisl, M.; Flachs, P.; Kuda, O.; Brauner, P.; Jilkova, Z.; Stankova, B.; Tvrzicka, E.; Bryhn, M. n-3 PUFA: Bioavailability and modulation of adipose tissue function. Proc. Nutr. Soc. 2009, 68, 361–369. [Google Scholar] [CrossRef]
- Summers, L.K.; Fielding, B.A.; Bradshaw, H.A.; Ilic, V.; Beysen, C.; Clark, M.L.; Moore, N.R.; Frayn, K.N. Substituting dietary saturated fat with polyunsaturated fat changes abdominal fat distribution and improves insulin sensitivity. Diabetologia 2002, 45, 369–377. [Google Scholar] [CrossRef]
- Zatterale, F.; Longo, M.; Naderi, J.; Raciti, G.A.; Desiderio, A.; Miele, C.; Beguinot, F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Physiol. 2019, 10, 1607. [Google Scholar] [CrossRef] [PubMed]
- Miao, Z.; Alvarez, M.; Ko, A.; Bhagat, Y.; Rahmani, E.; Jew, B.; Heinonen, S.; Muñoz-Hernandez, L.L.; Herrera-Hernandez, M.; Aguilar-Salinas, C.; et al. The causal effect of obesity on prediabetes and insulin resistance reveals the important role of adipose tissue in insulin resistance. PLoS Genet. 2020, 16, e1009018. [Google Scholar] [CrossRef] [PubMed]
- Giacca, A.; Xiao, C.; Oprescu, A.I.; Carpentier, A.C.; Lewis, G.F. Lipid-induced pancreatic beta-cell dysfunction: Focus on in vivo studies. Am. J. Physiol. Endocrinol. Metab. 2011, 300, E255–E262. [Google Scholar] [CrossRef]
- Newsholme, P.; Keane, D.; Welters, H.J.; Morgan, N.G. Life and death decisions of the pancreatic beta-cell: The role of fatty acids. Clin. Sci. 2007, 112, 27–42. [Google Scholar] [CrossRef]
- Xiao, C.; Giacca, A.; Carpentier, A.; Lewis, G.F. Differential effects of monounsaturated, polyunsaturated and saturated fat ingestion on glucose-stimulated insulin secretion, sensitivity and clearance in overweight and obese, non-diabetic humans. Diabetologia 2006, 49, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Maki, K.C.; Lawless, A.L.; Kelley, K.M.; Dicklin, M.R.; Schild, A.L.; Rains, T.M. Prescription omega-3-acid ethyl esters reduce fasting and postprandial triglycerides and modestly reduce pancreatic beta-cell response in subjects with primary hypertriglyceridemia. Prostaglandins Leukot. Essent. Fat. Acids 2011, 85, 143–148. [Google Scholar] [CrossRef]
- Tabák, A.G.; Jokela, M.; Akbaraly, T.N.; Brunner, E.J.; Kivimäki, M.; Witte, D.R. Trajectories of glycaemia, insulin sensitivity, and insulin secretion before diagnosis of type 2 diabetes: An analysis from the Whitehall II study. Lancet 2009, 373, 2215–2221. [Google Scholar] [CrossRef]
- Hulman, A.; Simmons, R.K.; Brunner, E.J.; Witte, D.R.; Færch, K.; Vistisen, D.; Ikehara, S.; Kivimaki, M.; Tabák, A.G. Trajectories of glycaemia, insulin sensitivity and insulin secretion in South Asian and white individuals before diagnosis of type 2 diabetes: A longitudinal analysis from the Whitehall II cohort study. Diabetologia 2017, 60, 1252–1260. [Google Scholar] [CrossRef]
- Dunseath, G.J.; Luzio, S.D.; Peter, R.; Owens, D.R. The pathophysiology of glucose intolerance in newly diagnosed, untreated T2DM. Acta Diabetol. 2022, 59, 207–215. [Google Scholar] [CrossRef]
Parameters | Low Adherence to MD n = 12 | Intermediate Adherence to MD n = 35 | High Adherence to MD n = 15 | p Value * |
---|---|---|---|---|
Sex (M/F) | 2/10 | 3/32 | 2/13 | 0.428 |
Age (years) | 43 ± 14 | 48 ± 14 | 55 ± 14 a | 0.073 |
Physical activity (n,%) | 1 (8) | 4 (11) | 4 (27) | 0.298 |
Smoking (n, %) | 1 (8) | 6 (17) | 1 (7) | 0.709 |
Alcohol use (n,%) | 0 (100) | 9 (26) | 5 (33) | 0.196 |
BMI (kg/m2) | 38 ± 9 | 36 ± 6 | 33 ± 7 | 0.173 |
Overweight (n, %) | 0 (0) | 0 (0) | 1 (7) | 0.076 |
Obesity I (n, %) | 4 (33) | 4 (11) | 5 (33) | |
Obesity II (n, %) | 2 (17) | 11 (31) | 3 (20) | |
Obesity III (n, %) | 6 (50) | 9 (26) | 4 (27) | |
WC (cm) | 112 ± 20 | 114 ± 15 | 106 ± 14 | 0.229 |
Hypertension (n, %) | 2 (17) | 8 (23) | 5 (33) | 0.580 |
Dyslipidaemia (n, %) | 1 (8) | 8 (23) | 6 (40) | 0.155 |
Metabolic Syndrome (n, %) | 1 (8) | 5 (14) | 4 (27) | 0.395 |
IFG (n, %) | 2 (17) | 6 (17) | 1 (7) | 0.586 |
IGT (n, %) | 0 (0) | 5 (14) | 0 (0) | 0.136 |
HbA1c (%) | 5.5 ± 0.4 | 5.6 ± 0.5 | 5.6 ± 0.5 | 0.869 |
Parameters | Low Adherence to MD n = 12 | Intermediate Adherence to MD n = 35 | High Adherence to MD n = 15 | p Value * |
---|---|---|---|---|
Fasting plasma glucose (mg/dL) | 95 ± 5 | 96 ± 12 | 92 ± 7 | 0.125 |
Fasting plasma insulin (μU/mL) | 18 ± 6 | 16 ± 9 | 10 ± 4 a,b | 0.043 |
2 h glucose AUC (mg/dL·120 min) | 227 ± 10 | 246 ± 12 | 238 ± 13 | 0.602 |
2 h insulin AUC (μU/mL·120 min) | 131 ± 64 | 166 ± 94 | 102 ± 50 | 0.058 |
Fasting indices | ||||
HOMA-IR | 4.1 ± 1.2 | 3.8 ± 2.1 | 2.3 ± 0.9 a,b | 0.022 |
HOMA-β | 1472 ± 676 | 1448 ± 1247 | 983 ± 605 | 0.402 |
Post-load indices | ||||
OGIS (mL × min−1 × m−2) | 395 ± 60 | 388 ± 72 | 440 ± 52 | 0.137 |
ISI ((mg/dL)2/(μU/mL)2)−1/2) | 1.2 ± 0.2 | 1.5 ± 1.2 | 2.4 ± 1.5 a,b | 0.033 |
Insulinogenic index (μU/mg) | 1.3 ± 0.3 | 1.5 ± 1.0 | 1.6 ± 1.5 | 0.891 |
β-cell function (μU/mg) | 0.58 ± 0.3 | 0.73 ± 0.4 | 0.42 ± 0.2 b | 0.020 |
Disposition index | 0.09 ± 0.03 | 0.10 ± 0.07 | 0.16 ± 0.11 | 0.204 |
Parameters | High Adherence to MD vs. Low Adherence to MD | High Adherence to MD vs. Intermediate Adherence to MD | ||
---|---|---|---|---|
Mean Difference (95% CI) | Hedge’s g | Mean Difference (95% CI) | Hedge’s g | |
Fasting plasma insulin (μU/mL) | −7.90 (−14.5–−1.29) | 1.61 | −6.21 (−11.5–−0.88) | 0.77 |
HOMA-IR | −1.88 (−3.35–−0.41) | 1.63 | −1.56 (−2.74–−0.37) | 0.76 |
ISI ((mg/dL)2/(μU/mL)2)−1/2) | 0.91 (−0.03–1.84) | 1.06 | 0.57 (−0.08–−1.22) | 0.79 |
β-cell function (μU/mg) | −0.16 (−0.44–0.11) | 0.20 | −0.24 (−0.43–−0.05) | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vetrani, C.; Verde, L.; Colao, A.; Barrea, L.; Muscogiuri, G. The Mediterranean Diet: Effects on Insulin Resistance and Secretion in Individuals with Overweight or Obesity. Nutrients 2023, 15, 4524. https://doi.org/10.3390/nu15214524
Vetrani C, Verde L, Colao A, Barrea L, Muscogiuri G. The Mediterranean Diet: Effects on Insulin Resistance and Secretion in Individuals with Overweight or Obesity. Nutrients. 2023; 15(21):4524. https://doi.org/10.3390/nu15214524
Chicago/Turabian StyleVetrani, Claudia, Ludovica Verde, Annamaria Colao, Luigi Barrea, and Giovanna Muscogiuri. 2023. "The Mediterranean Diet: Effects on Insulin Resistance and Secretion in Individuals with Overweight or Obesity" Nutrients 15, no. 21: 4524. https://doi.org/10.3390/nu15214524
APA StyleVetrani, C., Verde, L., Colao, A., Barrea, L., & Muscogiuri, G. (2023). The Mediterranean Diet: Effects on Insulin Resistance and Secretion in Individuals with Overweight or Obesity. Nutrients, 15(21), 4524. https://doi.org/10.3390/nu15214524