Low Phase Angle Values Are Associated with Malnutrition according to the Global Leadership Initiative on Malnutrition Criteria in Kidney Transplant Candidates: Preliminary Assessment of Diagnostic Accuracy in the FRAILMar Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Setting
2.3. Participants
2.4. Test Methods
2.5. Other Study Variables
2.6. Study Procedure
2.7. Ethics
2.8. Statistics
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mansur, H.N.; Colugnati, F.A.; Grincenkov, F.R.; Bastos, M.G. Frailty and quality of life: A cross-sectional study of Brazilian patients with pre-dialysis chronic kidney disease. Health Qual. Life Outcomes 2014, 12, 27. [Google Scholar] [CrossRef]
- Wilkinson, T.J.; McAdams-DeMarco, M.; Bennett, P.N.; Wilund, K. Advances in exercise therapy in predialysis chronic kidney disease, hemodialysis, peritoneal dialysis, and kidney transplantation. Curr. Opin. Nephrol. Hypertens. 2020, 29, 471–479. [Google Scholar] [CrossRef]
- Bellizzi, V.; Cupisti, A.; Capitanini, A.; Calella, P.; D’Alessandro, C. Physical activity and renal transplantation. Kidney Blood Press. Res. 2014, 39, 212–219. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, A.; Hu, S.L.; Bostom, A. Physical Activity in Kidney Transplant Recipients: A Review. Am. J. Kidney Dis. 2018, 72, 433–443. [Google Scholar] [CrossRef] [PubMed]
- Johansen, K.L.; Dalrymple, L.S.; Delgado, C.; Chertow, G.M.; Segal, M.R.; Chiang, J.; Grimes, B.; Kaysen, G.A. Factors Associated with Frailty and Its Trajectory among Patients on Hemodialysis. Clin. J. Am. Soc. Nephrol. 2017, 12, 1100–1108. [Google Scholar] [CrossRef]
- Bousquet, J.; Bourret, R.; Camuzat, T.; Augé, P.; Bringer, J.; Noguès, M.; Jonquet, O.; de la Coussaye, J.E.; Ankri, J.; Cesari, M.; et al. MACVIA-LR (Fighting Chronic Diseases for Active and Healthy Ageing in Languedoc-Roussillon): A Success Story of the European Innovation Partnership on Active and Healthy Ageing. J. Frailty Aging 2016, 5, 233–241. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.J.; Johansen, K.L.; Lindholm, B.; Stenvinkel, P.; Cuppari, L.; Avesani, C.M. Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int. 2016, 90, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Ohkawa, S.; Odamaki, M.; Yoneyama, T.; Hibi, I.; Miyaji, K.; Kumagai, H. Standardized thigh muscle area measured by computed axial tomography as an alternate muscle mass index for nutritional assessment of hemodialysis patients. Am. J. Clin. Nutr. 2000, 71, 485–490. [Google Scholar] [CrossRef]
- Llames, L.; Baldomero, V.; Iglesias, M.L.; Rodota, L.P. Values of the phase angle by bioelectrical impedance; nutritional status and prognostic value. Nutr. Hosp. 2013, 28, 286–295. [Google Scholar] [CrossRef] [PubMed]
- Uemura, K.; Doi, T.; Tsutsumimoto, K.; Nakakubo, S.; Kim, M.J.; Kurita, S.; Ishii, H.; Shimada, H. Predictivity of bioimpedance phase angle for incident disability in older adults. J. Cachexia Sarcopenia Muscle 2020, 11, 46–54. [Google Scholar] [CrossRef]
- Rinaldi, S.; Gilliland, J.; O’Connor, C.; Chesworth, B.; Madill, J. Is phase angle an appropriate indicator of malnutrition in different disease states? A systematic review. Clin. Nutr. ESPEN 2019, 29, 1–14. [Google Scholar] [CrossRef]
- Barazzoni, R.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Higashiguchi, T.; Shi, H.P.; Bischoff, S.C.; Boirie, Y.; Carrasco, F.; Cruz-Jentoft, A.; et al. Guidance for assessment of the muscle mass phenotypic criterion for the Global Leadership Initiative on Malnutrition (GLIM) diagnosis of malnutrition. Clin. Nutr. 2022, 41, 1425–1433. [Google Scholar] [CrossRef] [PubMed]
- Ding, Y.; Chang, L.; Zhang, H.; Wang, S. Predictive value of phase angle in sarcopenia in patients on maintenance hemodialysis. Nutrition 2022, 94, 111527. [Google Scholar] [CrossRef]
- Pérez-Sáez, M.J.; Morgado-Pérez, A.; Faura, A.; Muñoz-Redondo, E.; Gárriz, M.; Muns, M.D.; Nogués, X.; Marco, E.; Pascual, J. The FRAILMar Study Protocol: Frailty in Patients With Advanced Chronic Kidney Disease Awaiting Kidney Transplantation. A Randomized Clinical Trial of Multimodal Prehabilitation. Front. Med. 2021, 8, 675049. [Google Scholar] [CrossRef] [PubMed]
- Bossuyt, P.M.; Reitsma, J.B.; Bruns, D.E.; Gatsonis, C.A.; Glasziou, P.P.; Irwig, L.; Lijmer, J.G.; Moher, D.; Rennie, D.; de Vet, H.C.W.; et al. STARD 2015: An Updated List of Essential Items for Reporting Diagnostic Accuracy Studies. Clin. Chem. 2015, 61, 1446–1452. [Google Scholar] [CrossRef]
- Cederholm, T.; Jensen, G.L.; Correia, M.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Schutz, Y.; Kyle, U.U.; Pichard, C. Fat-free mass index and fat mass index percentiles in Caucasians aged 18-98 y. Int. J. Obes. Relat. Metab. Disord. 2002, 26, 953–960. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, S.; Ando, K.; Kobayashi, K.; Hida, T.; Seki, T.; Suzuki, K.; Kenyu, I.; Tsushima, M.; Morozumi, M.; Machino, M.; et al. Relationship between locomotive syndrome and body composition among community-dwelling middle-age and elderly individuals in Japan: The Yakumo study. Mod. Rheumatol. 2019, 29, 491–495. [Google Scholar] [CrossRef]
- Lee, Y.; Kwon, O.; Shin, C.S.; Lee, S.M. Use of bioelectrical impedance analysis for the assessment of nutritional status in critically ill patients. Clin. Nutr. Res. 2015, 4, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Meza-Valderrama, D.; Chaler, J.; Marco, E. Evaluación de la fuerza muscular en rehabilitación: De las escalas de valoración subjetivas a las exploraciones instrumentales. Rehabilitación 2021, 55, 2–4. [Google Scholar] [CrossRef] [PubMed]
- Roberts, H.C.; Denison, H.J.; Martin, H.J.; Patel, H.P.; Syddall, H.; Cooper, C.; Sayer, A.A. A review of the measurement of grip strength in clinical and epidemiological studies: Towards a standardised approach. Age Ageing 2011, 40, 423–429. [Google Scholar] [CrossRef] [PubMed]
- Luna-Heredia, E.; Martín-Peña, G.; Ruiz-Galiana, J. Handgrip dynamometry in healthy adults. Clin. Nutr. 2005, 24, 250–258. [Google Scholar] [CrossRef] [PubMed]
- Meza-Valderrama, D.; Sánchez-Rodríguez, D.; Perkisas, S.; Duran, X.; Bastijns, S.; Dávalos-Yerovi, V.; Da Costa, E.; Marco, E. The feasibility and reliability of measuring forearm muscle thickness by ultrasound in a geriatric inpatient setting: A cross-sectional pilot study. BMC Geriatr. 2022, 22, 137. [Google Scholar] [CrossRef] [PubMed]
- Perkisas, S.; Bastijns, S.; Baudry, S.; Bauer, J.; Beaudart, C.; Beckwée, D.; Cruz-Jentoft, A.; Gasowski, J.; Hobbelen, H.; Jager-Wittenaar, H.; et al. Application of ultrasound for muscle assessment in sarcopenia: 2020 SARCUS update. Eur. Geriatr. Med. 2021, 12, 45–59. [Google Scholar] [CrossRef] [PubMed]
- Fried, L.P.; Tangen, C.M.; Walston, J.; Newman, A.B.; Hirsch, C.; Gottdiener, J.; Seeman, T.; Tracy, R.; Kop, W.J.; Burke, G.; et al. Cardiovascular Health Study Collaborative Research Group. Frailty in older adults: Evidence for a phenotype. J. Gerontol. A Biol. Sci. Med. Sci. 2001, 56, M146–M156. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Sáez, M.J.; Redondo-Pachón, D.; Arias-Cabrales, C.E.; Faura, A.; Bach, A.; Buxeda, A.; Burballa, C.; Junyent, E.; Crespo, M.; Marco, E.; et al. Outcomes of Frail Patients While Waiting for Kidney Transplantation: Differences between Physical Frailty Phenotype and FRAIL Scale. J. Clin. Med. 2022, 11, 672. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. An application of hierarchical kappa-type statistics in the assessment of majority agreement among multiple observers. Biometrics 1977, 33, 363–374. [Google Scholar] [CrossRef] [PubMed]
- Deeks, J.J.; Altman, D.G. Diagnostic tests 4: Likelihood ratios. BMJ 2004, 329, 168–169. [Google Scholar] [CrossRef]
- Hayden, S.R.; Brown, M.D. Likelihood ratio: A powerful tool for incorporating the results of a diagnostic test into clinical decisionmaking. Ann. Emerg. Med. 1999, 33, 575–580. [Google Scholar] [CrossRef]
- Altman, D.G.; Bland, J.M. Diagnostic tests 3: Receiver operating characteristic plots. BMJ 1994, 309, 188. [Google Scholar] [CrossRef] [PubMed]
- Liu, X. Classification accuracy and cut point selection. Stat. Med. 2012, 31, 2676–2686. [Google Scholar] [CrossRef]
- Dumler, F.; Kilates, C. Body composition analysis by bioelectrical impedance in chronic maintenance dialysis patients: Comparisons to the National Health and Nutrition Examination Survey III. J. Ren. Nutr. 2003, 13, 166–172. [Google Scholar] [CrossRef]
- WHO Recommendations. A Healthy Lifestyle. Available online: https://www.who.int/europe/news-room/fact-sheets/item/a-healthy-lifestyle---who-recommendations (accessed on 21 January 2023).
- Liu, Z.H.; Zhang, G.X.; Zhang, H.; Jiang, L.; Deng, Y.; Chan, F.S.Y.; Fan, J.K.M. Association of body fat distribution and metabolic syndrome with the occurrence of colorectal adenoma: A case-control study. J. Dig. Dis. 2021, 22, 222–229. [Google Scholar] [CrossRef] [PubMed]
- Minetto, M.A.; Caresio, C.; Menapace, T.; Hajdarevic, A.; Marchini, A.; Molinari, F.; Maffiuletti, N.A. Ultrasound-Based Detection of Low Muscle Mass for Diagnosis of Sarcopenia in Older Adults. PM&R 2016, 8, 453–462. [Google Scholar] [CrossRef]
- Hanna, R.M.; Ghobry, L.; Wassef, O.; Rhee, C.M.; Kalantar-Zadeh, K. A Practical Approach to Nutrition, Protein-Energy Wasting, Sarcopenia, and Cachexia in Patients with Chronic Kidney Disease. Blood Purif. 2020, 49, 202–211. [Google Scholar] [CrossRef] [PubMed]
- Chan, W. Chronic Kidney Disease and Nutrition Support. Nutr. Clin. Pract. 2021, 36, 312–330. [Google Scholar] [CrossRef] [PubMed]
- Karavetian, M.; Salhab, N.; Rizk, R.; Poulia, K.A. Malnutrition-Inflammation Score VS Phase Angle in the Era of GLIM Criteria: A Cross-Sectional Study among Hemodialysis Patients in UAE. Nutrients 2019, 11, 2771. [Google Scholar] [CrossRef]
- Kaysen, G.A.; Zhu, F.; Sarkar, S.; Heymsfield, S.B.; Wong, J.; Kaitwatcharachai, C.; Kuhlmann, M.K.; Levin, N.W. Estimation of total-body and limb muscle mass in hemodialysis patients by using multifrequency bioimpedance spectroscopy. Am. J. Clin. Nutr. 2005, 82, 988–995. [Google Scholar] [CrossRef]
- Pillon, L.; Piccoli, A.; Lowrie, E.G.; Lazarus, J.M.; Chertow, G.M. Vector length as a proxy for the adequacy of ultrafiltration in hemodialysis. Kidney Int. 2004, 66, 1266–1271. [Google Scholar] [CrossRef]
- Chamney, P.W.; Wabel, P.; Moissl, U.M.; Müller, M.J.; Bosy-Westphal, A.; Korth, O.; Fuller, N.J. A whole-body model to distinguish excess fluid from the hydration of major body tissues. Am. J. Clin. Nutr. 2007, 85, 80–89. [Google Scholar] [CrossRef] [PubMed]
- Beberashvili, I.; Azar, A.; Sinuani, I.; Shapiro, G.; Feldman, L.-; Stav, K.; Sandbank, J.; Averbukh, Z. Bioimpedance phase angle predicts muscle function, quality of life and clinical outcome in maintenance hemodialysis patients. Eur. J. Clin. Nutr. 2014, 68, 683–689. [Google Scholar] [CrossRef] [PubMed]
- Basile, C.; Della-Morte, D.; Cacciatore, F.; Gargiulo, G.; Galizia, G.; Roselli, M.; Curcio, F.; Bonaduce, D.; Abete, P. Phase angle as bioelectrical marker to identify elderly patients at risk of sarcopenia. Exp. Gerontol. 2014, 58, 43–46. [Google Scholar] [CrossRef]
- Belarmino, G.; Gonzalez, M.C.; Torrinhas, R.S.; Sala, P.; Andraus, W.; D’Albuquerque, L.A.; Pereira, R.M.; Caparbo, V.F.; Ravacci, G.R.; Damiani, L.; et al. Phase angle obtained by bioelectrical impedance analysis independently predicts mortality in patients with cirrhosis. World J. Hepatol. 2017, 9, 401–408. [Google Scholar] [CrossRef]
- Kosacka, M.; Korzeniewska, A.; Jankowska, R. The evaluation of body composition, adiponectin, C-reactive protein and cholesterol levels in patients with obstructive sleep apnea syndrome. Adv. Clin. Exp. Med. 2013, 22, 817–824. [Google Scholar]
- Kyle, U.G.; Soundar, E.P.; Genton, L.; Pichard, C. Can phase angle determined by bioelectrical impedance analysis assess nutritional risk? A comparison between healthy and hospitalized subjects. Clin. Nutr. 2012, 31, 875–881. [Google Scholar] [CrossRef] [PubMed]
- Tomeleri, C.M.; Cavalcante, E.F.; Antunes, M.; Nabuco, H.C.G.; de Souza, M.F.; Teixeira, D.C.; Gobbo, L.A.; Silva, A.M.; Cyrino, E.S. Phase Angle Is Moderately Associated With Muscle Quality and Functional Capacity, Independent of Age and Body Composition in Older Women. J. Geriatr. Phys. Ther. 2019, 42, 281–286. [Google Scholar] [CrossRef] [PubMed]
Total Sample (n = 63) | Range of Normality | |
---|---|---|
Age (years) | 62.9 (SD 10.9) | - |
Sex, men (%) | 48 (76.2%) | - |
Dialysis modality, n (%) | ||
Hemodialysis | 36 (57.1%) | |
Peritoneal dialysis | 12 (19.0%) | - |
No renal replacement therapy | 15 (23.8%) | |
Body mass index (kg/m2) | 28.4 (SD 5.1) | 18.5–25 kg/m2 [33] |
Frailty, Fried phenotype 3–5 (%) | 26 (41.3%) | |
Malnutrition, GLIM criteria (%) | 22 (34.9%) | |
BIA-derived parameters: | ||
Appendicular musculoskeletal mass index (kg/m2) a | 7.7 (SD 1.2) | - |
Musculoskeletal mass (kg) a | 27.7 (SD 5.4) | - |
Fat-free mass (kg) a | 51.1 (SD 9.2) | - |
Fat-free mass (% ref.) | 95.2 (SD 13.6) | 90–110% [17] |
Fat mass (kg) a | 27.4 (SD 12.1) | - |
Fat mass (% body weight) | 33.8 (SD 10.1) | Men 10–20%, women 18–28% [34] |
Total body water (L) b | 37.8 (SD 6.9) | - |
Extracellular water (L) | 15.0 (SD 2.8) | - |
Intracellular water (L) | 22.8 (SD 4.1) | - |
Extracellular water/total body water | 0.397 (SD 0.011) | 0.360–0.390 [18,19] |
Phase angle (°) | 5.0 (SD 0.9) | 5–7° [9] |
Muscle strength of the dominant side: | ||
Handgrip strength (kg) a | 28.4 (SD 8.2) | - |
Handgrip strength (%ref.) | 80.8 (SD 19.4) | 80–120% [22] |
Muscle size assessed using ultrasound: | ||
Muscle thickness of dominant forearm (mm) b | 15.1 (SD 3.9) | 13.3–23.5 mm [23] |
Muscle thickness of dominant rectus femoris (mm) b | 17.2 (SD 4.3) | Men 20–31 mm; women 16–24 mm [35] |
A | Reference Standard (GLIM Criteria) | |||
---|---|---|---|---|
Malnutrition (n = 22) | No Malnutrition (n = 41) | Total Sample (n = 63) | ||
Phase angle ≤ 4.85° | Positive | 16 | 14 | 30 |
Negative | 6 | 27 | 33 | |
B | Malnutrition (n = 11) | No Malnutrition (n = 9) | Patients with BMI < 25 kg/m2 (n = 18) | |
Phase angle ≤ 4.85° | Positive | 9 | 2 | 11 |
Negative | 2 | 7 | 9 |
All of the Sample | In the Subgroup of Patients with BMI < 25 kg/m2 | |
---|---|---|
Sensitivity | 72.7% | 81.8% |
Specificity | 65.9% | 77.8% |
Positive predictive value | 53.3% | 81.8% |
Negative predictive value | 81.8% | 77.8% |
Accuracy | 68.3% | 80% |
Positive likelihood ratio | 2.13 | 3.68 |
Negative likelihood ratio | 0.41 | 0.23 |
Phase Angle ≤ 4.85° (n = 30) | Phase Angle > 4.85° (n = 33) | Mean Differences (95% CI) | p-Value | |
---|---|---|---|---|
Age (years) | 66.5 (SD 7.6) | 59.6 (SD 12.4) | 6.9 (1.7 to 12.0) | 0.010 |
Sex, men (%) | 23 (76.7%) | 25 (75.8%) | - | 0.933 |
Dialysis modality, n (%) | ||||
Hemodialysis | 19 (63.3%) | 17 (56.7%) | ||
Peritoneal dialysis | 6 (20%) | 6 (20%) | - | 0.441 |
No renal replacement therapy | 5 (16.7%) | 10 (33.3%) | ||
Body mass index (kg/m2) | 28.3 (SD 5.3) | 28.4 (SD 5.1) | −0.17 (−2.8 to 2.4) | 0.898 |
Frailty, Fried phenotype 3–5 (%) | 17 (56.7%) | 9 (27.3%) | - | 0.018 |
Malnutrition, GLIM (%) | 16 (53.3%) | 6 (18.2%) | - | 0.003 |
BIA-derived parameters: | ||||
Appendicular musculoskeletal mass index (kg/m2) | 7.4 (SD 1.3) | 8.0 (SD 1.0) | −0.6 (−1.2 to 0.01) | 0.057 |
Musculoskeletal mass (kg) | 26.4 (SD 5.9) | 28.9 (SD 4.6) | −2.4 (−5.1 to 0.24) | 0.074 |
Fat-free mass (kg) | 49.5 (SD 10.2) | 52.7 (SD 7.9) | −3.2 (−7.8 to 1.4) | 0.169 |
Fat-free mass (% ref.) | 92.0 (SD 14.4) | 98.1 (SD 12.3) | −6.1 (−12.8 to 0.7) | 0.076 |
Fat mass (kg) | 28.9 (SD 12.1) | 26.0 (SD 11.6) | 2.9 (−3.2 to 9.0) | 0.351 |
Fat mass (% ref.) | 35.9 (SD 10.1) | 31.9 (SD 9.9) | 4.0 (−1.1 to 9.0) | 0.119 |
Total body water (L) | 36.6 (SD 7.7) | 38.8 (SD 5.9) | −2.2 (−5,7 to 1.2) | 0.203 |
Extracellular water (L) | 14.8 (SD 3.2) | 15.2 (SD 2.4) | −0.368 (−1.788 to 1.051) | 0.606 |
Extracellular water/Total body water | 0.404 (SD 0.009) | 0.390 (SD 0.008) | 0.014 (−0.009 to 0.018) | <0.001 |
Muscle strength of dominant side: | ||||
Handgrip strength (kg) | 26.0 (SD 7.6) | 30.6 (SD 8.2) | −4.6 (−8.6 to 0.6) | 0.025 |
Handgrip strength (% ref.) | 77.0 (SD 19.6) | 84.3 (SD 18.7) | −7.3 (−16.9 to 2.4) | 0.137 |
Muscle size assessed using ultrasound: | ||||
Muscle thickness of dominant forearm (mm) | 14.0 (SD 3.6) | 16.2 (SD 3.8) | −2.2 (−4.1 to −0.3) | 0.021 |
Muscle thickness of dominant rectus femoris (mm) | 15.3 (SD 3.9) | 19.0 (SD 4.0) | −3.7 (−5.7 to −1.7) | <0.001 |
Crude Analysis (Univariate) | Multivariate Analysis | |||||
---|---|---|---|---|---|---|
Malnutrition | cOR | 95%CI | p | aOR | 95%CI | p |
Phase angle (≤4.85°) | 5.14 | 1.7 to 16.1 | 0.005 | 3.8 | 1.05 to 13.8 | 0.042 |
Frailty | 3.7 | 0.96 to 14.3 | 0.058 | |||
Age | 1.0 | 0.98 to 11.6 | 0.856 | |||
Handgrip (kg) | 1.0 | 0.9 to 1.1 | 0.561 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Muñoz-Redondo, E.; Morgado-Pérez, A.; Pérez-Sáez, M.-J.; Faura, A.; Sánchez-Rodríguez, D.; Tejero-Sánchez, M.; Meza-Valderrama, D.; Muns, M.D.; Pascual, J.; Marco, E. Low Phase Angle Values Are Associated with Malnutrition according to the Global Leadership Initiative on Malnutrition Criteria in Kidney Transplant Candidates: Preliminary Assessment of Diagnostic Accuracy in the FRAILMar Study. Nutrients 2023, 15, 1084. https://doi.org/10.3390/nu15051084
Muñoz-Redondo E, Morgado-Pérez A, Pérez-Sáez M-J, Faura A, Sánchez-Rodríguez D, Tejero-Sánchez M, Meza-Valderrama D, Muns MD, Pascual J, Marco E. Low Phase Angle Values Are Associated with Malnutrition according to the Global Leadership Initiative on Malnutrition Criteria in Kidney Transplant Candidates: Preliminary Assessment of Diagnostic Accuracy in the FRAILMar Study. Nutrients. 2023; 15(5):1084. https://doi.org/10.3390/nu15051084
Chicago/Turabian StyleMuñoz-Redondo, Elena, Andrea Morgado-Pérez, María-José Pérez-Sáez, Anna Faura, Dolores Sánchez-Rodríguez, Marta Tejero-Sánchez, Delky Meza-Valderrama, María Dolors Muns, Julio Pascual, and Ester Marco. 2023. "Low Phase Angle Values Are Associated with Malnutrition according to the Global Leadership Initiative on Malnutrition Criteria in Kidney Transplant Candidates: Preliminary Assessment of Diagnostic Accuracy in the FRAILMar Study" Nutrients 15, no. 5: 1084. https://doi.org/10.3390/nu15051084
APA StyleMuñoz-Redondo, E., Morgado-Pérez, A., Pérez-Sáez, M. -J., Faura, A., Sánchez-Rodríguez, D., Tejero-Sánchez, M., Meza-Valderrama, D., Muns, M. D., Pascual, J., & Marco, E. (2023). Low Phase Angle Values Are Associated with Malnutrition according to the Global Leadership Initiative on Malnutrition Criteria in Kidney Transplant Candidates: Preliminary Assessment of Diagnostic Accuracy in the FRAILMar Study. Nutrients, 15(5), 1084. https://doi.org/10.3390/nu15051084