A Sarcopenia Index Derived from Malnutrition Parameters in Elderly Haemodialysis Patients
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Study Variables
Nutritional Status Was Assessed by the Malnutrition–Inflammation Score (MIS), Anthropometric Variables, Biochemical Variables and Body Composition
2.3. Statistics
3. Results
Prediction of Sarcopenia
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosemberg, I.H. Epidemiologic and methodologic problems in determining nutritional status of older persons. Proceedings of a conference. Albuquerque: New Mexico, 19–21 October 1988. Am. J. Clin. Nutr. 1989, 50, 1121–1235. [Google Scholar]
- Muscaritoli, M.; Anker, S.D.; Argilés, J.; Aversa, Z.; Bauer, J.M.; Biolo, G.; Boirie, Y.; Bosaeus, I.; Cederholm, T.; Costelli, P.; et al. Consensus definition of sarcopenia, cachexia and pre-cachexia: Joint document elaborated by Special Interest Groups (SIG) “cachexia-anorexia in chronic wasting diseases” and “nutrition in geriatrics”. Clin. Nutr. 2010, 29, 154–159. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Baeyens, J.P.; Bauer, J.M.; Boirie, Y.; Cederholm, T.; Landi, F.; Martin, F.C.; Michel, J.P.; Rolland, Y.; Schneider, S.M.; et al. Sarcopenia: European consensus on definition and diagnosis: Report of the European Working Group on Sarcopenia in Older People. Age Ageing 2010, 39, 412–423. [Google Scholar] [CrossRef] [Green Version]
- Suzan, V.; Suzan, A.A. A bibliometric analysis of sarcopenia: Top 100 articles. Eur. Geriatr. Med. 2021, 12, 185–191. [Google Scholar] [CrossRef]
- Morley, J.E.; Abbatecola, A.M.; Argiles, J.M.; Baracos, V.; Bauer, J.; Bhasin, S.; Cederholm, T.; Coats, A.J.S.; Cummings, S.R.; Evans, W.J.; et al. Sarcopenia with limited mobility: An international consensus. J. Am. Med. Dir. Assoc. 2011, 12, 403–409. [Google Scholar] [CrossRef] [Green Version]
- Studenski, S.A.; Peters, K.W.; Alley, D.E.; Cawthon, P.M.; McLean, R.R.; Harris, T.B.; Ferrucci, L.; Guralnik, J.M.; Fragala, M.S.; Kenny, A.M.; et al. The FNIH Sarcopenia Project: Rationale, Study Description, Conference Recommendations, and Final Estimates. J. Gerontol. Ser. A Biol. Sci. Med. Sci. 2014, 69, 547. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Landi, F.; Topinková, E.; Michel, J.-P. Understanding sarcopenia as a geriatric syndrome. Curr. Opin. Clin. Nutr. Metab. Care 2010, 13, 1–7. [Google Scholar] [CrossRef]
- Anker, S.D.; Morley, J.E.; von Haehling, S. Welcome to the ICD-10 code for sarcopenia. J. Cachexia Sarcopenia Muscle 2016, 7, 512–514. [Google Scholar] [CrossRef]
- Vellas, B.; Fielding, R.A.; Bens, C.; Bernabei, R.; Cawthon, P.M.; Cederholm, T.; Cruz-Jentoft, A.J.; Del Signore, S.; Donahue, S.; Morley, J.; et al. Implications of ICD-10 for Sarcopenia Clinical Practice and Clinical Trials: Report by the International Conference on Frailty and Sarcopenia Research Task Force. J. Frailty Aging 2018, 7, 2–9. [Google Scholar] [CrossRef]
- Cruz-Jentoft, A.J.; Sayer, A.A. Sarcopenia. Lancet 2019, 393, 2636–2646. [Google Scholar] [CrossRef]
- Isoyama, N.; Qureshi, A.R.; Avesani, C.M.; Lindholm, B.; Bárány, P.; Heimbürger, O.; Cederholm, T.; Stenvinkel, P.; Carrero, J.J. Comparative Associations of Muscle Mass and Muscle Strength with Mortality in Dialysis Patients. Clin. J. Am. Soc. Nephrol. 2014, 9, 1720. [Google Scholar] [CrossRef] [Green Version]
- Lamarca, F.; Carrero, J.J.; Rodrigues, J.C.D.; Bigogno, F.G.; Fetter, R.L.; Avesani, C.M. Prevalence of sarcopenia in elderly maintenance hemodialysis patients: The impact of different diagnostic criteria. J. Nutr. Health Aging 2014, 18, 710–717. [Google Scholar] [CrossRef]
- Kim, J.K.; Choi, S.R.; Choi, M.J.; Kim, S.G.; Lee, Y.K.; Noh, J.W.; Kim, H.J.; Song, Y.R. Prevalence of and factors associated with sarcopenia in elderly patients with end-stage renal disease. Clin. Nutr. 2014, 33, 64–68. [Google Scholar] [CrossRef]
- Sánchez-Tocino, M.L.; Miranda-Serrano, B.; Gracia-Iguacel, C.; De-Alba-Peñaranda, A.M.; Mas-Fontao, S.; López-González, A.; Villoria-González, S.; Pereira-García, M.; Ortíz, A.; González-Parra, E. Sarcopenia assessed by 4-step EWGSOP2 in elderly hemodialysis patients: Feasibility and limitations. PLoS ONE 2022, 17, e0261459. [Google Scholar] [CrossRef]
- Noce, A.; Marrone, G.; Ottaviani, E.; Guerriero, C.; Di Daniele, F.; Pietroboni Zaitseva, A.; Di Daniele, N. Uremic Sarcopenia and Its Possible Nutritional Approach. Nutrients 2021, 13, 147. [Google Scholar] [CrossRef]
- Nishi, H.; Takemura, K.; Higashihara, T.; Inagi, R. Uremic Sarcopenia: Clinical Evidence and Basic Experimental Approach. Nutrients 2020, 12, 1814. [Google Scholar] [CrossRef]
- Takemura, K.; Nishi, H.; Inagi, R. Mitochondrial Dysfunction in Kidney Disease and Uremic Sarcopenia. Front. Physiol. 2020, 11, 565023. [Google Scholar] [CrossRef]
- Avin, K.G.; Chen, N.X.; Organ, J.M.; Zarse, C.; O’Neill, K.; Conway, R.G.; Konrad, R.J.; Bacallao, R.L.; Allen, M.R.; Moe, S.M. Skeletal Muscle Regeneration and Oxidative Stress Are Altered in Chronic Kidney Disease. PLoS ONE 2016, 11, e0159411. [Google Scholar] [CrossRef] [Green Version]
- Fahal, I.H. Uraemic sarcopenia: Aetiology and implications. Nephrol. Dial. Transplant. Off. Publ. Eur. Dial. Transpl. Assoc. Eur. Ren. Assoc. 2014, 29, 1655–1665. [Google Scholar] [CrossRef] [Green Version]
- Kittiskulnam, P.; Chertow, G.M.; Carrero, J.J.; Delgado, C.; Kaysen, G.A.; Johansen, K.L. Sarcopenia and its individual criteria are associated, in part, with mortality among patients on hemodialysis. Kidney Int. 2017, 92, 238–247. [Google Scholar] [CrossRef]
- Avin, K.G.; Moorthi, R.N. Bone is Not Alone: The Effects of Skeletal Muscle Dysfunction in Chronic Kidney Disease. Curr. Osteoporos. Rep. 2015, 13, 173–179. [Google Scholar] [CrossRef] [Green Version]
- Bhat, M.; Kalam, R.; Qadri, S.S.; Madabushi, S.; Ismail, A. Vitamin D deficiency-induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology 2013, 154, 4018–4029. [Google Scholar] [CrossRef] [Green Version]
- Sanders, P.M.; Russell, S.T.; Tisdale, M.J. Angiotensin II directly induces muscle protein catabolism through the ubiquitin-proteasome proteolytic pathway and may play a role in cancer cachexia. Br. J. Cancer 2005, 93, 425–434. [Google Scholar] [CrossRef]
- Cigarrán, S.; Pousa, M.; Castro, M.J.; González, B.; Martínez, A.; Barril, G.; Aguilera, A.; Coronel, F.; Stenvinkel, P.; Carrero, J.J. Endogenous testosterone, muscle strength, and fat-free mass in men with chronic kidney disease. J. Ren. Nutr. Off. J. Counc. Ren. Nutr. Natl. Kidney Found. 2013, 23, e89–e95. [Google Scholar] [CrossRef]
- Conley, K.E.; Jubrias, S.A.; Cress, M.E.; Esselman, P. Exercise efficiency is reduced by mitochondrial uncoupling in the elderly. Exp. Physiol. 2013, 98, 768–777. [Google Scholar] [CrossRef]
- Domański, M.; Ciechanowski, K. Sarcopenia: A major challenge in elderly patients with end-stage renal disease. J. Aging Res. 2012, 2012, 754739. [Google Scholar] [CrossRef] [Green Version]
- Greco, A.; Paroni, G.; Seripa, D.; Addante, F.; Dagostino, M.P.; Aucella, F. Frailty, disability and physical exercise in the aging process and in chronic kidney disease. Kidney Blood Press. Res. 2014, 39, 164–168. [Google Scholar] [CrossRef] [Green Version]
- Cruz-Jentoft, A.J.; Kiesswetter, E.; Drey, M.; Sieber, C.C. Nutrition, frailty, and sarcopenia. Aging Clin. Exp. Res. 2017, 29, 43–48. [Google Scholar] [CrossRef]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [CrossRef] [Green Version]
- Gracia-Iguacel, C.; González-Parra, E.; Mahillo, I.; Ortiz, A. Criteria for classification of protein-energy wasting in dialysis patients: Impact on prevalence. Br. J. Nutr. 2019, 121, 1271–1278. [Google Scholar] [CrossRef]
- Gracia-Iguacel, C.; González-Parra, E.; Pérez-Gómez, M.V.; Mahíllo, I.; Egido, J.; Ortiz, A.; Carrero, J.J. Prevalencia del síndrome de desgaste proteico-energético y su asociación con mortalidad en pacientes en hemodiálisis en un centro en españa. Nefrologia 2013, 33, 495–505. [Google Scholar] [PubMed]
- Bloom, I.; Shand, C.; Cooper, C.; Robinson, S.; Baird, J. Diet Quality and Sarcopenia in Older Adults: A Systematic Review. Nutrients 2018, 10, 308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jamal, S.A.; Leiter, R.E.; Jassal, V.; Hamilton, C.J.; Bauer, D.C. Impaired muscle strength is associated with fractures in hemodialysis patients. Osteoporos. Int. 2006, 17, 1390–1397. [Google Scholar] [CrossRef]
- Dodds, R.M.; Syddall, H.E.; Cooper, R.; Benzeval, M.; Deary, I.J.; Dennison, E.M.; Der, G.; Gale, C.R.; Inskip, H.M.; Jagger, C.; et al. Grip Strength across the Life Course: Normative Data from Twelve British Studies. PLoS ONE 2014, 9, e0113637. [Google Scholar] [CrossRef] [Green Version]
- Zhu, F.; Kuhlmann, M.K.; Sarkar, S.; Kaitwatcharachai, C.; Khilnani, R.; Leonard, E.F.; Greenwood, R.; Levin, N.W. Adjustment of dry weight in hemodialysis patients using intradialytic continuous multifrequency bioimpedance of the calf. Int. J. Artif. Organs 2004, 27, 104–109. [Google Scholar] [CrossRef]
- Cesari, M.; Kritchevsky, S.B.; Newman, A.B.; Simonsick, E.M.; Harris, T.B.; Penninx, B.W.; Brach, J.S.; Tylavsky, F.A.; Satterfield, S.; Bauer, D.C.; et al. Added Value of Physical Performance Measures in Predicting Adverse Health-Related Events: Results from the Health, Aging, and Body Composition Study. J. Am. Geriatr. Soc. 2009, 57, 251. [Google Scholar] [CrossRef]
- Abellan Van Kan, G.; Rolland, Y.; Andrieu, S.; Bauer, J.; Beauchet, O.; Bonnefoy, M.; Cesari, M.; Donini, L.M.; Gillette-Guyonnet, S.; Inzitari, M.; et al. Gait speed at usual pace as a predictor of adverse outcomes in community-dwelling older people an International Academy on Nutrition and Aging (IANA) Task Force. J. Nutr. Health Aging 2009, 13, 881–889. [Google Scholar] [CrossRef]
- Kalantar-Zadeh, K.; Kopple, J.D.; Block, G.; Humphreys, M.H. A malnutrition-inflammation score is correlated with morbidity and mortality in maintenance hemodialysis patients. Am. J. Kidney Dis. 2001, 38, 1251–1263. [Google Scholar] [CrossRef] [Green Version]
- Kalantar-Zadeh, K.; Kopple, J.D.; Humphreys, M.H.; Block, G. Comparing outcome predictability of markers of malnutrition-inflammation complex syndrome in haemodialysis patients. Nephrol. Dial. Transpl. 2004, 19, 1507–1519. [Google Scholar] [CrossRef] [Green Version]
- Formiguera, X.; Cantón, A. Obesity: Epidemiology and clinical aspects. Best Pract. Res. Clin. Gastroenterol. 2004, 18, 1125–1146. [Google Scholar] [CrossRef]
- Oliveira, E.M.; Silva, R.P.D.; Lemos, M.D.C.C.; Burgos, M.G.P.A.; Costa, D.M.N.; Maio, R. Frequency of sarcopenia, cachexia, and associated factors in patients with chronic kidney disease in dialysis treatment. Nutr. Hosp. 2020, 37, 1157–1165. [Google Scholar] [CrossRef] [PubMed]
- Méndez Estévez, E.; Romero Pita, J.; Fernández Domínguez, M.J.; Troitiño Álvarez, P.; García Dopazo, S.; Jardón Blanco, M.; Rey Charlo, M.; Rivero Cotilla, M.I.; Rodríguez Fernández, C.; Menéndez Rodríguez, M. Do our elderly have an adequate nutritional status? Nutr. Hosp. 2013, 28, 903–913. [Google Scholar] [PubMed]
- Zimmet, P.; Magliano, D.; Matsuzawa, Y.; Alberti, G.; Shaw, J. The metabolic syndrome: A global public health problem and a new definition. J. Atheroscler. Thromb. 2005, 12, 295–300. [Google Scholar] [CrossRef] [Green Version]
- Pérez Miguelsanz, M.J.; Cabrera Parra, W.; Varela Moreiras, G.; Garaulet, M. Regional distribution of the body fat: Use of image techniques as tools for nutritional diagnosis. Nutr. Hosp. 2010, 25, 207–223. [Google Scholar] [PubMed]
- González Madroño, A.; Mancha, A.; Rodríguez, F.J.; de Ulibarri, J.I.; Culebras, J. The use of biochemical and immunological parameters in nutritional screening and assessment. Nutr. Hosp. 2011, 26, 594–601. [Google Scholar] [PubMed]
- Boudville, N.; Inderjeeth, C.; Elder, G.J.; Glendenning, P. Association between 25-hydroxyvitamin D, somatic muscle weakness and falls risk in end-stage renal failure. Clin. Endocrinol. 2010, 73, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Daugirdas, J.T. Kt/V (and especially its modifications) remains a useful measure of hemodialysis dose. Kidney Int. 2015, 88, 466–473. [Google Scholar] [CrossRef]
- Alvero-Cruz, J.R.; Correas, L.; Ronconi, M.; Fernández, R.; Manzañido, P. La bioimpedancia eléctrica como método de estimación de la composición corporal: Normas prácticas de utilización. Rev. Andal. Med. Deport. 2011, 4, 167–174. [Google Scholar]
- Quesada Leyva, L.; León Ramentol, C.C.; Betancourt Bethencourt, J.; Nicolau Pestana, E. Elementos teóricos y prácticos sobre la bioimpedancia eléctrica en salud Theoretical and practical facts about health electric bioimpedance. AMC 2016, 20, 565–578. [Google Scholar]
- Sánchez-Tocino, M.L.; Miranda-Serrano, B.; López-González, A.; Villoria-González, S.; Pereira-García, M.; Gracia-Iguacel, C.; González-Ibarguren, I.; Ortíz-Arduan, A.; Mas-Fontao, S.; González-Parra, E. Sarcopenia and Mortality in Older Hemodialysis Patients. Nutrients 2022, 14, 2354. [Google Scholar] [CrossRef]
- Kurajoh, M.; Mori, K.; Miyabe, M.; Matsufuji, S.; Ichii, M.; Morioka, T.; Kizu, A.; Tsujimoto, Y.; Emoto, M. Nutritional Status Association With Sarcopenia in Patients Undergoing Maintenance Hemodialysis Assessed by Nutritional Risk Index. Front. Nutr. 2022, 9, 896427. [Google Scholar] [CrossRef] [PubMed]
- Carrero, J.J.; Johansen, K.L.; Lindholm, B.; Stenvinkel, P.; Cuppari, L.; Avesani, C.M. Screening for muscle wasting and dysfunction in patients with chronic kidney disease. Kidney Int. 2016, 90, 53–66. [Google Scholar] [CrossRef] [PubMed]
- Fiatarone, M.A.; O’Neill, E.F.; Ryan, N.D.; Clements, K.M.; Solares, G.R.; Nelson, M.E.; Roberts, S.B.; Kehayias, J.J.; Lipsitz, L.A.; Evans, W.J. Exercise training and nutritional supplementation for physical frailty in very elderly people. N. Engl. J. Med. 1994, 330, 1769–1775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dubey, A.K.; Sahoo, J.; Vairappan, B.; Haridasan, S.; Parameswaran, S.; Priyamvada, P.S. Correction of metabolic acidosis improves muscle mass and renal function in chronic kidney disease stages 3 and 4: A randomized controlled trial. Nephrol. Dial. Transpl. 2020, 35, 121–129. [Google Scholar] [CrossRef]
- De Brito-Ashurst, I.; Varagunam, M.; Raftery, M.J.; Yaqoob, M.M. Bicarbonate supplementation slows progression of CKD and improves nutritional status. J. Am. Soc. Nephrol. 2009, 20, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Goraya, N.; Simoni, J.; Jo, C.H.; Wesson, D.E. A comparison of treating metabolic acidosis in CKD stage 4 hypertensive kidney disease with fruits and vegetables or sodium bicarbonate. Clin. J. Am. Soc. Nephrol. 2013, 8, 371–381. [Google Scholar] [CrossRef] [Green Version]
- Cases, A.; Cigarrán-Guldrís, S.; Mas, S.; Gonzalez-Parra, E. Vegetable-based diets for chronic kidney disease? It is time to reconsider. Nutrients 2019, 11, 1263. [Google Scholar] [CrossRef] [Green Version]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sports Med. 2018, 52, 376–384. [Google Scholar] [CrossRef] [Green Version]
- Bauer, J.; Biolo, G.; Cederholm, T.; Cesari, M.; Cruz-Jentoft, A.J.; Morley, J.E.; Phillips, S.; Sieber, C.; Stehle, P.; Teta, D.; et al. Evidence-based recommendations for optimal dietary protein intake in older people: A position paper from the PROT-AGE Study Group. J. Am. Med. Dir. Assoc. 2013, 14, 542–559. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef]
- Wu, P.Y.; Huang, K.S.; Chen, K.M.; Chou, C.P.; Tu, Y.K. Exercise, Nutrition, and Combined Exercise and Nutrition in Older Adults with Sarcopenia: A Systematic Review and Network Meta-analysis. Maturitas 2021, 145, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Tocino, M.L.; González-Parra, E.; Miranda Serrano, B.; Gracia-Iguacel, C.; María de-Alba-Peñaranda, A.; López-González, A.; García Olegario, M.; Ortíz, A.; Mas-Fontao, S. Evaluation of the impact of an intradialytic exercise programme on sarcopaenia in very elderly haemodialysis patients. Clin. Kidney J. 2022, 15, 1514–1523. [Google Scholar] [CrossRef] [PubMed]
- Harada, H.; Kai, H.; Shibata, R.; Niiyama, H.; Nishiyama, Y.; Murohara, T.; Yoshida, N.; Katoh, A.; Ikeda, H. New diagnostic index for sarcopenia in patients with cardiovascular diseases. PLoS ONE 2017, 12, e0178123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Variables | All (n = 60) | Female (n = 19) | Male (n = 41) | p | Normal Range |
---|---|---|---|---|---|
Age | 81.85 (5.58) | 83.00 (5.23) | 81.32 (5.72) | n.s | |
Female, n (%) | 19 (31.7) | 19 (100.0) | 41 (100.0) | n.s | |
Dialysis vintage (months) | 49.76 (40.4) | 53.22 (42.8) | 48.16 (39.7) | n.s | |
Catheter (CVC), n (%) | 15 (25.0) | 5 (26.3) | 10 (24.4) | n.s | |
Diabetes, n (%) | 20 (60.6) | 3 (68.4) | 23 (56.1) | n.s | |
Malignancy, n (%) | 39 (65.0) | 15 (78.9) | 24 (58.5) | n.s | |
Kt/V urea | 1.80 (0.38) | 2.01 (0.30) | 1.70 (0.37) | <0.01 | >1.3 M; >1.4 F |
Albumin (g/dL) | 3.66 (0.48) | 3.59 (0.60) | 3.70 (0.41) | n.s | 3.4–5.4 |
Total protein (g/dL) | 6.10 (0.67) | 5.99 (0.81) | 6.14 (0.60) | n.s | 6–8.3 |
Hemoglobin (g/dL) | 11.36 (1.06) | 11.26 (1.13) | 11.40 (1.03) | n.s | M: 13.8–17.2; F: 13.1–15.1 |
Phosphate (mg/dL) | 4.6 (1.1) | 4.5 (1.2) | 4.6 (1.0) | n.s | 2.5–4.5 |
CRP (mg/L) | 1.60 (2.78) | 1.68 (2.65) | 1.57 (2.87) | n.s | <5 |
25-OH vitamin D (ng/mL) | 21.52 (13.1) | 22.31 (13.82) | 21.1 (12.95) | n.s | 20–40 |
Total cholesterol (mg/dL) | 137.7 (31.1) | 144.95 (32) | 134.3 (30.5) | n.s | <200 |
BMI (kg/m2) | 25.20 (3.65) | 24.06 (3.97) | 25.73 (3.41) | 0.05 | 18.5–24.5 |
Brachial perimeter (cm) | 26.32 (2.82) | 25.70 (3.11) | 26.62 (2.66) | n.s | Male > 25.74; Female > 24.5 |
Waist perimeter (cm) | 92.78 (10.41) | 83.88 (10.08) | 97.01 (7.58) | <0.01 | Male < 95; Female < 82 |
Hip perimeter (cm) | 100.58 (7.23) | 98.39 (7.56) | 101.61 (6.93) | n.s | Male < 100; Female < 80 |
Waist hip index | 0.92 (0.08) | 0.85 (0.06) | 0.96 (0.07) | <0.01 | Male < 1; Female < 0.8 |
Tricipital fold (cm) | 1.19 (0.43) | 1.41 (0.46) | 1.09 (0.38) | 0.01 | Male < 1.5; Female < 1.9 |
Subscapular fold (cm) | 15.40 (7.10) | 13.22 (7.61) | 16.43 (6.70) | 0.05 | Female 17.6 mm; Male 15.95 mm |
Abdominal fold (cm) | 18.39 (6.35) | 15.77 (4.39) | 19.80 (6.85) | 0.05 | Male 19.8 mm; Female 22.2 |
Muscle mass (kg) | 19.27 (3.82) | 15.57 (1.87) | 20.99 (3.23) | <0.01 | >20 |
Fat mass (kg) | 22.63 (5.86) | 22.01 (7.40) | 22.92 (5.08) | n.s | |
Fat mass (%) | 34.04 (6.27) | 38.10 (6.94) | 32.15 (4.98) | <0.01 | <30% |
FFM (kg) | 43.78 (8.59) | 34.59 (4.01) | 48.04 (6.55) | <0.01 | |
FFM % | 65.96 (6.27) | 61.90 (6.94) | 67.84 (4.98) | <0.01 | <70% |
TBW (L) | 32.42 (6.52) | 25.70 (3.16) | 35.53 (5.18) | <0.01 | <55% |
ECW (L) | 15.55 (3.36) | 12.46 (1.96) | 16.98 (2.88) | <0.01 | <45% |
ICW (L) | 16.85 (3.29) | 13.24 (1.33) | 18.52 (2.47) | <0.01 | <55% |
ECW/ICW | 0.92 (0.08) | 0.94 (0.09) | 0.91 (0.08) | n.s | 0.5–1 |
BCM (kg) | 22.83 (4.43) | 18.53 (2.26) | 24.82 (3.71) | <0.01 | <60 |
ECM (kg) | 19.47 (3.87) | 14.97 (1.68) | 21.56 (2.59) | <0.01 | <40 |
FFMH (%) | 73.94 (1.88) | 74.26 (2.04) | 3.79 (1.81) | n.s | <75 |
Fluid excess (L) | 1.06 (1.49) | 0.76 (1.22) | 1.20 (1.60) | n.s | |
HG criteria, n (%) | 15 (25.0) | 6 (31.6) | 9 (22.0) | n.s | Male > 27 kg; Female > 16 kg |
ASM criteria, n (%) | 36 (60.0) | 13 (68.4) | 23 (56.1) | n.s | Male > 20 kg; Female > 15 kg |
GS criteria, n (%) | 18 (30.0) | 7 (36.8) | 11 (26.8) | n.s | >0.8 m/s |
MIS (pts) | 6.02 (3.81) | 6.00 (3.21) | 6.02 (4.09) | n.s | <5 |
Normonutrition (n = 32) | Malnutrition (n = 28) | p | |
---|---|---|---|
Age (years) | 81.0 (76.4–86.0) | 81.0 (78.0–87.0) | n.s |
Female, n (%) | 25% 8/32 | 40% 11/28 | n.s |
Dialysis vintage (months) | 34.3 (12.2–59.1) | 52.1 (26.6–85.3) | n.s |
Cause of CKD, n (%) | n.s | ||
Diabetes | 22% 7/32 | 39%% 10/28 | |
Vascular | 22% 7/32 | 18% 5/28 | |
Glomerular | 6% 2/32 | 3% 1/28 | |
Interstitial | 3% 1/32 | 11% 3/28 | |
Undetermined | 41% 13/32 | 21% 6/28 | |
Others | 6% 2/32 | 11% 3/28 | |
Catheter, n (%) | 28% 9/32 | 21% 6/28 | n.s |
Diabetes, n (%) | 63% 20/32 | 57% 16/28 | n.s |
Cardiovascular disease, n (%) | 34% 11/32 | 32% 9/28 | n.s |
Malignancy, n (%) | 75% 24/32 | 54% 15/28 | n.s |
Kt/Vurea | 1.6 (1.4–1.9) | 2.0 (1.8–2.1) | p < 0.01 |
Albumin (g/dL) | 3.8 (3.7–4.0) | 3.6 (3.3–3.9) | p < 0.01 |
Total protein (g/dL) | 6.4 (6.1–6.5) | 6.0 (5.5–6.4) | n.s |
Hemoglobin (g/dL) | 11.4 (10.9–12.4) | 11.3 (10.7–11.7) | n.s |
Phosphate (mg/dL) | 4.4 (3.8–5.3) | 4.6 (3.9–5.4) | n.s |
CRP (mg/L) | 0.7 (0.4–1.9) | 0.8 (0.2–1.2) | n.s |
25 OH vitamin D (ng/mL) | 17.4 (11.3–27.1) | 17.3 (13.6–25.8) | n.s |
Cholesterol (mg/dL) | 152 (123–159) | 134 (106.4–153) | n.s |
Height (cm) | 163.5 (155.4–168.0) | 160 (152.4–168.2) | n.s |
Weight (kg) | 69.0 (62.6–77.3) | 60.0 (54.6–65.0) | p < 0.01 |
BMI (kg/m2) | 25.9 (23.7–28.6) | 23.4 (21.4–26.1) | p = 0.01 |
Brachial perimeter (cm) | 26.9 (25.0–28.4) | 25.4 (23.4–27.3) | n.s |
Waist perimeter (cm) | 97.7 (89.5–103.2) | 89.3 (80.8–95.5) | p < 0.01 |
Hip circumference (cm) | 99.7 (96.9–106.4) | 98.8 (95.4–106.6) | n.s |
Waist hip index | 0.9 (0.9–1.0) | 0.9 (0.8–0.9) | p < 0.01 |
Tricipital fold (cm) | 1.1 (1.0–1.4) | 1.2 (0.7–1.4) | n.s |
Subscapular fold (cm) | 14.5 (11.0–21.4) | 12 (9.5–16.8) | n.s |
Abdominal fold (cm) | 15 (11.5–23.7) | 20 (16–22.0) | n.s |
Muscle mass (kg) | 20.2 (17.2–23.3) | 17.8 (15.7–20.0) | p = 0.02 |
Fat mass (kg) | 24.3 (20.7–28.5) | 20.4 (16.3–24.0) | n.s |
FFM (kg) | 48.4 (38.7–52.5) | 40.2 (37.4–46.4) | p = 0.03 |
TBW (L) | 35.5 (28.4–38.4) | 30.4 (27.5–34.2) | p = 0.03 |
ECW (L) | 16.4 (13.6–18.3) | 15 (13–16.5) | n.s |
LCW (L) | 18.3 (15.1–20.3) | 15.8 (13.8–17.8) | p = 0.02 |
ECW/ICW | 0.9 (0.9–0.9) | 0.9 (0.9–1.0) | n.s |
BCM (kg) | 23.9 (20.5–27.7) | 21.3 (18.5–23.8) | p = 0.02 |
ECM (kg) | 21.5 (17.1–22.9) | 17.7 (15.5–21.5) | p = 0.05 |
FFMH (%) | 73.5 (72.8–74.5) | 73.5 (72.9–74.7) | n.s |
Fluid excess (L) | 0.6 (0.1–1.9) | 0.4 (0.0–2.0) | n.s |
HG criteria, n (%) | 34% 11/32 | 14% 4/28 | n.s |
ASM criteria, n (%) | 69% 22/32 | 50% 14/28 | n.s |
GS criteria, n (%) | 34% 11/32 | 25% 7/28 | n.s |
HG (Probability) | HG + ASM (Confirmation) | HG + ASM + GS (Severity) | ||
---|---|---|---|---|
Demographic data | ||||
Age (years) | r p | −0.2 n.s | −0.3 0.017 | −0.3 0.018 |
Anthropometric data | ||||
Albumin (g/dL) | r p | 0.08 n.s | 0.14 n.s | 0.15 n.s |
Total protein (g/dL) | r p | −0.04 n.s | 0.07 n.s | 0.03 n.s |
Total cholesterol (mg/dL) | r p | 0.04 n.s | 0.29 0.03 | 0.33 0.01 |
Phosphate (mg/dL) | r p | 0.045 n.s | 0.33 0.01 | 0.27 0.04 |
Analytical data | ||||
BMI (kg/m2) | r p | 0.2 n.s | 0.18 n.s | 0.14 n.s |
Weight (kg) | r p | 0.09 n.s | 0.33 0.01 | 0.21 n.s |
Brachial Perimeter (cm) | r p | 0.21 n.s | 0.18 n.s | 0.14 n.s |
Abdominal fold (cm) | r p | 0.18 n.s | 0.3 n.s | 0.23 n.s |
Subscapular fold (cm) | r p | 0.07 n.s | 0.29 0.03 | 0.19 n.s |
Body composition data | ||||
Fat mass (%) | r p | 0.02 n.s | −0.02 n.s | 0.05 n.s |
Fat-Free Mass (kg) | r p | 0.19 n.s | 0.32 0.01 | 0.17 n.s |
Total Body Water (L) | r p | 0.19 n.s | 0.30 0.02 | 0.15 n.s |
Extracellular Water (L) | r p | 0.18 n.s | 0.30 0.02 | 0.11 n.s |
Intracellular Water (L) | r p | 0.19 n.s | 0.33 0.01 | 0.18 n.s |
Body Cell Mass (kg) | r p | 0.24 n.s | 0.44 >0.001 | 0.30 0.02 |
Extracellular Mass (kg) | r p | 0.1 n.s | 0.25 0.05 | 0.1 n.s |
Hydration Fat-Free Mass (%) | r p | 0.12 n.s | −0.11 n.s | −0.13 n.s |
Muscle mass (kg) | r p | 0.24 n.s | 0.45 >0.001 | 0.31 0.016 |
Nutrition scale | ||||
MIS | r p | −0.14 n.s | −0.06 n.s | 0.05 n.s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sánchez-Tocino, M.L.; Mas-Fontao, S.; Gracia-Iguacel, C.; Pereira, M.; González-Ibarguren, I.; Ortiz, A.; Arenas, M.D.; Parra, E.G. A Sarcopenia Index Derived from Malnutrition Parameters in Elderly Haemodialysis Patients. Nutrients 2023, 15, 1115. https://doi.org/10.3390/nu15051115
Sánchez-Tocino ML, Mas-Fontao S, Gracia-Iguacel C, Pereira M, González-Ibarguren I, Ortiz A, Arenas MD, Parra EG. A Sarcopenia Index Derived from Malnutrition Parameters in Elderly Haemodialysis Patients. Nutrients. 2023; 15(5):1115. https://doi.org/10.3390/nu15051115
Chicago/Turabian StyleSánchez-Tocino, M. L., S. Mas-Fontao, C. Gracia-Iguacel, M. Pereira, I. González-Ibarguren, A. Ortiz, M. D. Arenas, and E. González Parra. 2023. "A Sarcopenia Index Derived from Malnutrition Parameters in Elderly Haemodialysis Patients" Nutrients 15, no. 5: 1115. https://doi.org/10.3390/nu15051115
APA StyleSánchez-Tocino, M. L., Mas-Fontao, S., Gracia-Iguacel, C., Pereira, M., González-Ibarguren, I., Ortiz, A., Arenas, M. D., & Parra, E. G. (2023). A Sarcopenia Index Derived from Malnutrition Parameters in Elderly Haemodialysis Patients. Nutrients, 15(5), 1115. https://doi.org/10.3390/nu15051115