The Effect of β-Alanine Supplementation on Performance, Cognitive Function and Resiliency in Soldiers
Abstract
:1. Introduction
2. Methodology and Search Strategy
3. Physiological Role of β-Alanine
4. Dosing
5. Efficacy of β-Alanine Supplementation
6. β-Alanine Supplementation in Soldiers
7. β-Alanine and Soldiers’ Cognitive Function
8. Post-Traumatic Stress Disorder and β-Alanine Supplementation
9. Mild Traumatic Brain Injury (mTBI) and β-Alanine Supplementation
10. β-Alanine Supplementation and Exposure to Heat Stress
11. Safety
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sefton, J.M.; Burkhardt, T.A. Introduction to the Tactical Athlete Special Issue. J. Athl. Train. 2016, 51, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meckley, D.P.; Hulbert, K.; Stewart, D.; O’Brien, N.; Barringer, N.; Hornsby, J.H. Ranger Athlete Warrior Assessment Performance in a Reserve Officer Training Corps Training Environment. J. Spec. Oper. Med. 2019, 19, 96–98. [Google Scholar] [CrossRef] [PubMed]
- O’Neal, E.K.; Hornsby, J.H.; Kelleran, K.J. High-intensity tasks with external load in military applications: A review. Mil. Med. 2014, 179, 950–954. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sell, T.C.; Lutz, R.H.; Faherty, M.S. The Warrior Model for Human Performance Optimization. Sports Med. Arthrosc. Rev. 2019, 27, 99–106. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, D.E.; McAllister, M.J.; Waldman, H.S.; Ferrando, A.A.; Joyce, J.; Barringer, N.D.; Dawes, J.J.; Kieffer, A.J.; Harvey, T.; Kerksick, C.M.; et al. International Society of Sports Nutrition position stand: Tactical athlete nutrition. J. Int. Soc. Sports Nutr. 2022, 19, 267–315. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Stout, J.R.; Harris, R.C.; Moran, D.S. β-Alanine supplementation and military performance. Amino Acids 2015, 47, 2463–2474. [Google Scholar] [CrossRef] [Green Version]
- Trexler, E.T.; Smith-Ryan, A.E.; Stout, J.R.; Hoffman, J.R.; Wilborn, C.D.; Sale, C.; Kreider, R.B.; Jäger, R.; Earnest, C.P.; Bannock, L.; et al. International society of sports nutrition position stand: Beta-Alanine. J. Int. Soc. Sports Nutr. 2015, 12, 30. [Google Scholar] [CrossRef] [Green Version]
- Hobson, R.M.; Saunders, B.; Ball, G.; Harris, R.C.; Sale, C. Effects of β-alanine supplementation on exercise performance: A meta-analysis. Amino Acids 2012, 43, 25–37. [Google Scholar] [CrossRef] [Green Version]
- Harris, R.C.; Dunnett, M.; Greenhaff, P.L. Carnosine and taurine contents in individual fibres of human vastus lateralis muscle. J. Sports Sci. 1998, 16, 639–643. [Google Scholar] [CrossRef]
- Hill, C.A.; Harris, R.C.; Kim, H.J.; Harris, B.D.; Sale, C.; Boobis, L.H.; Kim, C.K.; Wise, J.A. Influence of beta-alanine supplementation on skeletal muscle carnosine concentrations and high intensity cycling capacity. Amino Acids 2007, 32, 225–233. [Google Scholar] [CrossRef]
- Bauer, K.; Schulz, M. Biosynthesis of carnosine and related peptides by skeletal muscle cells in primary culture. Eur. J. Biochem. 1994, 219, 43–47. [Google Scholar] [CrossRef] [PubMed]
- Harris, R.C.; Tallon, M.J.; Dunnett, M.; Boobis, L.; Coakley, J.; Kim, H.J.; Fallowfield, J.L.; Hill, C.A.; Sale, C.; Wise, J.A. The absorption of orally supplied Aalanine and its effect on muscle carnosine synthesis in human vastus lateralis. Amino Acids 2006, 30, 279–289. [Google Scholar] [CrossRef] [PubMed]
- Raizel, R.; Coqueiro, A.Y.; Bonvini, A.; Tirapegui, J. Sports and energy drinks: Aspects to consider. In Sports and Energy Drinks; Woodhead Publishing: Sawston, UK, 2019; pp. 1–37. [Google Scholar]
- Culbertson, J.Y.; Kreider, R.B.; Greenwood, M.; Cooke, M. Effects of Beta-Alanine on Muscle Carnosine and Exercise Performance: A Review of the Current Literature. Nutrients 2010, 2, 75–98. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, M.I.; Jones, A.M.; Morgan, P.T.; Bailey, S.T.; Fulford, J.; Vanhatalo, A. The Effects of β-Alanine Supplementation on Muscle pH and the Power-Duration Relationship during High-Intensity Exercise. Front. Physiol. 2018, 9, 111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gilsanz, L.; López-Seoane, J.; Jiménez, S.L.; Pareja-Galeano, H. Effect of β-alanine and sodium bicarbonate co-supplementation on the body’s buffering capacity and sports performance: A systematic review. Crit. Rev. Food Sci. Nutr. 2021, 9, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Boldyrev, A.A.; Aldini, G.; Derave, W. Physiology and pathophysiology of carnosine. Physiol. Rev. 2013, 93, 1803–1845. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R.; Varanoske, A.; Stout, J.R. Effects of β-Alanine Supplementation on Carnosine Elevation and Physiological Performance. Adv. Food Nutr. Res. 2018, 84, 183–206. [Google Scholar] [PubMed]
- Varanoske, A.N.; Stout, J.R.; Hoffman, J.R. Effects of β-alanine supplementation and intramuscular carnosine content on exercise performance and health. In Nutrition and Enhanced Sports Performance; Academic Press: Cambridge, MA, USA, 2019; pp. 327–344. [Google Scholar]
- Artioli, G.G.; Gualano, B.; Smith, A.; Stout, J.; Lancha, A.H. Role of beta-alanine supplementation on muscle carnosine and exercise performance. Med. Sci. Sports Exerc. 2010, 42, 1162–1173. [Google Scholar] [CrossRef] [PubMed]
- Stellingwerff, T.; Decombaz, J.; Harris, R.C.; Boesch, C. Optimizing human in vivo dosing and delivery of β-Alanine supplements for muscle carnosine synthesis. Amino Acids 2012, 43, 57–65. [Google Scholar] [CrossRef]
- Perim, P.; Marticorena, F.M.; Ribeiro, F.; Barreto, G.; Gobbi, N.; Kerksick, C.; Dolan, E.; Saunders, B. Can the Skeletal Muscle Carnosine Response to Beta-Alanine Supplementation Be Optimized? Front. Nutr. 2019, 6, 135. [Google Scholar] [CrossRef] [Green Version]
- Varanoske, A.N.; Hoffman, J.R.; Church, D.D.; Coker, N.A.; Baker, K.M.; Dodd, S.J.; Oliveira, L.P.; Dawson, V.L.; Wang, R.; Fukuda, D.H.; et al. β-Alanine supplementation elevates intramuscular carnosine content and attenuates fatigue in men and women similarly but does not change muscle l-histidine content. Nutr. Res. 2017, 48, 16–25. [Google Scholar] [CrossRef] [PubMed]
- Swietach, P.; Youm, J.B.; Saegusa, N.; Leem, C.H.; Spitzer, K.W.; Vaughan-Jones, R.D. Coupled Ca2+/H+ transport by cytoplasmic buffers regulates local Ca2+ and H+ ion signaling. Proc. Natl. Acad. Sci. USA 2013, 110, E2064–E2073. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swietach, P.; Leem, C.H.; Spitzer, K.W.; Vaughan-Jones, R.D. Pumping Ca2+ up H+ gradients: A Ca2(+)-H+ exchanger without a membrane. J. Physiol. 2014, 592, 3179–3188. [Google Scholar] [CrossRef] [PubMed]
- Hipkiss, A.R.; Worthington, V.C.; Himsworth, D.T.; Herwig, W. Protective effects of carnosine against protein modification mediated by malondialdehyde and hypochlorite. Biochim. Biophys. Acta 1998, 1380, 46–54. [Google Scholar] [CrossRef]
- Kohen, R.; Yamamoto, Y.; Cundy, K.C.; Ames, B.N. Antioxidant activity of carnosine, homocarnosine, and anserine present in muscle and brain. Proc. Natl. Acad. Sci. USA 1988, 85, 3175–3179. [Google Scholar] [CrossRef] [Green Version]
- Trombley, P.Q.; Horning, M.S.; Blakemore, L.J. Interactions between carnosine and zinc and copper: Implications for neuromodulation and neuroprotection. Biochemistry 2000, 65, 807–816. [Google Scholar]
- Boldyrev, A.A. Protection of proteins from oxidative stress: A new illusion or a novel strategy? Ann. N. Y. Acad. Sci. 2005, 1057, 193–205. [Google Scholar] [CrossRef]
- Boldyrev, A.A.; Stvolinsky, S.L.; Fedorova, T.N.; Suslina, Z.A. Carnosine as a natural antioxidant and geroprotector: From molecular mechanisms to clinical trials. Rejuvenation Res. 2010, 13, 156–158. [Google Scholar] [CrossRef]
- Decker, E.A.; Livisay, S.A.; Zhou, S. A re-evaluation of the antioxidant activity of purified carnosine. Biochemistry 2000, 65, 766–770. [Google Scholar]
- Packer, L. Oxidants, antioxidant nutrients and the athlete. J. Sport Sci. 1997, 15, 353–363. [Google Scholar] [CrossRef]
- Murakami, T.; Furuse, M. The impact of taurine- and beta-alanine-supplemented diets on behavioral and neurochemical parameters in mice: Antidepressant versus anxiolytic-like effects. Amino Acids 2010, 39, 427–434. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Ostfeld, I.; Stout, J.R.; Harris, R.C.; Kaplan, Z.; Cohen, H. β-alanine supplemented diets enhance behavioral resilience to stress exposure in an animal model of PTSD. Amino Acids 2015, 47, 1247–1257. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Zuckerman, A.; Ram, O.; Sadot, O.; Stout, J.R.; Ostfeld, I.; Cohen, H. Behavioral and inflammatory response in animals exposed to a low-pressure blast wave and supplemented with β-alanine. Amino Acids 2017, 49, 871–888. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Gepner, Y.; Cohen, H. β-Alanine supplementation reduces anxiety and increases neurotrophin expression in both young and older rats. Nutr. Res. 2019, 62, 51–63. [Google Scholar] [CrossRef]
- Church, D.D.; Hoffman, J.R.; Varanoske, A.N.; Wang, R.; Baker, K.M.; La Monica, M.B.; Beyer, K.S.; Dodd, S.J.; Oliveira, L.P.; Harris, R.C.; et al. Comparison of Two β-Alanine dosing protocols on muscle Carnosine elevations. J. Am. Coll. Nutr. 2017, 36, 608–616. [Google Scholar] [CrossRef]
- Saunders, B.; Elliott-Sale, K.; Artioli, G.G.; Swinton, P.A.; Dolan, E.; Roschel, H.; Sale, C.; Gualano, B. β-alanine supplementation to improve exercise capacity and performance: A systematic review and meta-analysis. Br. J. Sports Med. 2017, 51, 658–669. [Google Scholar] [CrossRef] [Green Version]
- Stellingwerff, T.; Anwander, H.; Egger, A.; Buehler, T.; Kreis, R.; Decombaz, J.; Boesch, C. Effect of two β-alanine dosing protocols on muscle carnosine synthesis and washout. Amino Acids 2012, 42, 2461–2472. [Google Scholar] [CrossRef]
- Harris, R.C.; Stellingwerff, T. Effect of β-alanine supplementation on high-intensity exercise performance. Nestle Nutr. Inst. Workshop Ser. 2013, 76, 61–71. [Google Scholar] [PubMed]
- Baguet, A.; Reyngoudt, H.; Pottier, A.; Everaert, I.; Callens, S.; Achten, E.; Derave, W. Carnosine loading and washout in human skeletal muscles. J. Appl. Physiol. 2009, 106, 837–842. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stegen, S.; Bex, T.; Vervaet, C.; Vanhee, L.; Achten, E.; Derave, W. β-Alanine dose for maintaining moderately elevated muscle carnosine levels. Med. Sci. Sports Exerc. 2014, 46, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
- Spelnikov, D.; Harris, R.C. A kinetic model of carnosine synthesis in human skeletal muscle. Amino Acids 2019, 51, 115–121. [Google Scholar] [CrossRef] [PubMed]
- Derave, W. Use of β-alanine as an ergogenic aid. Nestle Nutr. Inst. Workshop Ser. 2013, 75, 99–108. [Google Scholar] [PubMed]
- Blancquaert, L.; Everaert, I.; Derave, W. β-alanine supplementation, muscle carnosine and exercise performance. Curr. Opin. Clin. Nutr. Metab. Care 2015, 18, 63–70. [Google Scholar] [CrossRef] [PubMed]
- Peeling, P.; Binnie, M.J.; Goods, P.S.R.; Sim, M.; Burke, L.M. Evidence-Based Supplements for the Enhancement of Athletic Performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 178–187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bellinger, P.M. β-Alanine supplementation for athletic performance: An update. J. Strength Cond. Res. 2014, 28, 1751–1770. [Google Scholar] [CrossRef] [PubMed]
- de Andrade Kratz, C.; de Salles Painelli, V.; de Andrade Nemezio, K.M.; da Silva, R.P.; Franchini, E.; Zagatto, A.M.; Gualano, B.; Artioli, G.G. Beta-alanine supplementation enhances judo-related performance in highly-trained athletes. J. Sci. Med. Sport 2017, 20, 403–408. [Google Scholar] [CrossRef] [Green Version]
- Brisola, G.M.P.; Malta, E.S.; Santiago, P.R.P.; Vieira, L.H.P.; Zagatto, A.M. β-Alanine supplementation’s improvement of high-intensity game activities in water polo. Int. J. Sports Physiol. Perform. 2018, 13, 1208–1214. [Google Scholar] [CrossRef]
- Brisola, G.M.P.; Zagatto, A.Z. Ergogenic effects of β-alanine supplementation on different sports modalities: Strong evidence or only incipient findings? J. Strength Cond. Res. 2019, 33, 253–282. [Google Scholar] [CrossRef]
- Nindl, B.C.; Leone, C.D.; Tharion, W.J.; Johnson, R.F.; Castellani, J.W.; Patton, J.F.; Montain, S.J. Physical performance responses during 72 h of military operational stress. Med. Sci. Sports Exerc. 2002, 34, 1814–1822. [Google Scholar] [CrossRef]
- Hoffman, J.R.; Landau, G.; Stout, J.R.; Hoffman, M.W.; Shavit, N.; Rosen, P.; Moran, D.S.; Fukuda, D.H.; Shelef, I.; Carmom, E.; et al. β-Alanine ingestion increases muscle carnosine content and combat specific performance in soldiers. Amino Acids 2015, 47, 627–636. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Landau, G.; Stout, J.R.; Dabora, M.; Moran, D.S.; Sharvit, N.; Hoffman, M.W.; Ben Moshe, Y.; McCormack, W.P.; Hirschhorn, G.; et al. β-alanine supplementation improves tactical performance but not cognitive function in combat. J. Int. Soc. Sports Nutr. 2014, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, J.R.; Gepner, Y.; Hoffman, M.W.; Zelicha, H.; Shapira, S.; Ostfeld, I. Effect of high-dose, short-duration β-alanine supplementation on circulating IL-10 concentrations during intense military training. J. Strength Cond. Res. 2018, 32, 2978–2981. [Google Scholar] [CrossRef] [PubMed]
- Petersen, A.M.; Pedersen, B.K. The anti-inflammatory effect of exercise. J. Appl. Physiol. 2005, 98, 1154–1162. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flood, A.; Keegan, R.J. Cognitive Resilience to Psychological Stress in Military Personnel. Front. Psychol. 2022, 13, 809003. [Google Scholar] [CrossRef]
- Varanoske, A.N.; Wells, A.J.; Boffey, D.; Harat, I.; Frosti, C.L.; Kozlowski, G.J.; Gepner, Y.; Hoffman, J.R. Effects of high-dose, short-duration β-alanine supplementation on cognitive function, mood, and circulating Brain-Derived Neurotropic Factor (BDNF) in recreationally-active males before simulated military operational stress. J. Diet Suppl. 2021, 18, 147–168. [Google Scholar] [CrossRef]
- Wells, A.J.; Varanoske, A.N.; Coker, N.A.; Kozlowski, G.J.; Frosti, C.L.; Boffey, D.; Harat, I.; Jahani, S.; Gepner, Y.; Hoffman, J.R. Effect of β-alanine supplementation on monocyte recruitment and cognition during a 24-hour simulated military operation. J. Strength Cond. Res. 2020, 34, 3042–3054. [Google Scholar] [CrossRef]
- Hayman, M. Two minute clinical test for measurement of intellectual impairment in psychiatric disorders. Arch. Neurol. Psychiatry 1942, 47, 454–464. [Google Scholar] [CrossRef]
- Nibbeling, N.; Oudejans, R.R.; Ubink, E.M.; Daanen, H.A. The effects of anxiety and exercise-induced fatigue on shooting accuracy and cognitive performance in infantry soldiers. Ergonomics 2014, 57, 1366–1379. [Google Scholar] [CrossRef]
- Varanoske, A.N.; Wells, A.J.; Kozlowski, G.J.; Gepner, Y.; Frosti, C.L.; Boffey, D.; Coker, N.A.; Harat, I.; Hoffman, J.R. Effects of β-Alanine supplementation on physical performance, cognition, endocrine function, and inflammation during a 24 h simulated military operation. Physiol. Rep. 2018, 6, 24. [Google Scholar] [CrossRef] [Green Version]
- Loy, B.D.; Cameron, M.H.; O’Connor, P.J. Perceived fatigue and energy are independent unipolar states: Supporting evidence. Med. Hypotheses 2018, 113, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Ericson, M.; Clarke, R.B.; Chau, P.; Adermark, L.; Söderpalm, B. Beta-Alanine elevates dopamine levels in the rat nucleus accumbens: Antagonism by strychnine. Amino Acids 2010, 38, 1051–1055. [Google Scholar] [CrossRef] [PubMed]
- Lubin, G.; Sids, C.; Vishne, T.; Shochat, T.; Ostfeld, I.; Shmushkevitz, M. Acute Stress Disorder and Post-Traumatic Stress Disorder Among Medical Personnel in Judea and Samaria Areas in the Years 2000–2003. Mil Med. 2007, 172, 376–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellenberg, E.; Yakir, A.; Bar-On, Z.; Sasson, Y.; Taragin, M.; Luft-Afik, D.; Cohen, O.; Lavenda, O.; Mahat-Shamir, M.; Hamama-Raz, Y.; et al. Naturalistic Study of Posttraumatic Stress Disorder Among Israeli Civilians Exposed to Wartime Attacks. Psychiatr. Serv. 2021, 72, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Zohar, J. An animal model of posttraumatic stress disorder: The use of cut-off behavioral criteria. Ann. N. Y. Acad. Sci. 2004, 1032, 167–178. [Google Scholar] [CrossRef] [PubMed]
- Cohen, H.; Kozlovsky, N.; Cramer, A.; Matar, M.A.; Zohar, J. Animal model for PTSD: From clinical concept to translational research. Neuropharmacology 2012, 62, 715–724. [Google Scholar] [CrossRef]
- Warden, D. Military TBI during the Iraq and Afghanistan wars. J. Head Trauma Rehabil. 2006, 21, 398–402. [Google Scholar] [CrossRef] [Green Version]
- Wilson, C.B.; McLaughlin, L.D.; Nair, A.; Ebenezer, P.J.; Dange, R.; Francis, J. Inflammation, and oxidative stress are elevated in the brain, blood, and adrenal glands during the progression of post-traumatic stress disorder in a predator exposure animal model. PLoS ONE 2013, 8, e76146. [Google Scholar] [CrossRef]
- Aungst, S.L.; Kabadi, S.V.; Thompson, S.M.; Stoica, B.A.; Faden, A.I. Repeated mild traumatic brain injury causes chronic neuroinflammation, changes in hippocampal synaptic plasticity, and associated cognitive deficits. J. Cereb. Blood Flow Metab. 2014, 34, 1223–1232. [Google Scholar] [CrossRef] [Green Version]
- Zuckerman, A.; Ram, O.; Ifergane, G.; Matar, M.A.; Sagi, R.; Ostfeld, I.; Hoffman, J.R.; Kaplan, Z.; Sadot, O.; Cohen, H. Controlled low-pressure blast-wave exposure causes distinct behavioral and morphological responses modelling mild traumatic brain injury, post-traumatic stress disorder, and comorbid mild traumatic brain injury-post-traumatic stress disorder. J. Neurotrauma 2017, 34, 145–164. [Google Scholar] [CrossRef]
- Marom, T.; Itskoviz, D.; Lavon, H.; Ostfeld, I. Acute care for exercise-induced hyperthermia to avoid adverse outcome from exertional heat stroke. J. Sport Rehabil. 2011, 20, 219–227. [Google Scholar] [CrossRef]
- Laitano, O.; Leon, L.R.; Roberts, W.O.; Sawka, M.N. Controversies in Exertional Heat Stroke Diagnosis, Prevention, And Treatment. J. Appl. Physiol. 2019, 127, 1338–1348. [Google Scholar] [CrossRef] [PubMed]
- Belity, T.; Hoffman, J.R.; Horowitz, M.; Epstein, Y.; Bruchim, Y.; Cohen, H. β-Alanine Supplementation Attenuates the Neurophysiological Response in Animals Exposed to an Acute Heat Stress. J. Diet Suppl. 2022, 19, 443–458. [Google Scholar] [CrossRef] [PubMed]
- Schochina, M.; Horowitz, M. Central venous pressure, arterial pressure and hypovolemia: Their role in adjustment during heat stress. J. Therm. Biol. 1989, 14, 109–113. [Google Scholar] [CrossRef]
- Liu, Q.; Sikand, P.; Ma, C.; Tang, Z.; Han, L.; Li, Z.; Sun, S.; LaMotte, R.H.; Dong, X. Mechanisms of itch evoked by β-alanine. J. Neurosci. 2012, 32, 14532–14537. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- MacPhee, S.; Weaver, I.N.; Weaver, D.F. An evaluation of interindividual responses to the orally administered neurotransmitter β-alanine. J. Amino Acids 2013, 2013, 429847. [Google Scholar] [CrossRef] [Green Version]
- Saunders, B.; Franchi, M.; de Oliveira, L.F.; da Eira Silva, V.; da Silva, R.P.; de Salles Painelli, V.; Costa, L.A.R.; Sale, C.; Harris, R.C.; Roschel, H.; et al. 24-Week β-alanine ingestion does not affect muscle taurine or clinical blood parameters in healthy males. Eur. J. Nutr. 2020, 59, 57–65. [Google Scholar] [CrossRef]
- Dolan, E.; Swinton, P.A.; Painelli, V.D.S.; Stephens Hemingway, B.; Mazzolani, B.; Infante Smaira, F.; Saunders, B.; Artioli, G.G.; Gualano, B. A Systematic Risk Assessment and Meta-Analysis on the Use of Oral β-Alanine Supplementation. Adv. Nutr. 2019, 10, 452–463. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ostfeld, I.; Hoffman, J.R. The Effect of β-Alanine Supplementation on Performance, Cognitive Function and Resiliency in Soldiers. Nutrients 2023, 15, 1039. https://doi.org/10.3390/nu15041039
Ostfeld I, Hoffman JR. The Effect of β-Alanine Supplementation on Performance, Cognitive Function and Resiliency in Soldiers. Nutrients. 2023; 15(4):1039. https://doi.org/10.3390/nu15041039
Chicago/Turabian StyleOstfeld, Ishay, and Jay R. Hoffman. 2023. "The Effect of β-Alanine Supplementation on Performance, Cognitive Function and Resiliency in Soldiers" Nutrients 15, no. 4: 1039. https://doi.org/10.3390/nu15041039
APA StyleOstfeld, I., & Hoffman, J. R. (2023). The Effect of β-Alanine Supplementation on Performance, Cognitive Function and Resiliency in Soldiers. Nutrients, 15(4), 1039. https://doi.org/10.3390/nu15041039