Feasibility Study of Lactobacillus Plantarum 299v Probiotic Supplementation in an Urban Academic Facility among Diverse Pregnant Individuals
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Eligibility Screening and Recruitment
3.2. Participants
3.3. Attrition
3.4. Supplement Adherence
3.5. General Adverse Events
3.6. Adverse Pregnancy Conditions
3.7. Maternal Hematological and Iron Status Markers
3.8. Neonatal Cord Hematological and Iron Status Markers
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gupta, P.M.; Hamner, H.C.; Suchdev, P.S.; Flores-Ayala, R.; Mei, Z. Iron status of toddlers, nonpregnant females, and pregnant females in the United States. Am. J. Clin. Nutr. 2017, 106, 1640S–1646S. [Google Scholar] [CrossRef]
- Adebisi, O.Y.; Strayhorn, G. Anemia in pregnancy and race in the United States: Blacks at risk. Fam. Med. 2005, 37, 655–662. [Google Scholar]
- Bothwell, T.H. Iron requirements in pregnancy and strategies to meet them. Am. J. Clin. Nutr. 2000, 72, 257S–264S. [Google Scholar] [CrossRef] [PubMed]
- Lozoff, B.; Beard, J.; Connor, J.; Felt, B.; Georgieff, M.; Schallert, T. Long-Lasting Neural and Behavioral Effects of Iron Deficiency in Infancy. Nutr. Rev. 2006, 64, 34–43. [Google Scholar] [CrossRef]
- Allen, L.H. Anemia and iron deficiency: Effects on pregnancy outcome. Am. J. Clin. Nutr. 2000, 71, 1280S–1284S. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Cogswell, M.E.; Parvanta, I.; Ickes, L.; Yip, R.; Brittenham, G.M. Iron supplementation during pregnancy, anemia, and birth weight: A randomized controlled trial. Am. J. Clin. Nutr. 2003, 78, 773–781. [Google Scholar] [CrossRef]
- Hoppe, M.; Önning, G.; Hulthén, L. Freeze-dried Lactobacillus plantarum 299v increases iron absorption in young females—Double isotope sequential single-blind studies in menstruating women. PLoS ONE 2017, 12, e0189141. [Google Scholar] [CrossRef]
- Hoppe, M.; Önning, G.; Berggren, A.; Hulthén, L. Probiotic strain Lactobacillus plantarum 299v increases iron absorption from an iron-supplemented fruit drink: A double-isotope cross-over single-blind study in women of reproductive age. Br. J. Nutr. 2015, 114, 1195–1202. [Google Scholar] [CrossRef]
- Bering, S.; Suchdev, S.; Sjoltav, L.; Berggren, A.; Tetens, I.; Bukhave, K. A lactic acid-fermented oat gruel increases non-haem iron absorption from a phytate-rich meal in healthy women of childbearing age. Br. J. Nutr. 2006, 96, 80–85. [Google Scholar] [CrossRef]
- Scheers, N.; Rossander-Hulthen, L.; Torsdottir, I.; Sandberg, A.S. Increased iron bioavailability from lactic-fermented vegetables is likely an effect of promoting the formation of ferric iron (Fe3+). Eur. J. Nutr. 2016, 55, 373–382. [Google Scholar] [CrossRef]
- Axling, U.; Önning, G.; Combs, M.A.; Bogale, A.; Högström, M.; Svensson, M. The Effect of Lactobacillus plantarum 299v on Iron Status and Physical Performance in Female Iron-Deficient Athletes: A Randomized Controlled Trial. Nutrients 2020, 12, 1279. [Google Scholar] [CrossRef]
- Rennie, D. CONSORT Revised—Improving the Reporting of Randomized Trials. JAMA 2001, 285, 2006–2007. [Google Scholar] [CrossRef]
- Hamm, R.F.; Wang, E.Y.; Levine, L.D.; Srinivas, S.K. Association Between Race and Hemoglobin at Delivery or Need for Transfusion When Using Race-Based Definitions for Treatment of Antepartum Anemia. Obstet. Gynecol. 2021, 138, 108. [Google Scholar] [CrossRef]
- Committee on the Prevention and Management of Iron Deficiency Anemia among U.S. Children and Women of Childbearing Age. Iron Deficiency Anemia: Recommended Guidelines for the Prevention, Detection, and Management among U.S. Children and Women of Childbearing Age; National Academies Press: Washington, DC, USA, 1994. [Google Scholar]
- Abbassi-Ghanavati, M.; Greer, L.G.; Cunningham, F.G. Pregnancy and laboratory studies: A reference table for clinicians. Obstet. Gynecol. 2009, 114, 1326–1331. [Google Scholar] [CrossRef]
- World Health Organization. Assessing the Iron Status of Populations: Including Literature Reviews. World Health Organization. 2007. Available online: https://www.who.int/publications/i/item/9789241596107 (accessed on 6 February 2023).
- Næss-Andresen, M.-L.; Eggemoen, Å.R.; Berg, J.P.; Falk, R.S.; Jenum, A.K. Serum ferritin, soluble transferrin receptor, and total body iron for the detection of iron deficiency in early pregnancy: A multiethnic population-based study with low use of iron supplements. Am. J. Clin. Nutr. 2019, 109, 566–575. [Google Scholar] [CrossRef]
- Dennis, B.; Ernst, N.; Hjortland, M.; Tillotson, J.; Grambsch, V. The NHLBI nutrition data system. J. Am. Diet. Assoc. 1980, 77, 641. [Google Scholar] [CrossRef]
- Harnack, L.; Stevens, M.; Van Heel, N.; Schakel, S.; Dwyer, J.T.; Himes, J. A computer-based approach for assessing dietary supplement use in conjunction with dietary recalls. J. Food Compos. Anal. 2008, 21, S78–S82. [Google Scholar] [CrossRef]
- Phillips, A.K.; Roy, S.C.; Lundberg, R.; Guilbert, T.W.; Auger, A.P.; Blohowiak, S.E.; Coe, C.L.; Kling, P.J. Neonatal iron status is impaired by maternal obesity and excessive weight gain during pregnancy. J. Perinatol. 2014, 34, 513–518. [Google Scholar] [CrossRef]
- Viteri, F.E. Iron endowment at birth: Maternal iron status and other influences. Nutr. Rev. 2011, 69, S3–S16. [Google Scholar] [CrossRef]
- Newcombe, R.G. Two-sided confidence intervals for the single proportion: Comparison of seven methods. Stat. Med. 1998, 17, 857–872. [Google Scholar] [CrossRef]
- Fleiss, J.L. Statistical Methods for Rates and Proportions, 3rd ed.; Wiley-Interscience: Hoboken, NJ, USA, 2003. [Google Scholar]
- El-Khorazaty, M.N.; Johnson, A.A.; Kiely, M.; El-Mohandes, A.A.; Subramanian, S.; Laryea, H.A.; Murray, K.B.; Thornberry, J.S.; Joseph, J.G. Recruitment and retention of low-income minority women in a behavioral intervention to reduce smoking, depression, and intimate partner violence during pregnancy. BMC Public Health 2007, 7, 233. [Google Scholar] [CrossRef]
- Shavers-Hornaday, V.L.; Lynch, C.F.; Burmeister, L.F.; Torner, J.C. Why are African Americans under-represented in medical research studies? Impediments to participation. Ethn. Health 1997, 2, 31–45. [Google Scholar] [CrossRef]
- Shavers, V.L.; Lynch, C.F.; Burmeister, L.F. Racial differences in factors that influence the willingness to participate in medical research studies. Ann. Epidemiol. 2002, 12, 248–256. [Google Scholar] [CrossRef]
- Goff, S.L.; Youssef, Y.; Pekow, P.S.; White, K.O.; Guhn-Knight, H.; Lagu, T.; Mazor, K.M.; Lindenauer, P.K. Successful strategies for practice-based recruitment of racial and ethnic minority pregnant women in a randomized controlled trial: The IDEAS for a healthy baby study. J. Racial Ethn. Health Disparities 2016, 3, 731–737. [Google Scholar] [CrossRef]
- Gamble, A.; Beech, B.M.; Blackshear, C.; Cranston, K.L.; Herring, S.J.; Moore, J.B.; Welsch, M.A. Recruitment planning for clinical trials with a vulnerable perinatal adolescent population using the Clinical Trials Transformative Initiative framework and principles of partner and community engagement. Contemp. Clin. Trials 2021, 104, 106363. [Google Scholar] [CrossRef]
- Coleman-Phox, K.; Laraia, B.A.; Adler, N.; Vieten, C.; Thomas, M.; Epel, E. Recruitment and retention of pregnant women for a behavioral intervention: Lessons from the maternal adiposity, metabolism, and stress (MAMAS) study. Prev. Chronic Dis. 2013, 10, 1–7. [Google Scholar] [CrossRef]
- Frew, P.M.; Saint-Victor, D.S.; Isaacs, M.B.; Kim, S.; Swamy, G.K.; Sheffield, J.S.; Edwards, K.M.; Villafana, T.; Kamagate, O.; Ault, K. Recruitment and retention of pregnant women into clinical research trials: An overview of challenges, facilitators, and best practices. Clin. Infect. Dis. 2014, 59, S400–S407. [Google Scholar] [CrossRef]
- Kerver, J.M.; Elliott, M.R.; Norman, G.S.; Sokol, R.J.; Keating, D.P.; Copeland, G.E.; Johnson, C.C.; Cislo, K.K.; Alcser, K.H.; Kruger-Ndiaye, S.R.; et al. Pregnancy recruitment for population research: The national children’s study vanguard experience in Wayne County, Michigan. Paediatr. Perinat. Epidemiol. 2013, 27, 303–311. [Google Scholar] [CrossRef]
- Newington, L.; Metcalfe, A. Factors influencing recruitment to research: Qualitative study of the experiences and perceptions of research teams. BMC Med. Res. Methodol. 2014, 14, 10. [Google Scholar] [CrossRef]
- Davidson, S.J.; Barrett, H.L.; Price, S.A.; Callaway, L.K.; Dekker Nitert, M. Probiotics for preventing gestational diabetes. Cochrane Database Syst. Rev. 2021, 2021, CD009951. [Google Scholar] [CrossRef]
- Lindsay, K.L.; Brennan, L.; McAuliffe, F.M. Acceptability of and compliance with a probiotic capsule intervention in pregnancy. Int. J. Gynecol. Obstet. 2014, 125, 279–280. [Google Scholar] [CrossRef]
- Hanson, L.; Vandevusse, L.; Duster, M.; Warrack, S.; Safdar, N. Feasibility of oral prenatal probiotics against maternal group B streptococcus vaginal and rectal colonization. JOGNN—J. Obstet. Gynecol. Neonatal Nurs. 2014, 43, 294–304. [Google Scholar] [CrossRef]
- Callaway, L.K.; McIntyre, H.D.; Barrett, H.L.; Foxcroft, K.; Tremellen, A.; Lingwood, B.E.; Tobin, J.M.; Wilkinson, S.; Kothari, A.; Morrison, M.; et al. Probiotics for the prevention of gestational diabetes mellitus in overweight and obese women: Findings from the SPRING double-blind randomized controlled trial. Diabetes Care 2019, 42, 364–371. [Google Scholar] [CrossRef]
- Rosenberger, K.D.; Cibulka, N.J.; Barron, M.L. Guidelines for Nurse Practitioners in Ambulatory Obstetric Settings; Springer Publishing Company: Berlin/Heidelberg, Germany, 2022. [Google Scholar] [CrossRef]
- Ganz, T.; Nemeth, E. Iron homeostasis in host defence and inflammation. Nat. Rev. Immunol. 2015, 15, 500–510. [Google Scholar] [CrossRef]
- Papanikolaou, G.; Pantopoulos, K. Systemic iron homeostasis and erythropoiesis. IUBMB Life 2017, 69, 399–413. [Google Scholar] [CrossRef]
- Flores-Quijano, M.E.; Vega-Sánchez, R.; Tolentino-Dolores, M.C.; López-Alarcón, M.G.; Flores-Urrutia, M.C.; López-Olvera, A.D.; Talavera, J.O. Obesity Is Associated with Changes in Iron Nutrition Status and Its Homeostatic Regulation in Pregnancy. Nutrients 2019, 11, 693. [Google Scholar] [CrossRef]
- Gillespie, S.L.; Porter, K.; Christian, L.M. Adaptation of the inflammatory immune response across pregnancy and postpartum in Black and White women. J. Reprod. Immunol. 2016, 114, 27–31. [Google Scholar] [CrossRef]
- Christian, L.M.; Glaser, R.; Porter, K.; Iams, J.D. Stress-induced inflammatory responses in women: Effects of race and pregnancy. Psychosom. Med. 2013, 75, 658–669. [Google Scholar] [CrossRef]
- Slavich, G.M.; Irwin, M.R. From stress to inflammation and major depressive disorder: A social signal transduction theory of depression. Psychol. Bull. 2014, 140, 774–815. [Google Scholar] [CrossRef]
- Redpath, N.; Rackers, H.S.; Kimmel, M.C. The Relationship Between Perinatal Mental Health and Stress: A Review of the Microbiome. Curr. Psychiatry Rep. 2019, 21, 1–9. [Google Scholar] [CrossRef]
- Wells, J. Immunomodulatory mechanisms of lactobacilli. Microb. Cell Factories 2011, 10, S17. [Google Scholar] [CrossRef]
- Castelli, V.; D’Angelo, M.; Quintiliani, M.; Benedetti, E.; Cifone, M.G.; Cimini, A. The emerging role of probiotics in neurodegenerative diseases: New hope for Parkinson’s disease? Neural Regen. Res. 2021, 16, 628–634. [Google Scholar] [CrossRef]
- Wu, H.; Chiou, J. Potential benefits of probiotics and prebiotics for coronary heart disease and stroke. Nutrients 2021, 13, 2878. [Google Scholar] [CrossRef]
- Vivarelli, S.; Falzone, L.; Basile, M.; Nicolosi, D.; Genovese, C.; Libra, M.; Salmeri, M. Benefits of using probiotics as adjuvants in anticancer therapy (Review). World Acad. Sci. J. 2019, 1, 125–135. [Google Scholar] [CrossRef]
- Cao, C.; Fleming, M.D. The placenta: The forgotten essential organ of iron transport. Nutr. Rev. 2016, 74, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Dao, M.C.; Sen, S.; Iyer, C.; Klebenov, D.; Meydani, S.N. Obesity during pregnancy and fetal iron status: Is Hepcidin the link? J. Perinatol. 2013, 33, 177–181. [Google Scholar] [CrossRef] [PubMed]
- Sangkhae, V.; Fisher, A.L.; Wong, S.; Koenig, M.D.; Tussing-Humphreys, L.; Chu, A.; Lelić, M.; Ganz, T.; Nemeth, E. Effects of maternal iron status on placental and fetal iron homeostasis. J. Clin. Investig. 2020, 130, 625–640. [Google Scholar] [CrossRef]
Inclusion criteria: |
<20 weeks of gestation |
18–45 years of age |
At risk of maternal iron deficiency anemia defined as hemoglobin of 10.0–12.0 g/dL based on hemoglobin assessed at their initial prenatal care visit |
Spontaneous/natural conception |
Singleton pregnancy |
Willing to refrain from all other supplements, including other prenatal vitamins with iron unless medically indicated (e.g., folate) |
Refrain from other probiotic supplements (e.g., Activia, kefir) |
Ability to read and write in English |
Access to a smart phone |
Exclusion criteria: |
Autoimmune disorders |
Current bacterial or viral infection |
Oral antibiotic use in the past two months |
Receiving steroid or anti-inflammatory treatment |
Previous bariatric surgery |
Malabsorptive condition |
Current hyperemesis |
Hematologic disorder (i.e., sickle cell disease or hemochromatosis) |
High-dose iron supplementation |
Current tobacco use |
Current alcohol consumption |
Current drug use |
Type 1 or 2 diabetes |
Variable | Overall (n = 20) | Probiotic (n = 12) | Placebo (n = 8) |
---|---|---|---|
Race, n (%) a | |||
Black | 15 (75) | 10 (83) | 5 (63) |
White | 5 (25) | 2 (17) | 3 (37) |
Ethnicity, n (%) a | |||
Non-Hispanic or Latino | 16 (80) | 11 (92) | 5 (63) |
Hispanic or Latino | 4 (20) | 1 (8) | 3 (37) |
Relationship status, n (%) a | |||
Single not living with significant other | 7 (35) | 5 (42) | 2 (25) |
Single but living with significant other | 6 (30) | 3 (25) | 3 (37) |
Married | 7 (35) | 4 (33) | 3 (37) |
Health insurance, n (%) a | |||
Private | 7 (35) | 6 (50) | 1 (12) |
Public | 11 (55) | 4 (33) | 7 (88) |
Other | 2 (10) | 2 (16) | 0 (0) |
Education, n (%) a | |||
Some high school; some college | 15 (75) | 9 (75) | 7 (88) |
College graduate; graduate school | 5 (25) | 3 (25) | 1 (12) |
Household income, n (%) b | |||
≤$30,999 | 14 (70) | 7 (58) | 7 (88) |
≥$31,000 | 6 (30) | 5 (42) | 1 (12) |
Receiving public assistance, n (%) a | |||
WIC | 5 (25) | 3 (25) | 2 (25) |
SNAP | 11 (55) | 6 (50) | 5 (63) |
TANF | 2 (10) | 1 (8) | 1 (12) |
Maternal age, y b | 28.9 ± 6.5 | 29.0 ± 6.5 | 28.7 ± 6.9 |
Gestational age at baseline, WK b | 13 ± 4.1 | 12.6 ± 4.5 | 13.7 ± 3.7 |
Gestational age at delivery, WK b | 38.8 ± 0.7 | 38.6 ± 0.7 | 38.9 ± 0.7 |
Pre-pregnancy BMI (kg/m2) b | 31.4 ±7.5 | 31.1 ± 7.3 | 31.8 ± 8.3 |
Pre-pregnancy obesity, n (%) a | 11 (55) | 7 (58) | 4 (50) |
Maternal BMI at baseline (kg/m2) b | 32.2 ± 6.7 | 31.7 ± 6.8 | 32.9 ± 6.8 |
Maternal obesity at baseline, n (%) a | 12 (60) | 8 (67) | 4 (50) |
Parity, n (%) a | |||
0 | 8 (40) | 5 (42) | 3 (37) |
1 | 6 (30) | 3 (25) | 3 (37) |
2 | 6 (30) | 4 (33) | 2 (25) |
Food iron (mg/1000 kcal), median (IQR) b | 10.5 (8.7) | 11.2 (4.3) | 9.8 (12.9) |
Total iron (food and supplement; mg/1000 kcal), median (IQR) b | 36.2 (22.1) | 35.1 (23.9) | 36.8 (16.7) |
Overall, Mean (SD) | Randomization Group, Mean (SD) | Withdrawal Group, Mean (SD) | Completion Group, Mean (SD) | ||||
---|---|---|---|---|---|---|---|
% Adherence | Overall (n = 19) | Probiotic (n = 11) | Placebo (n = 8) | Withdrawn (n = 6) | Completed (n = 13) | Completed Probiotic (n = 7) | Completed Placebo (n = 6) |
LP299V®/placebo | 72 (27.5) | 67 (29.1) | 80 (25.3) | 45 (22) | 85 (19.4) * | 79 (25) | 93 (5.9) |
Prenatal vitamin | 73 (27.5) | 67 (29.9) | 81 (23.2) | 45 (22.6) | 86 (18.3) * | 80 (23.6) | 93 (5.1) |
Randomization Group | Withdrawal Group | Completion Group | |||||
---|---|---|---|---|---|---|---|
Variable Category (N) | Overall (n = 19) | Probiotic (n = 11) | Placebo (n = 8) | Withdrawn (n = 6) | Completed (n = 13) | Completed Probiotic (n = 7) | Completed Placebo (n = 6) |
Genitourinary conditions a | 13 | 8 | 5 | 1 | 12 | 7 | 5 |
Gastrointestinal symptoms | 17 | 8 | 9 | 3 | 14 | 5 | 9 |
Upper respiratory conditions a,* | 6 | 1 | 5 | 0 | 6 | 1 | 5 |
Pain/swelling a | 15 | 8 | 7 | 2 | 13 | 6 | 7 |
Headaches/migraines a | 6 | 3 | 3 | 1 | 5 | 2 | 3 |
Problems sleeping a | 8 | 4 | 4 | 1 | 7 | 3 | 4 |
Emergency room visits a | 5 | 2 | 3 | 0 | 5 | 2 | 3 |
Acne/rash a | 2 | 1 | 1 | 1 | 1 | 0 | 1 |
Anxiety/depression a | 3 | 3 | 0 | 0 | 3 | 3 | 0 |
Fatigue/tired a | 7 | 5 | 2 | 2 | 5 | 3 | 2 |
Nosebleeds a | 3 | 0 | 3 | 0 | 3 | 0 | 3 |
Genetic iron diagnoses a | 2 | 1 | 1 | 0 | 2 | 1 | 1 |
Genetic fetal diagnoses a | 2 | 2 | 0 | 1 | 1 | 1 | 0 |
Other a | 4 | 2 | 2 | 2 | 2 | 0 | 2 |
Randomization Group | Withdrawal Group | Completion Group | |||||
---|---|---|---|---|---|---|---|
Variable Category (N) | Overall (n = 19) | Probiotic (n = 11) | Placebo (n = 8) | Withdrawn (n = 6) | Completed (n = 13) | Completed Probiotic (n = 7) | Completed Placebo (n = 6) |
Blood transfusion | 1 | 0 | 1 | 0 | 1 | 0 | 1 |
Antibiotic use a | 8 | 5 | 3 | 2 | 6 | 3 | 3 |
Iron supplementation a | 6 | 4 | 2 | 2 | 4 | 2 | 2 |
Gastrointestinal Symptoms Score, mean (SD) b | 42 ± 24.2 | 41 ± 29.2 | 44 ± 16.6 | 24 ± 7.8 | 48 ± 24.9 * | 49 ± 31.7 | 46 ± 16.8 |
Gestational diabetes mellitus a | 3 | 3 | 0 | 1 | 2 | 2 | 0 |
Probiotic | Placebo | |||||
---|---|---|---|---|---|---|
Biomarkers by Time Point | n | Absolute Value, Mean (95% CI) | Change from Baseline, Mean (95% CI) c | n | Absolute Value, Mean (95% CI) | Change from Baseline, Mean (95% CI) c |
Hemoglobin (g/dL) a,d | ||||||
Baseline | 4 | 10.9 (10.1–11.7) | 6 | 11.3 (10.6–12) | ||
24–28 WG | 5 | 11.0 (10.1–11.9) | −0.03 (−0.68–0.63) | 6 | 11 (10.6–11.5) | −0.2 (−0.8–0.4) |
34–36 WG | 4 | 10.9 (10.4–11.3) | 0.1 (−0.2–0.4) | 5 | 11.3 (10.3–12.4) | 0.1 (−0.4–0.6) |
L&D | 5 | 11.2 (10.0–12.4) | 0.4 (−1.1–1.8) | 4 | 10.9 (9.0–12.7) | −0.1 (−1.7–1.6) |
Hematocrit (%) a,d | ||||||
Baseline | 3 | 32.8 (29.1–36.5) | 6 | 34.2 (31–37.4) | ||
24–28 WG | 5 | 32.6 (29.9–35.3) | −1.2 (−3.5–1.1) | 6 | 33.1 (31.7–34.5) | −1.1 (−3.4–1.2) |
34–36 WG | 4 | 32.3 (30.0–34.7) | −1.0 (−4.9–3.0) | 5 | 34.5 (30.2–38.7) | 0.5 (−1.4–2.3) |
L&D | 5 | 33.1 (30.2–35.9) | −0.03 (−6.6–6.5) | 4 | 32.2 (26.8–37.7) | −0.5 (−4.7–3.8) |
Serum iron (µg/dL) b,d | ||||||
Baseline | 5 | 73.5 (43.1–125.2) | 6 | 100.1 (59.4–168.5) | ||
24–28 WG | 5 | 89.3 (61.0–130.7) | 13.4 (−38.3–65.1) | 6 | 88.1 (51.1–151.9) | −13.7 (−57–29.7) |
34–36 WG | 4 | 83.2 (36.8–187.9) | 14.0 (−25.6–53.6) | 5 | 66.3 (33.7–130.5) | −11.6 (−36.5–13.3) |
L&D | 5 | 69.6 (42.8–113.4) | −5.2 (−17.6–7.2) | 3 | 93.1 (57.0–153.0) | 5.7 (−48.8–60.2) |
Total iron binding capacity (µmol/L) a,d | ||||||
Baseline | 5 | 354.0 (308.6–399.4) | 6 | 390.8 (352.8–428.9) | ||
24–28 WG | 5 | 405.4 (354.4–456.4) | 51.4 (−15.1–117.9) | 6 | 441.8 (399.6–484.1) | 51.0 (11.5–90.5) |
34–36 WG | 4 | 450.0 (364.9–535.1) | 100.5 (10.7–190.3) | 5 | 483.6 (439.4–527.8) | 100 (53.2–147.60 |
L&D | 5 | 443.4 (379.6–507.2) | 89.4 (12.4–166.4) | 3 | 461.0 (405.0–517.0) | 58.3 (11.4–105.2) |
Serum ferritin (ng/mL) b,d | ||||||
Baseline | 5 | 17.7 (9.9–31.8) | 6 | 25.9 (13.2–51.0) | ||
24–28 WG | 5 | 12.4 (7.3- 20.8) | −6.0 (−15.2–3.2) | 6 | 18.9 (15.6–22.9) | −12.0 (−34.7–10.7) |
34–36 WG | 4 | 11.8 (6.9–20.1) | −5.8 (−14.3–2.8) | 5 | 15.3 (7.8–30.0) | −17.2 (−49.4–15.0) |
L&D | 5 | 13.8 (8.3–23.2) | −4.4 (−9.4–0.6) | 3 | 30.8 (10.4–91.5) | 0 (−94.4–94.4) |
Transferrin saturation (%) b,d | ||||||
Baseline | 5 | 20.9 (12.1–36.1) | 6 | 25.8 (15.7–42.2) | ||
24–28 WG | 5 | 22.0 (13.9–34.8) | 0.6 (−16.4–17.6) | 6 | 20.0 (11.6–34.4) | −6.0 (−15.3–3.3) |
34–36 WG | 4 | 18.9 (10.1–35.3) | −2.5 (−14.5–9.5) | 5 | 13.4 (6.1–29.4) | −7.2 (−12.0–−2.4) |
L&D | 5 | 15.6 (9.9–24.6) | −6.2 (−15.1–2.7) | 3 | 20.4 (12.0– 34.61 | −1.7 (−12.0–8.7) |
hs-CRP (mg/L) b,d | ||||||
Baseline | 5 | 5.8 (2.6–12.5) | 6 | 4.8 (1.8–12.8) | ||
24–28 WG | 5 | 5.4 (1.5–18.9) | 0.4 (−2.5–3.3) | 6 | 5.3 (2.1–13.5) | 0.2 (−2.3–2.8) |
34–36 WG | 4 | 5.3 (3.0–9.3) | −0.8 (−4.1–2.4) | 5 | 3.7 (0.9–15.6) | −1.6 (−5.7–2.5) |
L&D | 5 | 6.3 (4.2–9.5) | −0.04 (−3.9- 3.9) | 3 | 4.6 (2.4–9.0) | −3.0 (−14.1–8.1) |
IDA (n) | ||||||
Baseline | 5 | 0 | 6 | 0 | ||
24–28 WG | 5 | 0 | 6 | 0 | ||
34–36 WG | 4 | 1 | 5 | 0 | ||
L&D | 5 | 1 | 4 | 2 |
Probiotic | Placebo | |||
---|---|---|---|---|
Biomarkers | n | Absolute Value, Mean (95% CI) | n | Absolute Value, Mean (95% CI) |
Gestational age at delivery (WG) a,c | 5 | 38.5 (37.6–39.4) | 5 | 39.1 (38.2–40.0) |
Weight at delivery (kg) a,c | 5 | 3.5 (3.3–3.6) | 5 | 3.2 (2.8–3.5) |
Neonatal sex d (n, male) | 5 | 2 | 5 | 3 |
Hemoglobin (g/dL) a,c | 5 | 14.7 (12.1–17.3) | 4 | 16.4 (14.6–18.2) |
Hematocrit (%) a,c | 5 | 44.3 (38.5–50.2) | 4 | 49.5 (44.9–54.0) |
Serum iron (µg/dL) a,c | 5 | 136.2 (93.4–179.0) | 3 | 108.0 (48.4–167.6) |
Total iron binding capacity (µmol/L) a,c | 5 | 223.6 (155.6–291.6) | 3 | 274.0 (97.3–450.7) |
Serum ferritin (ng/mL) a,c | 5 | 88.8 (7–170.6) | 3 | 88.0 (44.1–132.0) |
Transferrin saturation (%) a,c | 5 | 63.8 (35.3–92.3) | 3 | 43.3 (−12.6–99.2) |
hs_CRP(mg/L) a,b | 5 | ND | 3 | ND |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
OjiNjideka Hemphill, N.; Pezley, L.; Steffen, A.; Elam, G.; Kominiarek, M.A.; Odoms-Young, A.; Kessee, N.; Hamm, A.; Tussing-Humphreys, L.; Koenig, M.D. Feasibility Study of Lactobacillus Plantarum 299v Probiotic Supplementation in an Urban Academic Facility among Diverse Pregnant Individuals. Nutrients 2023, 15, 875. https://doi.org/10.3390/nu15040875
OjiNjideka Hemphill N, Pezley L, Steffen A, Elam G, Kominiarek MA, Odoms-Young A, Kessee N, Hamm A, Tussing-Humphreys L, Koenig MD. Feasibility Study of Lactobacillus Plantarum 299v Probiotic Supplementation in an Urban Academic Facility among Diverse Pregnant Individuals. Nutrients. 2023; 15(4):875. https://doi.org/10.3390/nu15040875
Chicago/Turabian StyleOjiNjideka Hemphill, Nefertiti, Lacey Pezley, Alana Steffen, Gloria Elam, Michelle A. Kominiarek, Angela Odoms-Young, Nicollette Kessee, Alyshia Hamm, Lisa Tussing-Humphreys, and Mary Dawn Koenig. 2023. "Feasibility Study of Lactobacillus Plantarum 299v Probiotic Supplementation in an Urban Academic Facility among Diverse Pregnant Individuals" Nutrients 15, no. 4: 875. https://doi.org/10.3390/nu15040875
APA StyleOjiNjideka Hemphill, N., Pezley, L., Steffen, A., Elam, G., Kominiarek, M. A., Odoms-Young, A., Kessee, N., Hamm, A., Tussing-Humphreys, L., & Koenig, M. D. (2023). Feasibility Study of Lactobacillus Plantarum 299v Probiotic Supplementation in an Urban Academic Facility among Diverse Pregnant Individuals. Nutrients, 15(4), 875. https://doi.org/10.3390/nu15040875