High-Risk Lipoprotein(a) Levels in Saudi Women and Its Relationship to Menopause and Adiposity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Settings
2.2. Participants and Protocol
2.3. Menstrual History Measures
2.4. Study Procedures
2.4.1. Anthropometrics Measurements and Body Adiposity Assessment
2.4.2. Plasma Lipoprotein(a) and Lipid Profile Measurement
2.5. Statistical Analysis
3. Results
3.1. Clinical and Biochemical Characteristics
3.2. Body Adiposity Parameters Associated with Menopausal Status
3.3. Lipoprotein(a) Level Associated with Menopausal Status and Age
3.4. Correlations among Lipoprotein(a) Levels and Clinical Risk Factors
3.5. Clinical Predictors of Lipoprotein(a) Level
4. Discussion
Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kronenberg, F.; Mora, S.; Stroes, E.S.G.; A Ference, B.; Arsenault, B.J.; Berglund, L.; Dweck, M.R.; Koschinsky, M.; Lambert, G.; Mach, F.; et al. Lipoprotein(a) in atherosclerotic cardiovascular disease and aortic stenosis: A European Atherosclerosis Society consensus statement. Eur. Heart J. 2022, 43, 3925–3946. [Google Scholar] [CrossRef] [PubMed]
- Reyes-Soffer, G.; Ginsberg, H.N.; Berglund, L.; Duell, P.B.; Heffron, S.P.; Kamstrup, P.R.; Lloyd-Jones, D.M.; Marcovina, S.M.; Yeang, C.; Koschinsky, M.L. Lipoprotein(a): A Genetically Determined, Causal, and Prevalent Risk Factor for Atherosclerotic Cardiovascular Disease: A Scientific Statement From the American Heart Association. Arterioscler. Thromb. Vasc. Biol. 2022, 42, e48–e60. [Google Scholar] [CrossRef] [PubMed]
- Habib, S.S.; Abdel-Gader, A.M.; Kurdi, M.I.; Al-Aseri, Z.; Soliman, M.M. Lipoproteina(a) is a feature of the presence, diffuseness, and severity of coronary artery disease in Saudi population. Saudi Med. J. 2009, 30, 346–352. [Google Scholar] [PubMed]
- Maranhão, R.C.; Carvalho, P.O.; Strunz, C.; Pileggi, F. Lipoprotein(a): Structure, pathophysiology and clinical implications. Arq. Bras. Cardiol. 2014, 103, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Mehta, A.; Jain, V.; Saeed, A.; Saseen, J.J.; Gulati, M.; Ballantyne, C.M.; Virani, S.S. Lipoprotein(a) and ethnicities. Atherosclerosis 2022, 349, 42–52. [Google Scholar] [CrossRef]
- Koschinsky, M.L.; Kronenberg, F. The long journey of lipoprotein(a) from cardiovascular curiosity to therapeutic target. Atherosclerosis 2022, 349, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Simony, S.B.; Mortensen, M.B.; Langsted, A.; Afzal, S.; Kamstrup, P.R.; Nordestgaard, B.G. Sex differences of lipoprotein(a) levels and associated risk of morbidity and mortality by age: The Copenhagen General Population Study. Atherosclerosis 2022, 355, 76–82. [Google Scholar] [CrossRef] [PubMed]
- Torosyan, N.; Visrodia, P.; Torbati, T.; Minissian, M.B.; Shufelt, C.L. Dyslipidemia in midlife women: Approach and considerations during the menopausal transition. Maturitas 2022, 166, 14–20. [Google Scholar] [CrossRef]
- Schwartz, G.G.; Ballantyne, C.M. Existing and emerging strategies to lower Lipoprotein(a). Atherosclerosis 2022, 349, 110–122. [Google Scholar] [CrossRef]
- Fogacci, F.; Borghi, C.; Davinelli, S.; Scapagnini, G.; Cicero, A.F.G. Impact of anti-oestrogen therapy on lipoprotein(a) in postmenopausal women: A systematic review and meta-analysis of double-blind placebo-controlled clinical studies. Endocrine 2022. [Google Scholar] [CrossRef] [PubMed]
- Marlatt, K.L.; Redman, L.M.; Beyl, R.A.; Smith, S.R.; Champagne, C.M.; Yi, F.; Lovejoy, J.C. Racial differences in body composition and cardiometabolic risk during the menopause transition: A prospective, observational cohort study. Am. J. Obstet. Gynecol. 2020, 222, 365.e1–365.e18. [Google Scholar] [CrossRef] [PubMed]
- Greendale, G.A.; Sternfeld, B.; Huang, M.; Han, W.; Karvonen-Gutierrez, C.; Ruppert, K.; Cauley, J.A.; Finkelstein, J.S.; Jiang, S.-F.; Karlamangla, A.S. Changes in body composition and weight during the menopause transition. JCI Insight 2019, 4, e124865. [Google Scholar] [CrossRef] [PubMed]
- Shifren, J.L.; Gass, M.L.S. The North American Menopause Society recommendations for clinical care of midlife women. Menopause 2014, 21, 1038–1062. [Google Scholar] [CrossRef] [PubMed]
- El Khoudary, S.R.; Greendale, G.; Crawford, S.L.; Avis, N.E.; Brooks, M.M.; Thurston, R.C.; Karvonen-Gutierrez, C.; Waetjen, L.E.; Matthews, K. The menopause transition and women’s health at midlife: A progress report from the Study of Women’s Health Across the Nation (SWAN). Menopause 2019, 26, 1213–1227. [Google Scholar] [CrossRef] [PubMed]
- Von Elm, E.; Altman, D.G.; Egger, M.; Pocock, S.J.; Gøtzsche, P.C.; Vandenbroucke, J.P. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) Statement: Guidelines for Reporting Observational Studies. PLOS Med. 2007, 4, e296. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- WMA Declaration of Helsinki—Ethical Principles for Medical Research Involving Human Subjects. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 21 November 2021).
- Harlow, S.D.; Gass, M.; Hall, J.E.; Lobo, R.; Maki, P.; Rebar, R.W.; Sherman, S.; Sluss, P.M.; de Villiers, T.J. Executive summary of the Stages of Reproductive Aging Workshop + 10: Addressing the unfinished agenda of staging reproductive aging. Menopause 2012, 19, 387–395. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000; p. 252. [Google Scholar]
- Jaffrin, M.Y. Body composition determination by bioimpedance: An update. Curr. Opin. Clin. Nutr. Metab. Care 2009, 12, 482–486. [Google Scholar] [CrossRef]
- Friedewald, W.T.; Levy, R.I.; Fredrickson, D.S. Estimation of the Concentration of Low-Density Lipoprotein Cholesterol in Plasma, Without Use of the Preparative Ultracentrifuge. Clin. Chem. 1972, 18, 499–502. [Google Scholar] [CrossRef]
- Dati, F.; Tate, J.R.; Marcovina, S.M.; Steinmetz, A. First WHO/IFCC International Reference Reagent for Lipoprotein(a) for Immunoassay--Lp(a) SRM 2B. Clin. Chem. Lab. Med. 2004, 42, 670–676. [Google Scholar] [CrossRef]
- Anagnostis, P.; Antza, C.; Trakatelli, C.; Lambrinoudaki, I.; Goulis, D.G.; Kotsis, V. The effect of menopause on lipoprotein (a) concentrations: A systematic review and meta-analysis. Maturitas 2023, 167, 39–45. [Google Scholar] [CrossRef]
- Steffen, B.T.; Thanassoulis, G.; Duprez, D.; Stein, J.H.; Karger, A.; Tattersall, M.C.; Kaufman, J.; Guan, W.; Tsai, M.Y. Race-Based Differences in Lipoprotein(a)-Associated Risk of Carotid Atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 2019, 39, 523–529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, S.-L.; Wu, N.-Q.; Guo, Y.-L.; Zhu, C.-G.; Gao, Y.; Sun, J.; Xu, R.-X.; Liu, G.; Dong, Q.; Li, J.-J. Lipoprotein(a) and coronary artery disease in Chinese postmenopausal female patients: A large cross-sectional cohort study. Postgrad. Med. J. 2019, 95, 534–540. [Google Scholar] [CrossRef]
- Gheorghe, G.; Toth, P.P.; Bungau, S.; Behl, T.; Ilie, M.; Stoian, A.P.; Bratu, O.G.; Bacalbasa, N.; Rus, M.; Diaconu, C.C. Cardiovascular Risk and Statin Therapy Considerations in Women. Diagnostics 2020, 10, 483. [Google Scholar] [CrossRef]
- Salpeter, S.R.; Walsh, J.M.E.; Ormiston, T.M.; Greyber, E.; Buckley, N.S.; Salpeter, E.E. Meta-analysis: Effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diab. Obes. Metab. 2006, 8, 538–554. [Google Scholar] [CrossRef] [PubMed]
- Gannagé-Yared, M.-H.; Lahoud, C.; Younes, N.; Chedid, R.; Sleilaty, G. Prevalence and status of Lipoprotein (a) among Lebanese school children. Sci. Rep. 2020, 10, 20620. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Itani, L.; Gualtieri, P.; Pellegrini, M.; El Ghoch, M.; De Lorenzo, A. New BMI Cut-Off Points for Obesity in Middle-Aged and Older Adults in Clinical Nutrition Settings in Italy: A Cross-Sectional Study. Nutrients 2022, 14, 4848. [Google Scholar] [CrossRef]
- Landgren, B.-M.; Collins, A.; Csemiczky, G.; Burger, H.; Baksheev, L.; Robertson, D.M. Menopause Transition: Annual Changes in Serum Hormonal Patterns over the Menstrual Cycle in Women during a Nine-Year Period Prior to Menopause. J. Clin. Endocrinol. Metab. 2004, 89, 2763–2769. [Google Scholar] [CrossRef]
- Agostini, D.; Zeppa, S.D.; Lucertini, F.; Annibalini, G.; Gervasi, M.; Marini, C.F.; Piccoli, G.; Stocchi, V.; Barbieri, E.; Sestili, P. Muscle and Bone Health in Postmenopausal Women: Role of Protein and Vitamin D Supplementation Combined with Exercise Training. Nutrients 2018, 10, 1103. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lazzer, S.; Bedogni, G.; Lafortuna, C.; Marazzi, N.; Busti, C.; Galli, R.; De Col, A.; Agosti, F.; Sartorio, A. Relationship between basal metabolic rate, gender, age, and body composition in 8780 white obese subjects. Obesity 2010, 18, 71–78. [Google Scholar] [CrossRef]
- Iannuzzi-Sucich, M.; Prestwood, K.M.; Kenny, A.M. Prevalence of sarcopenia and predictors of skeletal muscle mass in healthy, older men and women. J. Gerontol. A Biol. Sci. Med. Sci. 2002, 57, M772–M777. [Google Scholar] [CrossRef]
- Van Geel, T.A.; Geusens, P.P.; Winkens, B.; Sels, J.P.J.; Dinant, G.J. Measures of bioavailable serum testosterone and estradiol and their relationships with muscle mass, muscle strength and bone mineral density in postmenopausal women: A cross-sectional study. Eur. J. Endocrinol. 2009, 160, 681–687. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behl, T.; Bungau, S.; Kumar, K.; Zengin, G.; Khan, F.; Kumar, A.; Kaur, R.; Venkatachalam, T.; Tit, D.M.; Vesa, C.M.; et al. Pleotropic Effects of Polyphenols in Cardiovascular System. Biomed. Pharmacother. 2020, 130, 110714. [Google Scholar] [CrossRef] [PubMed]
- Shlipak, M.G.; Simon, J.A.; Vittinghoff, E.; Lin, F.; Barrett-Connor, E.; Knopp, R.H.; Levy, R.I.; Hulley, S.B. Estrogen and progestin, lipoprotein(a), and the risk of recurrent coronary heart disease events after menopause. JAMA 2000, 283, 1845–1852. [Google Scholar] [CrossRef] [Green Version]
- Fogacci, F.; Cicero, A.F.G.; D’Addato, S.; D’Agostini, L.; Rosticci, M.; Giovannini, M.; Bertagnin, E.; Borghi, C. Serum lipoprotein(a) level as long-term predictor of cardiovascular mortality in a large sample of subjects in primary cardiovascular prevention: Data from the Brisighella Heart Study. Eur. J. Intern. Med. 2017, 37, 49–55. [Google Scholar] [CrossRef] [PubMed]
All (n = 229) | Premenopausal Women (n = 68) | Perimenopausal Women (n = 63) | Postmenopausal Women (n = 98) | ||
---|---|---|---|---|---|
General Characteristics | Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | p Value |
Age (years) | 50.61 ± 11.27 | 37.41 ± 7.22 | 49.55 ± 1.63 | 60.45 ± 6.33 | <0.001 * |
Weight (kg) | 77.84 ± 13.74 | 75.21 ± 10.75 | 77.67 ± 14.83 | 79.77 ± 14.66 | 0.109 |
Height (cm) | 154.21 ± 12.91 | 157.10 ± 5.59 | 151.26 ± 22.31 | 154.11 ± 6.36 | 0.034 * |
Body Composition Indices | |||||
BMI (kg/m2) | 32.32 ± 5.83 | 30.64 ± 4.70 | 32.13 ± 5.89 | 33.60 ± 6.23 | 0.005 * |
% BF | 41.21 ± 6.57 | 39.01 ± 6.04 | 40.95 ± 8.01 | 42.91 ± 5.39 | 0.001 * |
FM (kg) | 32.67 ± 9.84 | 29.69 ± 7.50 | 32.64 ± 11.02 | 34.75 ± 10.02 | 0.005 * |
% FFM | 58.78 ± 6.57 | 60.98 ± 6.04 | 59.04 ± 8.01 | 57.08 ± 5.39 | 0.001 * |
FFM (kg) | 45.17 ± 5.91 | 45.51 ± 5.73 | 45.02 ± 5.74 | 45.02 ± 6.19 | 0.847 |
FMI | 13.61 ± 4.20 | 12.10 ± 3.25 | 13.59 ± 4.59 | 14.67 ± 4.24 | <0.001 * |
FFMI | 18.72 ± 2.23 | 18.43 ± 2.02 | 18.66 ± 1.90 | 18.96 ± 2.54 | 0.316 |
NFFMI | 20.23 ± 2.30 | 19.83 ± 2.09 | 20.17 ± 1.84 | 20.55 ± 2.66 | 0.137 |
Cardiovascular Risk Factors | |||||
SBP (mmHg) | 135.77 ± 19.80 | 134.72 ± 19.28 | 136.00 ± 18.73 | 136.36 ± 20.96 | 0.867 |
DBP (mmHg) | 81.03 ± 11.49 | 81.94 ± 11.20 | 80.30 ± 10.31 | 80.86 ± 12.45 | 0.707 |
Pulse Pressure | 54.74 ± 17.12 | 52.77 ± 17.66 | 55.69 ± 16.14 | 55.50 ± 17.41 | 0.529 |
MAP | 100.03 ± 11.49 | 100.94 ± 11.20 | 99.30 ± 10.31 | 99.86 ± 12.45 | 0.707 |
TC (mmol/L) | 4.61 ± 0.99 | 4.35 ± 0.97 | 5.02 ± 0.79 | 4.53 ± 1.05 | <0.001 * |
TG (mmol/L) | 1.46 ± 0.84 | 1.48 ± 0.84 | 1.50 ± 0.74 | 1.42 ± 0.91 | 0.795 |
LDL-C (mmol/L) | 2.72 ± 0.83 | 2.59 ± 0.83 | 2.92 ± 0.73 | 2.69 ± 0.88 | 0.064 |
HDL-C (mmol/L) | 1.23 ± 0.43 | 1.27 ± 0.42 | 1.37 ± 0.42 | 1.13 ± 0.41 | 0.002 * |
HbA1c % | 6.30 ± 1.99 | 5.42 ± 1.50 | 6.96 ± 2.41 | 6.49 ± 1.78 | <0.001 * |
FBG (mmol/L) | 6.54 ± 3.10 | 5.50 ± 2.57 | 7.30 ± 3.65 | 6.77 ± 2.88 | 0.002 * |
Lp(a) (mg/dL) | 28.37 ± 11.60 | 20.98 ± 12.307 | 29.92 ± 9.53 | 32.49 ± 9.83 | <0.001 * |
Variables | All (n = 229) | Premenopausal Women (n = 68) | Perimenopausal Women (n = 63) | Postmenopausal Women (n = 98) |
---|---|---|---|---|
R value | ||||
Age (years) | 0.488 ** | 0.294 * | 0.522 ** | 0.307 ** |
BMI | 0.137 * | 0.056 | 0.095 | 0.076 |
%BF | 0.219 ** | 0.071 | 0.244 | 0.104 |
FM (kg) | 0.200 ** | 0.121 | 0.125 | 0.095 |
%FFM | −0.219 ** | −0.071 | −0.244 | −0.104 |
FFM (kg) | 0.039 | 0.114 | −0.095 | 0.065 |
FMI | 0.208 ** | 0.082 | 0.157 | 0.104 |
FFMI | 0.055 | −0.018 | −0.097 | 0.073 |
NFFMI | 0.057 | −0.017 | −0.050 | 0.054 |
SBP | −0.059 | −0.160 | −0.093 | −0.046 |
DBP | 0.038 | −0.080 | 0.175 | 0.076 |
Pulse Pressure | −0.041 | −0.091 | −0.157 | −0.052 |
MAP | 0.038 | −0.080 | 0.175 | 0.076 |
TC | 0.210 ** | 0.362 ** | −0.047 | 0.183 |
TG | −0.009 | −0.059 | −0.006 | 0.024 |
LDL-C | 0.160 * | 0.285 * | 0.112 | 0.118 |
HDL-C | −0.030 | 0.017 | 0.023 | 0.062 |
HbA1c % | 0.275 ** | 0.204 | 0.235 | 0.129 |
FBG | 0.269 ** | 0.097 | 0.211 | 0.166 |
TG/HDL-C | −0.116 | −0.135 | −0.117 | 0.094 |
Predictors | R | R2 | Unstandardized B | Standardized B | p Value | 95.0% Confidence Limits | |
---|---|---|---|---|---|---|---|
Model 1 | Age | 0.459 | 0.211 | 0.472 | 0.459 | <0.001 | 0.353–0.592 |
Model 2 | Age | 0.489 | 0.240 | 0.446 | 0.434 | <0.001 | 0.327–0.565 |
TC | 2.007 | 0.172 | 0.004 | 0.659–3.356 | |||
Model 3 | Age | 0.510 | 0.260 | 0.411 | 0.400 | <0.001 | 0.290–0.532 |
TC | 1.915 | 0.164 | 0.005 | 0.580–3.251 | |||
% FFM | −0.259 | −0.147 | 0.014 | −0.464–−0.053 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aljawini, N.; Aldakhil, L.O.; Habib, S.S. High-Risk Lipoprotein(a) Levels in Saudi Women and Its Relationship to Menopause and Adiposity. Nutrients 2023, 15, 693. https://doi.org/10.3390/nu15030693
Aljawini N, Aldakhil LO, Habib SS. High-Risk Lipoprotein(a) Levels in Saudi Women and Its Relationship to Menopause and Adiposity. Nutrients. 2023; 15(3):693. https://doi.org/10.3390/nu15030693
Chicago/Turabian StyleAljawini, Nouf, Lateefa O. Aldakhil, and Syed Shahid Habib. 2023. "High-Risk Lipoprotein(a) Levels in Saudi Women and Its Relationship to Menopause and Adiposity" Nutrients 15, no. 3: 693. https://doi.org/10.3390/nu15030693
APA StyleAljawini, N., Aldakhil, L. O., & Habib, S. S. (2023). High-Risk Lipoprotein(a) Levels in Saudi Women and Its Relationship to Menopause and Adiposity. Nutrients, 15(3), 693. https://doi.org/10.3390/nu15030693