Nutrients-Rich Food Index Scores and the Overall Survival of Ovarian Cancer Patients: Results from the Ovarian Cancer Follow-Up Study, a Prospective Cohort Study
Abstract
:1. Introduction
2. Methods
2.1. Study Population
2.2. Dietary Exposure Assessment
2.3. Covariates
2.4. Immunohistochemistry Analysis
2.5. Follow-Up and Outcome
2.6. Statistical Analysis
3. Results
3.1. The Components of NR, LIM, and NRF Index Scores
3.2. Participant Characteristics
3.3. Association between NR, LIM, and NRF Index Score and OC Survival
3.4. The Joint Effect of NRF Index Score and Dietary Energy Intake on OC Survival
3.5. Subgroup Analyses and Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Menon, U.; Karpinskyj, C.; Gentry-Maharaj, A. Ovarian Cancer Prevention and Screening. Obstet. Gynecol. 2018, 131, 909–927. [Google Scholar] [CrossRef] [Green Version]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Torre, L.A.; Trabert, B.; DeSantis, C.E.; Miller, K.D.; Samimi, G.; Runowicz, C.D.; Gaudet, M.M.; Jemal, A.; Siegel, R.L. Ovarian cancer statistics, 2018. CA Cancer J. Clin. 2018, 68, 284–296. [Google Scholar] [CrossRef] [Green Version]
- Doubeni, C.A.; Doubeni, A.R.; Myers, A.E. Diagnosis and Management of Ovarian Cancer. Am. Fam. Physician 2016, 93, 937–944. [Google Scholar]
- Moufarrij, S.; Dandapani, M.; Arthofer, E.; Gomez, S.; Srivastava, A.; Lopez-Acevedo, M.; Villagra, A.; Chiappinelli, K.B. Epigenetic therapy for ovarian cancer: Promise and progress. Clin. Epigenetics 2019, 11, 7. [Google Scholar] [CrossRef]
- Peres, L.C.; Cushing-Haugen, K.L.; Köbel, M.; Harris, H.R.; Berchuck, A.; Rossing, M.A.; Schildkraut, J.M.; Doherty, J.A. Invasive Epithelial Ovarian Cancer Survival by Histotype and Disease Stage. J. Natl. Cancer Inst. 2019, 111, 60–68. [Google Scholar] [CrossRef] [Green Version]
- Chudecka-Głaz, A.; Cymbaluk-Płoska, A.; Luterek-Puszyńska, K.; Menkiszak, J. Diagnostic usefulness of the Risk of Ovarian Malignancy Algorithm using the electrochemiluminescence immunoassay for HE4 and the chemiluminescence microparticle immunoassay for CA125. Oncol. Lett. 2016, 12, 3101–3114. [Google Scholar] [CrossRef] [Green Version]
- Bešević, J.; Gunter, M.J.; Fortner, R.T.; Tsilidis, K.K.; Weiderpass, E.; Onland-Moret, N.C.; Dossus, L.; Tjønneland, A.; Hansen, L.; Overvad, K.; et al. Reproductive factors and epithelial ovarian cancer survival in the EPIC cohort study. Br. J. Cancer 2015, 113, 1622–1631. [Google Scholar] [CrossRef] [Green Version]
- Thomson, C.A.; Crane, T.E.; Wertheim, B.C.; Neuhouser, M.L.; Li, W.; Snetselaar, L.G.; Basen-Engquist, K.M.; Zhou, Y.; Irwin, M.L. Diet quality and survival after ovarian cancer: Results from the Women’s Health Initiative. J. Natl. Cancer Inst. 2014, 106, dju314. [Google Scholar] [CrossRef] [Green Version]
- Playdon, M.C.; Nagle, C.M.; Ibiebele, T.I.; Ferrucci, L.M.; Protani, M.M.; Carter, J.; Hyde, S.E.; Neesham, D.; Nicklin, J.L.; Mayne, S.T.; et al. Pre-diagnosis diet and survival after a diagnosis of ovarian cancer. Br. J. Cancer 2017, 116, 1627–1637. [Google Scholar] [CrossRef] [Green Version]
- Sasamoto, N.; Wang, T.; Townsend, M.K.; Eliassen, A.H.; Tabung, F.K.; Giovannucci, E.L.; Matulonis, U.A.; Terry, K.L.; Tworoger, S.S.; Harris, H.R. Pre-diagnosis and post-diagnosis dietary patterns and survival in women with ovarian cancer. Br. J. Cancer 2022, 127, 1097–1105. [Google Scholar] [CrossRef]
- Wen, Z.Y.; Liu, C.; Liu, F.H.; Wei, Y.F.; Xu, H.L.; Wang, R.; Li, X.Y.; Li, Y.Z.; Yan, S.; Qin, X.; et al. Association between pre-diagnostic dietary pattern and survival of ovarian cancer: Evidence from a prospective cohort study. Clin. Nutr. 2022, 41, 452–459. [Google Scholar] [CrossRef]
- Wei, Y.F.; Sun, M.L.; Wen, Z.Y.; Liu, F.H.; Liu, Y.S.; Yan, S.; Qin, X.; Gao, S.; Li, X.Q.; Zhao, Y.H.; et al. Pre-diagnosis meat intake and cooking method and ovarian cancer survival: Results from the Ovarian Cancer Follow-Up Study (OOPS). Food Funct. 2022, 13, 4653–4663. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Hao, Y.Y.; Gong, T.T.; Wei, Y.F.; Zheng, G.; Du, Z.D.; Zou, B.J.; Yan, S.; Liu, F.H.; Gao, S.; et al. Phytosterol intake and overall survival in newly diagnosed ovarian cancer patients: An ambispective cohort study. Front. Nutr. 2022, 9, 974367. [Google Scholar] [CrossRef] [PubMed]
- Streppel, M.T.; Sluik, D.; van Yperen, J.F.; Geelen, A.; Hofman, A.; Franco, O.H.; Witteman, J.C.; Feskens, E.J. Nutrient-rich foods, cardiovascular diseases and all-cause mortality: The Rotterdam study. Eur. J. Clin. Nutr. 2014, 68, 741–747. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A. Defining nutrient density: Development and validation of the nutrient rich foods index. J. Am. Coll. Nutr. 2009, 28, 421s–426s. [Google Scholar] [CrossRef] [PubMed]
- Fulgoni, V.L., 3rd; Keast, D.R.; Drewnowski, A. Development and validation of the nutrient-rich foods index: A tool to measure nutritional quality of foods. J. Nutr. 2009, 139, 1549–1554. [Google Scholar] [CrossRef] [Green Version]
- Qin, B.; Moorman, P.G.; Alberg, A.J.; Barnholtz-Sloan, J.S.; Bondy, M.; Cote, M.L.; Funkhouser, E.; Peters, E.S.; Schwartz, A.G.; Terry, P.; et al. Dairy, calcium, vitamin D and ovarian cancer risk in African-American women. Br. J. Cancer 2016, 115, 1122–1130. [Google Scholar] [CrossRef] [Green Version]
- Hurtado-Barroso, S.; Trius-Soler, M.; Lamuela-Raventós, R.M.; Zamora-Ros, R. Vegetable and Fruit Consumption and Prognosis Among Cancer Survivors: A Systematic Review and Meta-Analysis of Cohort Studies. Adv. Nutr. 2020, 11, 1569–1582. [Google Scholar] [CrossRef]
- Gong, T.T.; Liu, F.H.; Liu, Y.S.; Yan, S.; Xu, H.L.; He, X.H.; Wei, Y.F.; Qin, X.; Gao, S.; Zhao, Y.H.; et al. A Follow-Up Study of Ovarian Cancer (OOPS): A Study Protocol. Front. Nutr. 2022, 9, 872773. [Google Scholar] [CrossRef]
- Cui, Q.; Xia, Y.; Liu, Y.; Sun, Y.; Ye, K.; Li, W.; Wu, Q.; Chang, Q.; Zhao, Y. Validity and reproducibility of a FFQ for assessing dietary intake among residents of northeast China: Northeast cohort study of China. Br. J. Nutr. 2022, Online ahead of print. [Google Scholar] [CrossRef]
- Hehua, Z.; Yang, X.; Qing, C.; Shanyan, G.; Yuhong, Z. Dietary patterns and associations between air pollution and gestational diabetes mellitus. Environ. Int. 2021, 147, 106347. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.X.; Wang, Y.G.; He, M.; Pan, X.C.; Wang, Z. China Food Composition (Standard Edition); Peking University Medical Press: Beijing, China, 2018. [Google Scholar]
- Hu, Y.; Ding, M.; Yuan, C.; Wu, K.; Smith-Warner, S.A.; Hu, F.B.; Chan, A.T.; Meyerhardt, J.A.; Ogino, S.; Fuchs, C.S.; et al. Association Between Coffee Intake after Diagnosis of Colorectal Cancer and Reduced Mortality. Gastroenterology 2018, 154, 916–926.e9. [Google Scholar] [CrossRef] [PubMed]
- Drewnowski, A. Concept of a nutritious food: Toward a nutrient density score. Am. J. Clin. Nutr. 2005, 82, 721–732. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maillot, M.; Darmon, N.; Darmon, M.; Lafay, L.; Drewnowski, A. Nutrient-dense food groups have high energy costs: An econometric approach to nutrient profiling. J. Nutr. 2007, 137, 1815–1820. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Bennett, D.; Li, L.; Whitlock, G.; Guo, Y.; Collins, R.; Chen, J.; Bian, Z.; Hong, L.S.; Feng, S.; et al. Physical activity and sedentary leisure time and their associations with BMI, waist circumference, and percentage body fat in 0.5 million adults: The China Kadoorie Biobank study. Am. J. Clin. Nutr. 2013, 97, 487–496. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ainsworth, B.E.; Haskell, W.L.; Herrmann, S.D.; Meckes, N.; Bassett, D.R., Jr.; Tudor-Locke, C.; Greer, J.L.; Vezina, J.; Whitt-Glover, M.C.; Leon, A.S. 2011 Compendium of Physical Activities: A second update of codes and MET values. Med. Sci. Sport. Exerc. 2011, 43, 1575–1581. [Google Scholar] [CrossRef] [Green Version]
- Desquilbet, L.; Mariotti, F. Dose-response analyses using restricted cubic spline functions in public health research. Stat. Med. 2010, 29, 1037–1057. [Google Scholar] [CrossRef] [PubMed]
- Wei, Y.F.; Hao, Y.Y.; Gao, S.; Li, X.Q.; Liu, F.H.; Wen, Z.Y.; Wang, H.Y.; Zhang, S.; Yan, S.; Luan, M.; et al. Pre-diagnosis Cruciferous Vegetables and Isothiocyanates Intake and Ovarian Cancer Survival: A Prospective Cohort Study. Front. Nutr. 2021, 8, 778031. [Google Scholar] [CrossRef]
- Peng, W.; Berry, E.M.; Goldsmith, R. Adherence to the Mediterranean diet was positively associated with micronutrient adequacy and negatively associated with dietary energy density among adolescents. J. Hum. Nutr. Diet. Off. J. Br. Diet. Assoc. 2019, 32, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Cano-Ibáñez, N.; Gea, A.; Ruiz-Canela, M.; Corella, D.; Salas-Salvadó, J.; Schröder, H.; Navarrete-Muñoz, E.M.; Romaguera, D.; Martínez, J.A.; Barón-López, F.J.; et al. Diet quality and nutrient density in subjects with metabolic syndrome: Influence of socioeconomic status and lifestyle factors. A cross-sectional assessment in the PREDIMED-Plus study. Clin. Nutr. 2020, 39, 1161–1173. [Google Scholar] [CrossRef] [PubMed]
- Schwingshackl, L.; Hoffmann, G. Adherence to Mediterranean diet and risk of cancer: An updated systematic review and meta-analysis of observational studies. Cancer Med. 2015, 4, 1933–1947. [Google Scholar] [CrossRef] [PubMed]
- Nieman, K.M.; Kenny, H.A.; Penicka, C.V.; Ladanyi, A.; Buell-Gutbrod, R.; Zillhardt, M.R.; Romero, I.L.; Carey, M.S.; Mills, G.B.; Hotamisligil, G.S.; et al. Adipocytes promote ovarian cancer metastasis and provide energy for rapid tumor growth. Nat. Med. 2011, 17, 1498–1503. [Google Scholar] [CrossRef] [Green Version]
- Oliai Araghi, S.; Kiefte-de Jong, J.C.; van Dijk, S.C.; Swart, K.M.A.; van Laarhoven, H.W.; van Schoor, N.M.; de Groot, L.; Lemmens, V.; Stricker, B.H.; Uitterlinden, A.G.; et al. Folic Acid and Vitamin B12 Supplementation and the Risk of Cancer: Long-term Follow-up of the B Vitamins for the Prevention of Osteoporotic Fractures (B-PROOF) Trial. Cancer Epidemiol Biomarkers Prev. 2019, 28, 275–282. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tanaka, T.; Shnimizu, M.; Moriwaki, H. Cancer chemoprevention by carotenoids. Molecules 2012, 17, 3202–3242. [Google Scholar] [CrossRef] [Green Version]
- Ma, Y.; Chapman, J.; Levine, M.; Polireddy, K.; Drisko, J.; Chen, Q. High-dose parenteral ascorbate enhanced chemosensitivity of ovarian cancer and reduced toxicity of chemotherapy. Sci. Transl. Med. 2014, 6, 222ra218. [Google Scholar] [CrossRef]
- Costello, R.B.; Rosanoff, A.; Dai, Q.; Saldanha, L.G.; Potischman, N.A. Perspective: Characterization of Dietary Supplements Containing Calcium and Magnesium and Their Respective Ratio-Is a Rising Ratio a Cause for Concern? Adv. Nutr. 2021, 12, 291–297. [Google Scholar] [CrossRef]
- Renehan, A.G.; Zwahlen, M.; Minder, C.; O’Dwyer, S.T.; Shalet, S.M.; Egger, M. Insulin-like growth factor (IGF)-I, IGF binding protein-3, and cancer risk: Systematic review and meta-regression analysis. Lancet 2004, 363, 1346–1353. [Google Scholar] [CrossRef]
- Sieh, W.; Köbel, M.; Longacre, T.A.; Bowtell, D.D.; deFazio, A.; Goodman, M.T.; Høgdall, E.; Deen, S.; Wentzensen, N.; Moysich, K.B.; et al. Hormone-receptor expression and ovarian cancer survival: An Ovarian Tumor Tissue Analysis consortium study. Lancet Oncol. 2013, 14, 853–862. [Google Scholar] [CrossRef] [Green Version]
- Dionísio de Sousa, I.J.; Marques, D.S.; Príncipe, C.; Portugal, R.V.; Canberk, S.; Prazeres, H.; Lopes, J.M.; Gimba, E.R.P.; Lima, R.T.; Soares, P. Predictive Biomarkers and Patient Outcome in Platinum-Resistant (PLD-Treated) Ovarian Cancer. Diagnostics 2020, 10, 525. [Google Scholar] [CrossRef]
- Rekhi, B.; Deodhar, K.K.; Menon, S.; Maheshwari, A.; Bajpai, J.; Ghosh, J.; Shylasree, S.T.; Gupta, S. Napsin A and WT 1 are useful immunohistochemical markers for differentiating clear cell carcinoma ovary from high-grade serous carcinoma. APMIS Acta Pathol. Microbiol. Immunol. Scand. 2018, 126, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Goodman, M.T.; Wu, A.H.; Tung, K.H.; McDuffie, K.; Cramer, D.W.; Wilkens, L.R.; Terada, K.; Reichardt, J.K.; Ng, W.G. Association of galactose-1-phosphate uridyltransferase activity and N314D genotype with the risk of ovarian cancer. Am. J. Epidemiol. 2002, 156, 693–701. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McCarty, M.F. Parathyroid hormone may be a cancer promoter—An explanation for the decrease in cancer risk associated with ultraviolet light, calcium, and vitamin D. Med. Hypotheses 2000, 54, 475–482. [Google Scholar] [CrossRef]
- Ramasamy, I. Recent advances in physiological calcium homeostasis. Clin. Chem. Lab. Med. 2006, 44, 237–273. [Google Scholar] [CrossRef]
- Khandwala, H.M.; McCutcheon, I.E.; Flyvbjerg, A.; Friend, K.E. The effects of insulin-like growth factors on tumorigenesis and neoplastic growth. Endocr. Rev. 2000, 21, 215–244. [Google Scholar] [CrossRef] [PubMed]
- Lukanova, A.; Lundin, E.; Toniolo, P.; Micheli, A.; Akhmedkhanov, A.; Rinaldi, S.; Muti, P.; Lenner, P.; Biessy, C.; Krogh, V.; et al. Circulating levels of insulin-like growth factor-I and risk of ovarian cancer. Int. J. Cancer 2002, 101, 549–554. [Google Scholar] [CrossRef] [PubMed]
- Bauckman, K.A.; Haller, E.; Flores, I.; Nanjundan, M. Iron modulates cell survival in a Ras- and MAPK-dependent manner in ovarian cells. Cell Death Dis. 2013, 4, e592. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauckman, K.; Haller, E.; Taran, N.; Rockfield, S.; Ruiz-Rivera, A.; Nanjundan, M. Iron alters cell survival in a mitochondria-dependent pathway in ovarian cancer cells. Biochem. J. 2015, 466, 401–413. [Google Scholar] [CrossRef] [Green Version]
- Cramer, D.W.; Kuper, H.; Harlow, B.L.; Titus-Ernstoff, L. Carotenoids, antioxidants and ovarian cancer risk in pre- and postmenopausal women. Int. J. Cancer 2001, 94, 128–134. [Google Scholar] [CrossRef]
- Kaaks, R.; Lukanova, A. Energy balance and cancer: The role of insulin and insulin-like growth factor-I. Proc. Nutr. Soc. 2001, 60, 91–106. [Google Scholar] [CrossRef] [Green Version]
- Bustin, S.A.; Jenkins, P.J. The growth hormone-insulin-like growth factor-I axis and colorectal cancer. Trends Mol. Med. 2001, 7, 447–454. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Tertiles of NRF9.3 Index Score | p Value * | ||
---|---|---|---|---|
T1 | T2 | T3 | ||
Range | <36.48 | 36.48–≤46.39 | ≥46.39 | |
No. of deaths/patients | 56/234 | 31/234 | 43/235 | <0.05 |
Median (IQR) Age at diagnosis (years) | 53.00 (46.00–61.00) | 53.00 (48.00–59.00) | 54.00 (48.00–61.00) | 0.39 |
Median (IQR) Follow-up time (months) | 28.35 (17.80–42.17) | 31.67 (21.43–45.50) | 34.37 (22.50–49.90) | <0.05 |
Median (IQR) Body mass index (kg/m2) | 23.30 (21.00–25.20) | 23.30 (21.00–25.10) | 22.90 (20.40–24.80) | 0.17 |
Median (IQR) Physical activity (MET/hours/day) | 14.30 (7.00–22.70) | 14.65 (6.20–21.50) | 13.20 (6.20–22.40) | 0.64 |
Ever cigarette smoking | 26 (11.11) | 16 (6.84) | 26 (11.06) | 0.20 |
Ever alcohol drinking | 56 (23.93) | 50 (21.37) | 43 (18.30) | 0.33 |
Ever dietary change | 50 (21.37) | 57 (24.36) | 61 (25.96) | 0.49 |
Ever menopause | 163 (69.66) | 160 (68.38) | 185 (78.72) | <0.05 |
Parity | <0.05 | |||
≤1 | 184 (78.63) | 152 (64.96) | 169 (71.91) | |
≥2 | 50 (21.37) | 82 (35.04) | 66 (28.09) | |
Educational level | 0.22 | |||
Junior secondary or below | 121 (51.71) | 117 (50.00) | 137 (58.30) | |
Senior high school/technical secondary school | 53 (22.65) | 56 (23.93) | 38 (16.17) | |
Junior college/university or above | 60 (25.64) | 61 (26.07) | 60 (25.53) | |
Income per month (Yuan) | 0.46 | |||
<5000 | 147 (62.82) | 131 (55.98) | 143 (60.85) | |
5000 to 10,000 | 63 (26.92) | 67 (28.64) | 64 (27.23) | |
≥10,000 | 24 (10.26) | 36 (15.38) | 28 (11.92) | |
Mean (SD) total energy (kcal/d) | 1413.99 (547.89) | 1448.03 (582.17) | 1505.03 (525.01) | 0.20 |
Mean (SD) refined grains (g/d) | 612.58 (214.63) | 604.44 (215.94) | 523.58 (216.06) | <0.05 |
Mean (SD) whole grains (g/d) | 13.20 (18.97) | 17.07 (21.50) | 19.67 (19.91) | <0.05 |
Mean (SD) vegetables (g/d) | 126.74 (65.55) | 187.42 (82.53) | 284.98 (115.68) | <0.05 |
Mean (SD) fruit (g/d) | 114.10 (91.25) | 176.62 (141.24) | 256.38 (178.31) | <0.05 |
Mean (SD) legumes and legume products (g/d) | 38.12 (41.23) | 63.50 (59.31) | 107.41 (91.59) | <0.05 |
Mean (SD) meat (g/d) | 37.61 (29.61) | 41.03 (35.31) | 38.25 (31.12) | 0.47 |
Mean (SD) seafood (g/d) | 18.70 (20.10) | 28.58 (29.93) | 38.24 (35.63) | <0.05 |
Mean (SD) desserts (g/d) | 27.90 (40.24) | 19.15 (30.17) | 12.67 (19.25) | <0.05 |
Mean (SD) sugar-containing beverages (g/d) | 54.00 (120.70) | 24.89 (64.81) | 19.90 (51.80) | <0.05 |
Mean (SD) carbohydrates (g/d) | 226.24 (75.21) | 226.74 (81.49) | 227.71 (78.63) | 0.98 |
Mean (SD) monounsaturated fatty acids (g/d) | 8.62 (5.43) | 9.26 (6.02) | 9.96 (5.48) | <0.05 |
Mean (SD) polyunsaturated fatty acids (g/d) | 4.01 (2.26) | 5.18 (3.03) | 6.69 (3.60) | <0.05 |
Characteristics | Deaths, N (% of Total Deaths) | Multivariable-Adjusted Models | |||
---|---|---|---|---|---|
Model 1 a | Model 2 b | Model 3 c | |||
NRF6.3 index score | T1 (<25.27) | 59 (25.21) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
T2 (25.27–≤32.48) | 28 (11.97) | 0.43 (0.27–0.67) | 0.40 (0.25–0.64) | 0.38 (0.23–0.61) | |
T3 (≥32.48) | 43 (18.30) | 0.65 (0.44–0.96) | 0.60 (0.40–0.90) | 0.59 (0.39–0.89) | |
Continuous ** | 0.82 (0.68–0.98) | 0.80 (0.67–0.97) | 0.79 (0.65–0.96) | ||
p for trend † | <0.05 | <0.05 | <0.05 | ||
NRF9.3 index score | T1 (<36.48) | 56 (23.93) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
T2 (36.48–≤46.39) | 31 (13.25) | 0.51 (0.33–0.79) | 0.49 (0.31–0.76) | 0.44 (0.28–0.70) | |
T3 (≥46.39) | 43 (18.30) | 0.68 (0.45–1.01) | 0.63 (0.42–0.94) | 0.63 (0.41–0.95) | |
Continuous ** | 0.83 (0.69–0.99) | 0.82 (0.68–0.99) | 0.81 (0.67–0.98) | ||
p for trend † | 0.07 | <0.05 | <0.05 | ||
NRF11.3 index score | T1 (<40.75) | 58 (24.79) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
T2 (40.75–≤50.78) | 31 (13.25) | 0.49 (0.32–0.76) | 0.47 (0.30–0.73) | 0.44 (0.28–0.69) | |
T3 (≥50.78) | 41 (17.45) | 0.61 (0.41–0.91) | 0.57 (0.38–0.86) | 0.57 (0.38–0.87) | |
Continuous ** | 0.83 (0.69–0.99) | 0.82 (0.68–0.99) | 0.81 (0.67–0.98) | ||
p for trend † | <0.05 | <0.05 | <0.05 | ||
NR6 index score | T1 (<32.38) | 55 (23.50) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
T2 (32.38–≤39.76) | 34 (14.53) | 0.53 (0.34–0.82) | 0.55 (0.35–0.85) | 0.52 (0.33–0.82) | |
T3 (≥39.76) | 41 (17.45) | 0.65 (0.43–0.98) | 0.61 (0.40–0.93) | 0.63 (0.41–0.96) | |
Continuous ** | 0.85 (0.71–1.01) | 0.84 (0.69–1.01) | 0.82 (0.67–0.99) | ||
p for trend † | <0.05 | <0.05 | <0.05 | ||
NR9 index score | T1 (<43.75) | 54 (23.08) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
T2 (43.75–≤53.85) | 34 (14.53) | 0.54 (0.35–0.84) | 0.54 (0.35–0.85) | 0.54 (0.34–0.85) | |
T3 (≥53.85) | 42 (32.31) | 0.66 (0.44–0.99) | 0.63 (0.41–0.96) | 0.64 (0.42–0.97) | |
Continuous ** | 0.85 (0.71–1.02) | 0.85 (0.71–1.02) | 0.83 (0.69–1.01) | ||
p for trend † | 0.07 | <0.05 | 0.06 | ||
NR11 index score | T1 (<48.12) | 55 (23.50) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
T2 (48.12–≤58.24) | 33 (14.10) | 0.53 (0.34–0.82) | 0.52 (0.33–0.82) | 0.52 (0.33–0.81) | |
T3 (≥58.24) | 42 (17.87) | 0.65 (0.43–0.98) | 0.62 (0.41–0.94) | 0.63 (0.41–0.96) | |
Continuous ** | 0.85 (0.71–1.02) | 0.85 (0.71–1.02) | 0.83 (0.69–1.01) | ||
p for trend † | 0.06 | <0.05 | 0.05 | ||
LIM index score | T1 (<6.05) | 36 (15.38) | 1.00 (Ref) | 1.00 (Ref) | 1.00 (Ref) |
T2 (6.05–≤8.27) | 43 (18.38) | 1.10 (0.70–1.72) | 1.05 (0.67–1.65) | 1.02 (0.65–1.61) | |
T3 (≥8.27) | 51 (21.70) | 1.48 (0.94–2.32) | 1.52 (0.97–2.40) | 1.42 (0.89–2.26) | |
Continuous ** | 1.12 (0.97–1.40) | 1.18 (0.98–1.43) | 1.19 (0.98–1.44) | ||
p for trend † | 0.08 | 0.06 | 0.12 |
Variables | Dietary Energy Intake (kcal/d) † | ||
---|---|---|---|
High | Low | ||
NRF9.3 index score | T1 (<36.48) | 1.00 (Ref) | 0.52 (0.30–0.92) |
T2 (36.48–≤46.39) | 0.36 (0.19–0.68) | 0.27 (0.14–0.53) | |
T3 (≥46.39) | 0.43 (0.24–0.77) | 0.45 (0.25–0.83) |
Characteristics | Excluding Deaths Occurring in One Year of Follow-Up * | Excluding Patients with Dietary Change ** | ||
---|---|---|---|---|
Range | HR (95% CI) | Range | HR (95% CI) | |
NRF6.3 index score | T1 (<25.30) | 1.00 (Ref) | T1 (<25.22) | 1.00 (Ref) |
T2 (25.30–≤32.48) | 0.43 (0.25–0.75) | T2 (25.22–≤32.39) | 0.43 (0.25–0.73) | |
T3 (≥32.48) | 0.55 (0.34–0.91) | T3 (≥32.39) | 0.53 (0.33–0.87) | |
p trend † | <0.05 | p trend † | <0.05 | |
NRF9.3 index score | T1 (<36.52) | 1.00 (Ref) | T1 (<36.24) | 1.00 (Ref) |
T2 (36.52–≤46.38) | 0.44 (0.26–0.75) | T2 (36.24–≤46.25) | 0.44 (0.26–0.75) | |
T3 (≥46.38) | 0.59 (0.35–0.97) | T3 (≥46.25) | 0.55 (0.34–0.89) | |
p trend † | 0.05 | p trend † | <0.05 | |
NRF11.3 index score | T1 (<40.89) | 1.00 (Ref) | T1 (<40.52) | 1.00 (Ref) |
T2 (40.89–≤50.78) | 0.52 (0.31–0.90) | T2 (40.52–≤50.61) | 0.49 (0.29–0.82) | |
T3 (≥50.78) | 0.52 (0.31–0.88) | T3 (≥50.61) | 0.59 (0.36–0.96) | |
p trend † | <0.05 | p trend † | <0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.-Q.; Ma, Q.-P.; Wei, Y.-F.; Zheng, G.; Zou, B.-J.; Du, Z.-D.; Gao, S.; Yan, S.; Qin, X.; Gong, T.-T.; et al. Nutrients-Rich Food Index Scores and the Overall Survival of Ovarian Cancer Patients: Results from the Ovarian Cancer Follow-Up Study, a Prospective Cohort Study. Nutrients 2023, 15, 717. https://doi.org/10.3390/nu15030717
Zhao J-Q, Ma Q-P, Wei Y-F, Zheng G, Zou B-J, Du Z-D, Gao S, Yan S, Qin X, Gong T-T, et al. Nutrients-Rich Food Index Scores and the Overall Survival of Ovarian Cancer Patients: Results from the Ovarian Cancer Follow-Up Study, a Prospective Cohort Study. Nutrients. 2023; 15(3):717. https://doi.org/10.3390/nu15030717
Chicago/Turabian StyleZhao, Jun-Qi, Qi-Peng Ma, Yi-Fan Wei, Gang Zheng, Bing-Jie Zou, Zong-Da Du, Song Gao, Shi Yan, Xue Qin, Ting-Ting Gong, and et al. 2023. "Nutrients-Rich Food Index Scores and the Overall Survival of Ovarian Cancer Patients: Results from the Ovarian Cancer Follow-Up Study, a Prospective Cohort Study" Nutrients 15, no. 3: 717. https://doi.org/10.3390/nu15030717
APA StyleZhao, J. -Q., Ma, Q. -P., Wei, Y. -F., Zheng, G., Zou, B. -J., Du, Z. -D., Gao, S., Yan, S., Qin, X., Gong, T. -T., Zhao, Y. -H., & Wu, Q. -J. (2023). Nutrients-Rich Food Index Scores and the Overall Survival of Ovarian Cancer Patients: Results from the Ovarian Cancer Follow-Up Study, a Prospective Cohort Study. Nutrients, 15(3), 717. https://doi.org/10.3390/nu15030717