Triglyceride–Glucose Index as a Potential Indicator of Sarcopenic Obesity in Older People
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Sarcopenic Obesity
2.3. TyG Index
2.4. Other Parameters and Covariates
2.5. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stenholm, S.; Harris, T.B.; Rantanen, T.; Visser, M.; Kritchevsky, S.B.; Ferrucci, L. Sarcopenic obesity: Definition, cause and consequences. Curr. Opin. Clin. Nutr. Metab. Care 2008, 11, 693–700. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Park, S.H.; Park, J.H.; Song, P.S.; Kim, D.K.; Kim, K.H.; Seol, S.H.; Kim, H.K.; Jang, H.J.; Lee, J.G.; Park, H.Y.; et al. Sarcopenic obesity as an independent risk factor of hypertension. J. Am. Soc. Hypertens. 2013, 7, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic obesity and risk of cardiovascular disease and mortality: A population-based cohort study of older males. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Khadra, D.; Itani, L.; Tannir, H.; Kreidieh, D.; Masri, E.D.; Ghoch, E.M. Association between sarcopenic obesity and higher risk of type 2 diabetes in adults: A systematic review and meta-analysis. World. J. Diabetes 2019, 10, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, B.; Alimohammadian, M.; Yaseri, M.; Majidi, A.; Boreiri, M.; Islam, F.; Poustchi, H.; Derakhshan, M.H.; Feizesani, A.; Pourshams, A.; et al. Multimorbidity: Epidemiology and risk factors in the Golestan cohort study, Iran: A cross-sectional analysis. Medicine 2016, 95, e2756. [Google Scholar] [CrossRef] [PubMed]
- An, K.O.; Kim, J.H. Association of sarcopenia and obesity with multimorbidity in Korean adults: A nationwide cross-sectional study. J. Am. Med. Dir. Assoc. 2016, 17, 960.e1–960.e7. [Google Scholar] [CrossRef]
- Stephen, W.C.; Janssen, I. Sarcopenic-obesity and cardiovascular disease risk in the elderly. J. Nutr. Health Aging 2009, 13, 460–466. [Google Scholar] [CrossRef]
- Garvey, W.T.; Maianu, L.; Huecksteadt, T.P.; Birnbaum, M.J.; Molina, J.M.; Ciaraldi, T.P. Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J. Clin. Investig. 1991, 87, 1072–1081. [Google Scholar] [CrossRef] [Green Version]
- Krssak, M.; Petersen, K.F.; Dresner, A.; Dipietro, L.; Vogel, S.M.; Rothman, D.L.; Roden, M.; Shulman, G.I. Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: A 1H NMR spectroscopy study. Diabetologia. 1999, 42, 113–115. [Google Scholar] [CrossRef] [Green Version]
- Danforth, E. Failure of adipocyte differentiation causes type II diabetes mellitus? Nat. Genet. 2000, 26, 13. [Google Scholar] [CrossRef]
- Kahn, B.B.; Flier, J.S. Obesity and insulin resistance. J. Clin. Investig. 2000, 106, 473–481. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shulman, G.I. Cellular mechanisms of insulin resistance. J. Clin. Investig. 2000, 106, 171–176. [Google Scholar] [CrossRef] [PubMed]
- Defronzo, R.A.; Tripathy, D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 2009, 32, S157–S163. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, D.R.; Hosker, J.P.; Rudenski, A.S.; Naylor, B.A.; Treacher, D.F.; Turner, R.C. Homeostasis model assessment: Insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985, 28, 412–419. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Choi, S.H.; Kim, H.J.; Chung, Y.S.; Lee, K.W.; Lee, H.C.; Huh, K.B.; Kim, D.J. Cutoff values of surrogate measures of insulin resistance for metabolic syndrome in Korean non-diabetic adults. J. Korean Med. Sci. 2006, 21, 695–700. [Google Scholar] [CrossRef] [Green Version]
- Simalestal-Malesdía, L.E.; Rodríguez-Morán, M.; Guerrero-Romero, F. The product of fasting glucose and triglycerides as surrogate for identifying insulin resistance in apparently healthy subjects. Metab. Syndr. Relat. Disord. 2008, 6, 299–304. [Google Scholar] [CrossRef]
- Vasques, A.C.J.; Novaes, F.S.; de Oliveira, M.D.S.; Matos Souza, J.R.; Yamanaka, A.; Pareja, J.C.; Tambascia, M.A.; Saad, M.J.; Geloneze, B. TyG index performs better than HOMA in a Brazilian population: A hyperglycemic clamp validated study. Diabetes Res. Clin. Pract. 2011, 93, e98–e100. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Kwon, H.S.; Park, Y.M.; Ha, H.S.; Jeong, S.H.; Yang, H.K.; Lee, J.H.; Yim, H.W.; Kang, M.I.; Lee, W.C.; et al. Predicting the development of diabetes using the product of triglycerides and glucose: The Chungju Metabolic Disease Cohort (CMC) study. PLoS ONE 2014, 9, e90430. [Google Scholar] [CrossRef]
- Lee, S.B.; Kim, M.K.; Kang, S.; Park, K.; Kim, J.H.; Baik, S.J.; Nam, J.S.; Ahn, C.W.; Park, J.S. Triglyceride glucose index is superior to the homeostasis model assessment of insulin resistance for predicting nonalcoholic fatty liver disease in Korean adults. Endocrinol. Metab. 2019, 34, 179–186. [Google Scholar] [CrossRef]
- Wang, S.; Shi, J.; Peng, Y.; Fang, Q.; Mu, Q.; Gu, W.; Hong, J.; Zhang, Y.; Wang, W. Stronger association of triglyceride glucose index than the HOMA-IR with arterial stiffness in patients with type 2 diabetes: A real-world single-centre study. Cardiovasc. Diabetol. 2021, 20, 82. [Google Scholar] [CrossRef]
- Kim, B.; Tsujimoto, T.; So, R.; Tanaka, K. Changes in lower extremity muscle mass and muscle strength after weight loss in obese males: A prospective study. Obes. Res. Clin. Pract. 2015, 9, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Visser, M.; Newman, A.B.; Nevitt, M.C.; Kritchevsky, S.B.; Stamm, E.B.; Goodpaster, B.H.; Harriset, T.B. Reexamining the sarcopenia hypothesis. muscle mass versus muscle strength. health, aging, and body composition study research group. Ann. N. Y. Acad. Sci. 2000, 904, 456–461. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.S.; Lee, Y.; Chung, Y.S.; Lee, D.J.; Joo, N.S.; Hong, D.; Song, G.E.; Kim, H.J.; Choi, Y.J.; Kim, K.M. Prevalence of sarcopenia and sarcopenic obesity in the Korean population based on the Fourth Korean National Health and Nutritional Examination Surveys. J. Gerontol. A Biol. Sci. Med. Sci. 2012, 67, 1107–1113. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Tsujimoto, T.; So, R.; Zhao, X.; Oh, S.; Tanaka, K. Changes in muscle strength after diet-induced weight reduction in adult males with obesity: A prospective study. Diabetes Metab. Syndr. Obes. 2017, 10, 187–194. [Google Scholar] [CrossRef] [Green Version]
- Janssen, I.; Heymsfield, S.B.; Ross, R. Low relative skeletal muscle mass (sarcopenia) in older persons is associated with functional impairmalest and physical disability. J. Am. Geriatr. Soc. 2002, 50, 889–896. [Google Scholar] [CrossRef] [Green Version]
- Fielding, R.A.; Vellas, B.; Evans, W.J.; Bhasin, S.; Morley, J.E.; Newman, A.B.; Kan, G.A.V.; Andrieu, S.; Bauer, J.; Breuille, D.; et al. Sarcopenia: An undiagnosed condition in older adults. Current consensus definition: Prevalence, etiology, and consequences. International working group on sarcopenia. J. Am. Med. Dir. Assoc. 2011, 12, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Kweon, S.; Kim, Y.; Jang, M.J.; Kim, Y.J.; Kim, K.R.; Choi, S.H.; Chun, C.M.; Khang, Y.H.; Oh, K.W. Data resource profile: The Korea National Health and Nutrition Examination Survey (KNHANES). Int. J. Epidemiol. 2014, 43, 69–77. [Google Scholar] [CrossRef] [Green Version]
- Craig, C.L.; Marshall, A.L.; Sjostrom, M.; Bauman, A.E.; Booth, M.L.; Ainsworth, B.E.; Pratt, M.; Ekelund, U.; Yngve, A.; Sallis, J.F.; et al. International physical activity questionnaire: 12-country reliability and validity. Med. Sci. Sports Exerc. 2003, 35, 1381–1395. [Google Scholar] [CrossRef] [Green Version]
- Kim, B.; Ku, M.; Tanaka, K.; Isobe, T.; Sakae, T.; Oh, S. Cardiorespiratory fitness is strongly linked to metabolic syndrome among physical fitness components: A retrospective cross-sectional study. J. Physiol. Anthropol. 2020, 39, 30. [Google Scholar] [CrossRef]
- Fritz, J.; Brozek, W.; Concin, H.; Nagel, G.; Kerschbaum, J.; Lhotta, K.; Ulmer, H.; Zitt, E. The triglyceride-glucose index and obesity-related risk of end-stage kidney disease in Austrian adults. JAMA Netw. Open. 2021, 4, e212612. [Google Scholar] [CrossRef]
- Kim, B.; Kim, G.; Kim, E.; Park, J.; Isobe, T.; Sakae, T.; Oh, S. The a body shape index might be a stronger predictor of chronic kidney disease than BMI in a senior population. Int. J. Environ. Res. Public Health 2021, 18, 12874. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, G.M.; Kim, E.; Park, J.; Isobe, T.; Mori, Y.; Oh, S. The anthropometric measure “a body shape index” may predict the risk of osteoporosis in middle-aged and older Korean people. Int. J. Environ. Res. Public Health 2022, 19, 4926. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; Kim, G.; Oh, S. Use of the visceral adiposity index as an indicator of chronic kidney disease in older adults: Comparison with body mass index. J. Clin. Med. 2022, 11, 6297. [Google Scholar] [CrossRef] [PubMed]
- Bastard, J.P.; Maachi, M.; Lagathu, C.; Kim, M.J.; Caron, M.; Vidal, H.; Capeau, J.; Feve, B. Recent advances in the relationship between obesity, inflammation, and insulin resistance. Eur. Cytokine Netw. 2006, 17, 4–12. [Google Scholar] [PubMed]
- Dyck, D.J.; Heigenhauser, G.J.; Bruce, C.R. The role of adipokines as regulators of skeletal muscle fatty acid metabolism and insulin sensitivity. Acta Physiol. 2006, 186, 5–16. [Google Scholar] [CrossRef]
- Goodpaster, B.H.; Thaete, F.L.; Kelley, D.E. Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am. J. Clin. Nutr. 2000, 71, 885–892. [Google Scholar] [CrossRef] [Green Version]
- Goodpaster, B.H.; Krishnaswami, S.; Resnick, H.; Kelley, D.E.; Haggerty, C.; Harris, T.B.; Ann VSchwartz, A.V.; Kritchevsky, S.; Newman, A.B. Association between regional adipose tissue distribution and both type 2 diabetes and impaired glucose tolerance in elderly males and females. Diabetes Care 2003, 26, 372–379. [Google Scholar] [CrossRef] [Green Version]
- Srikanthan, P.; Karlamangla, A.S. Relative muscle mass is inversely associated with insulin resistance and prediabetes. Findings from the third national health and nutrition examination survey. J. Clin. Endocrinol. Metab. 2011, 96, 2898–2903. [Google Scholar] [CrossRef] [Green Version]
- Kalyani, R.R.; Corriere, M.; Ferrucci, L. Age-related and disease-related muscle loss: The effect of diabetes, obesity, and other diseases. Lancet Diabetes Endocrinol. 2014, 2, 819–829. [Google Scholar] [CrossRef] [Green Version]
- Lv, L.; Zhou, Y.; Chen, X.; Gong, L.; Wu, J.; Luo, W.; Shen, Y.; Han, S.; Hu, J.; Wang, Y.; et al. Chongqing Diabetes Registry Group. Relationship between the TyG Index and diabetic kidney disease in patients with type-2 diabetes mellitus. Diabetes Metab. Syndr. Obes. 2021, 14, 3299–3306. [Google Scholar] [CrossRef]
- Sabatino, A.; Cuppari, L.; Stenvinkel, P.; Lindholm, B.; Avesani, C.M. Sarcopenia in chronic kidney disease: What have we learned so far? J. Nephrol. 2021, 34, 1347–1372. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.Y.; Lee, E.S.; Kim, J.H.; Park, S.E.; Park, C.Y.; Oh, K.W.; Park, S.W.; Rhee, E.J.; Lee, W.Y. Predictive value of triglyceride glucose index for the risk of incident diabetes: A 4-year retrospective longitudinal study. PLoS ONE 2016, 11, e0163465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moon, S.; Park, J.S.; Ahn, Y. The cut-off values of triglycerides and glucose index for metabolic syndrome in American and Korean adolescents. J. Korean Med. Sci. 2017, 32, 427–433. [Google Scholar] [CrossRef] [PubMed]
Overall (n = 3821) | Males (n = 1636) | Females (n = 2185) | p Value | |
---|---|---|---|---|
TyG index | 8.70 ± 0.53 | 8.71 ± 0.53 | 8.70 ± 0.52 | 0.834 |
Sarcopenia index | 27.83 ± 4.28 | 27.88 ± 4.32 | 27.79 ± 4.25 | 0.520 |
Body mass index, kg/m2 | 23.8 ± 3.2 | 23.8 ± 3.1 | 23.8 ± 3.2 | 0.784 |
Age, years | 69.2 ± 6.0 | 69.1 ± 5.9 | 69.4 ± 6.1 | 0.155 |
Height, cm | 158.0 ± 8.9 | 158.3 ± 8.8 | 157.7 ± 9.0 | <0.05 |
Body mass, kg † | 59.6 ± 10.0 | 59.8 ± 9.7 | 59.5 ± 10.3 | 0.242 |
ASM, kg | 16.61 ± 3.92 | 16.70 ± 3.88 | 16.55 ± 3.95 | 0.244 |
Glucose, mg/dL † | 101.8 ± 21.5 | 102.2 ± 22.2 | 101.5 ± 21.0 | 0.941 |
Triglyceride, mg/dL | 135.4 ± 68.9 | 135.4 ± 69.0 | 135.4 ± 68.9 | 0.999 |
A The Lowest | B The Middle | C The Highest | Post-Hoc | SS | P forTrend ‡ | |
---|---|---|---|---|---|---|
Males | ||||||
n | 542 | 551 | 543 | |||
TyG index † | 8.12 ± 0.23 (8.10, 8.14) | 8.69 ± 0.14 (8.67, 8.70) | 9.31 ± 0.25 (9.29, 9.33) | A < B < C | 42.89 | <0.001 |
Sarcopenia index † | 28.86 ± 4.38 (28.49, 29.23) | 27.63 ± 4.44 (27.26, 28.01) | 27.15 ± 3.96 (26.82, 27.49) | A > B, C | −6.30 | <0.001 |
BMI, kg/m2 † | 23.0 ± 3.3 (22.7, 23.3) | 23.9 ± 3.1 (23.6, 24.1) | 24.6 ± 2.9 (24.3, 24.8) | A < B < C | 8.43 | <0.001 |
Age, years | 68.9 ± 6.0 (68.4, 69.4) | 69.4 ± 5.9 (68.9, 69.9) | 68.9 ± 5.9 (68.4, 69.4) | NS | 0.11 | 0.914 |
Height, cm † | 158.9 ± 9.0 (158.1, 159.6) | 158.1 ± 8.3 (157.4, 158.8) | 158.1 ± 9.1 (157.3, 158.8) | NS | −1.56 | 0.119 |
Body mass, kg | 58.2 ± 10.1 (57.3, 59.0) | 59.8 ± 9.3 (59.0, 60.6) | 61.5 ± 9.4 (60.7, 62.3) | A < B < C | 5.59 | <0.001 |
ASM, kg | 16.78 ± 3.84 (16.46, 17.10) | 16.55 ± 3.87 (16.22, 16.87) | 16.77 ± 3.94 (16.44, 17.10) | NS | −0.18 | 0.859 |
FPG, mg/dL † | 94.4 ± 13.1 (93.3, 95.5) | 99.7 ± 16.8 (98.3, 101.1) | 112.5 ± 29.4 (110.0, 114.9) | A < B < C | 14.33 | <0.001 |
TG, mg/dL † | 74.0 ± 17.4 (72.5, 75.4) | 122.3 ± 23.4 (120.4, 124.3 | 210.1 ± 63.0 (204.8, 215.4) | A < B < C | 39.68 | <0.001 |
Females | ||||||
n | 727 | 726 | 732 | |||
TyG index † | 8.12 ± 0.24 (8.11, 8.14) | 8.69 ± 0.13 (8.68, 8.70) | 9.29 ± 0.26 (9.27, 9.31) | A < B < C | 49.57 | <0.001 |
Sarcopenia index † | 28.70 ± 4.47 (28.37, 29.03) | 27.51 ± 4.17 (27.21, 27.82) | 27.16 ± 3.94 (26.87, 27.45) | A > B, C | −6.46 | <0.001 |
BMI, kg/m2 | 22.7 ± 3.2 (22.5, 23.0) | 24.0 ± 3.1 (23.7, 24.2) | 24.8 ± 3.0 (24.6, 25.1) | A < B < C | 12.73 | <0.001 |
Age, years | 69.6 ± 6.0 (69.2, 70.0) | 69.1 ± 6.0 (68.6, 69.5) | 69.4 ± 6.2 (68.9, 69.8) | NS | −0.77 | 0.441 |
Height, cm | 157.6 ± 9.1 (157.0, 158.3) | 157.4 ± 8.9 (156.7, 158.0) | 158.2 ± 8.8 (157.5, 158.8) | NS | 0.92 | 0.356 |
Body mass, kg | 56.6 ± 10.2 (55.9, 57.4) | 59.5 ± 10.0 (58.8, 60.3) | 62.3 ± 10.0 (61.6, 63.0) | A < B < C | 10.99 | <0.001 |
ASM, kg † | 16.23 ± 3.82 (15.95, 16.51) | 16.41 ± 3.92 (16.12, 16.70) | 17.00 ± 4.08 (16.71, 17.30) | A, B < C | 3.56 | <0.001 |
FPG, mg/dL † | 94.6 ± 12.3 (93.7, 95.5) | 99.5 ± 16.2 (98.4, 100.7) | 110.4 ± 27.8 (108.4, 112.4) | A < B < C | 15.74 | <0.001 |
TG, mg/dL † | 73.9 ± 16.8 (72.7, 75.1) | 122.1 ± 21.0 (120.5, 123.6) | 209.8 ± 63.0 (205.2, 214.3) | A < B < C | 46.55 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, B.; Kim, G.; Lee, Y.; Taniguchi, K.; Isobe, T.; Oh, S. Triglyceride–Glucose Index as a Potential Indicator of Sarcopenic Obesity in Older People. Nutrients 2023, 15, 555. https://doi.org/10.3390/nu15030555
Kim B, Kim G, Lee Y, Taniguchi K, Isobe T, Oh S. Triglyceride–Glucose Index as a Potential Indicator of Sarcopenic Obesity in Older People. Nutrients. 2023; 15(3):555. https://doi.org/10.3390/nu15030555
Chicago/Turabian StyleKim, Bokun, Gwonmin Kim, Yongkook Lee, Keisuke Taniguchi, Tomonori Isobe, and Sechang Oh. 2023. "Triglyceride–Glucose Index as a Potential Indicator of Sarcopenic Obesity in Older People" Nutrients 15, no. 3: 555. https://doi.org/10.3390/nu15030555
APA StyleKim, B., Kim, G., Lee, Y., Taniguchi, K., Isobe, T., & Oh, S. (2023). Triglyceride–Glucose Index as a Potential Indicator of Sarcopenic Obesity in Older People. Nutrients, 15(3), 555. https://doi.org/10.3390/nu15030555