The Influence of Metabolic Factors and Diet on Fertility
Abstract
:1. Introduction
2. Body Weight and Infertility
3. Dietary Patterns and Infertility
4. The Role of Oxidative Stress and Insulin Resistance in Fertility
4.1. The Impact of Oxidative Stress
4.2. The Role of Insulin Resistance
4.3. Antioxidants from Supplements and Diet
5. Carbohydrates and a Diet with a Low Glycemic Index and Load
6. Plant and Animal Protein
7. Fats
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
MD | Mediterranean diet |
GI | Glucose index |
BMI | Body mass index |
NICE | National Institute for Health and Care Excellence |
WHO | World Health Organization |
HPG | Hypothalamic–pituitary–gonadal |
GnRH | Gonadotropin-releasing hormone |
ED | Eating disorders |
RED-S | Relative energy deficiency in sport |
PCOS | Polycystic ovary syndrome |
IVF | In vitro fertilization |
NHS II | Nurses Health Cohort Study II |
IGF-1 | Insulin-like growth factor I |
NHS | Nurses’ Health Study |
ROS | Reactive oxygen species |
OS | Oxidative stress |
FAVs | Fruits and vegetables |
SOD | Superoxide dismutase |
AGEs | Advanced glycation end products |
ART | Assisted Reproductive Technology |
IS | Isoflavones |
TFAs | Trans-fatty acids |
PUFA | Polyunsaturated fats |
SFAs | Saturated fatty acids |
MUFA | Monounsaturated fats |
LH | Luteinizing hormone |
FSH | Follicle-stimulating hormone |
References
- Vander Borght, M.; Wyns, C. Fertility and Infertility: Definition and Epidemiology. Clin. Biochem. 2018, 62, 2–10. [Google Scholar] [CrossRef]
- Gaskins, A.J.; Chavarro, J.E. Diet and Fertility: A Review. Am. J. Obstet. Gynecol. 2018, 218, 379–389. [Google Scholar] [CrossRef] [PubMed]
- Crosignani, P.G.; Albertini, D.F.; Anderson, R.; Bhattacharya, S.; Evers, J.L.H.; McLernon, D.J.; Repping, S.; Somigliana, E.; Baird, D.T.; Diedrich, K.; et al. A Prognosis-Based Approach to Infertility: Understanding the Role of Time. Hum. Reprod. 2017, 32, 1556–1559. [Google Scholar]
- Krueger, R.B.; Reed, G.M.; First, M.B.; Marais, A.; Kismodi, E.; Briken, P. Proposals for Paraphilic Disorders in the International Classification of Diseases and Related Health Problems, Eleventh Revision (ICD-11). Arch. Sex. Behav. 2017, 46, 1529–1545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mascarenhas, M.N.; Flaxman, S.R.; Boerma, T.; Vanderpoel, S.; Stevens, G.A. National, Regional, and Global Trends in Infertility Prevalence Since 1990: A Systematic Analysis of 277 Health Surveys. PLoS Med. 2012, 9, e1001356. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, A.; Mulgund, A.; Hamada, A.; Chyatte, M.R. A Unique View on Male Infertility around the Globe. Reprod. Biol. Endocrinol. 2015, 13, 37. [Google Scholar] [CrossRef] [Green Version]
- Salas-Huetos, A.; Bulló, M.; Salas-Salvadó, J. Dietary Patterns, Foods and Nutrients in Male Fertility Parameters and Fecundability: A Systematic Review of Observational Studies. Hum. Reprod. Update 2017, 23, 371–389. [Google Scholar] [CrossRef] [Green Version]
- Vitagliano, A.; Petre, G.C.; Francini-Pesenti, F.; De Toni, L.; Di Nisio, A.; Grande, G.; Foresta, C.; Garolla, A. Dietary Supplements for Female Infertility: A Critical Review of Their Composition. Nutrients 2021, 13, 3552. [Google Scholar] [CrossRef]
- Krausz, C. Male Infertility: Pathogenesis and Clinical Diagnosis. Best Pract. Res. Clin. Endocrinol. Metab. 2011, 25, 271–285. [Google Scholar] [CrossRef]
- Leaver, R.B. Male Infertility: An Overview of Causes and Treatment Options. Br. J. Nurs. 2016, 25, S35–S40. [Google Scholar] [CrossRef]
- Skoracka, K.; Eder, P.; Łykowska-Szuber, L.; Dobrowolska, A.; Krela-Kaźmierczak, I. Diet and Nutritional Factors in Male (In)Fertility—Underestimated Factors. J. Clin. Med. 2020, 9, 1400. [Google Scholar] [CrossRef] [PubMed]
- Carson, S.A.; Kallen, A.N. Diagnosis and Management of Infertility: A Review. JAMA—J. Am. Med. Assoc. 2021, 326, 65–76. [Google Scholar] [CrossRef] [PubMed]
- Panth, N.; Gavarkovs, A.; Tamez, M.; Mattei, J. The Influence of Diet on Fertility and the Implications for Public Health Nutrition in the United States. Front. Public Health 2018, 6, 211. [Google Scholar] [CrossRef] [Green Version]
- Simionescu, G.; Doroftei, B.; Maftei, R.; Obreja, B.-E.; Anton, E.; Grab, D.; Ilea, C.; Anton, C. The Complex Relationship between Infertility and Psychological Distress (Review). Exp. Ther. Med. 2021, 21, 306. [Google Scholar] [CrossRef] [PubMed]
- Ferramosca, A.; Zara, V. Diet and Male Fertility: The Impact of Nutrients and Antioxidants on Sperm Energetic Metabolism. Int. J. Mol. Sci. 2022, 23, 2542. [Google Scholar] [CrossRef] [PubMed]
- Skoracka, K.; Ratajczak, A.E.; Rychter, A.M.; Dobrowolska, A.; Krela-Kaźmierczak, I. Female Fertility and the Nutritional Approach: The Most Essential Aspects. Adv. Nutr. 2021, 12, 2372–2386. [Google Scholar] [CrossRef]
- Arab, A.; Rafie, N.; Mansourian, M.; Miraghajani, M.; Hajianfar, H. Dietary Patterns and Semen Quality: A Systematic Review and Meta-Analysis of Observational Studies. Andrology 2018, 6, 20–28. [Google Scholar] [CrossRef] [Green Version]
- McGrice, M.; Porter, J. The Effect of Low Carbohydrate Diets on Fertility Hormones and Outcomes in Overweight and Obese Women: A Systematic Review. Nutrients 2017, 9, 204. [Google Scholar] [CrossRef] [Green Version]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. A Prospective Study of Dietary Carbohydrate Quantity and Quality in Relation to Risk of Ovulatory Infertility. Eur. J. Clin. Nutr. 2009, 63, 78–86. [Google Scholar] [CrossRef]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. Protein Intake and Ovulatory Infertility. Am. J. Obstet. Gynecol. 2008, 198, 210.e1–210.e7. [Google Scholar] [CrossRef] [Green Version]
- Marrone, G.; Guerriero, C.; Palazzetti, D.; Lido, P.; Marolla, A.; Di Daniele, F.; Noce, A. Vegan Diet Health Benefits in Metabolic Syndrome. Nutrients 2021, 13, 817. [Google Scholar] [CrossRef]
- Aschemann-Witzel, J.; Gantriis, R.F.; Fraga, P.; Perez-Cueto, F.J.A. Plant-Based Food and Protein Trend from a Business Perspective: Markets, Consumers, and the Challenges and Opportunities in the Future. Crit. Rev. Food Sci. Nutr. 2021, 61, 3119–3128. [Google Scholar] [CrossRef]
- Tran, E.; Dale, H.F.; Jensen, C.; Lied, G.A. Effects of Plant-Based Diets on Weight Status: A Systematic Review. Diabetes, Metab. Syndr. Obes. Targets Ther. 2020, 13, 3433–3448. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Drouin-Chartier, J.P.; Li, Y.; Baden, M.Y.; Manson, J.A.E.; Willett, W.C.; Voortman, T.; Hu, F.B.; Bhupathiraju, S.N. Changes in Plant-Based Diet Indices and Subsequent Risk of Type 2 Diabetes in Women and Men: Three U.S. Prospective Cohorts. Diabetes Care 2021, 44, 663–671. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.F.; Eather, R.; Best, T. Plant-Based Dietary Quality and Depressive Symptoms in Australian Vegans and Vegetarians: A Cross-Sectional Study. BMJ Nutr. Prev. Health 2021, 4, e000332. [Google Scholar] [CrossRef] [PubMed]
- Millen, B.E.; Abrams, S.; Adams-Campbell, L.; Anderson, C.A.M.; Brenna, J.T.; Campbell, W.W.; Clinton, S.; Hu, F.; Nelson, M.; Neuhouser, M.L.; et al. The 2015 Dietary Guidelines Advisory Committee Scientific Report: Development and Major Conclusions. Adv. Nutr. 2016, 7, 438–444. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Silvestris, E.; de Pergola, G.; Rosania, R.; Loverro, G. Obesity as Disruptor of the Female Fertility. Reprod. Biol. Endocrinol. 2018, 16, 22. [Google Scholar] [CrossRef] [PubMed]
- O’Flynn, N. NICE Fertility: Assessment and Treatment for People with Fertility Problems: NICE guideline. Br. J. Gen. Pract. 2014, 64, 50–51. [Google Scholar] [CrossRef] [Green Version]
- WHO Consultation on Obesity. Obesity: Preventing and Managing the Global Epidemic: Report of a WHO Consultation; World Health Organization: Geneva, Switzerland, 2000; pp. 1–253.
- Guo, D.; Xu, M.; Zhou, Q.; Wu, C.; Ju, R.; Dai, J.; Arora, G. Is Low Body Mass Index a Risk Factor for Semen Quality? A PRISMA-Compliant Meta-Analysis. Medicine 2019, 98, e16677. [Google Scholar] [CrossRef]
- Boutari, C.; Pappas, P.D.; Mintziori, G.; Nigdelis, M.P.; Athanasiadis, L.; Goulis, D.G.; Mantzoros, C.S. The Effect of Underweight on Female and Male Reproduction. Metabolism 2020, 107, 154229. [Google Scholar] [CrossRef]
- Fontana, R.; Della Torre, S. The Deep Correlation between Energy Metabolism and Reproduction: A View on the Effects of Nutrition for Women Fertility. Nutrients 2016, 8, 87. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Pang, Y. Metabolic Syndrome and PCOS: Pathogenesis and the Role of Metabolites. Metabolites 2021, 11, 869. [Google Scholar] [CrossRef] [PubMed]
- Nikokavoura, E.A.; Johnston, K.L.; Broom, J.; Wrieden, W.L.; Rolland, C. Weight Loss for Women with and without Polycystic Ovary Syndrome Following a Very Low-Calorie Diet in a Community-Based Setting with Trained Facilitators for 12 Weeks. Diabetes, Metab. Syndr. Obes. Targets Ther. 2015, 8, 495–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shang, Y.; Zhou, H.; He, R.; Lu, W. Dietary Modification for Reproductive Health in Women With Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis. Front. Endocrinol. 2021, 12, 735954. [Google Scholar] [CrossRef]
- Kakoly, N.S.; Earnest, A.; Teede, H.J.; Moran, L.J.; Joham, A.E. The Impact of Obesity on the Incidence of Type 2 Diabetes among Women with Polycystic Ovary Syndrome. Diabetes Care 2019, 42, 560–567. [Google Scholar] [CrossRef] [Green Version]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. Diet and Lifestyle in the Prevention of Ovulatory Disorder Infertility. Obstet. Gynecol. 2007, 110, 1050–1058. [Google Scholar] [CrossRef] [Green Version]
- Leisegang, K.; Sengupta, P.; Agarwal, A.; Henkel, R. Obesity and Male Infertility: Mechanisms and Management. Andrologia 2021, 53, e13617. [Google Scholar] [CrossRef]
- Ricci, E.; Al-Beitawi, S.; Cipriani, S.; Alteri, A.; Chiaffarino, F.; Candiani, M.; Gerli, S.; Viganó, P.; Parazzini, F. Dietary Habits and Semen Parameters: A Systematic Narrative Review. Andrology 2018, 6, 104–116. [Google Scholar] [CrossRef] [Green Version]
- Chambers, T.J.; Anderson, R.A. The Impact of Obesity on Male Fertility. Hormones 2015, 14, 563–568. [Google Scholar] [CrossRef] [PubMed]
- El Salam, M.A.A. Obesity, an Enemy of Male Fertility: A Mini Review. Oman Med. J. 2018, 33, 3–6. [Google Scholar] [CrossRef]
- Sengupta, P.; Dutta, S.; Krajewska-Kulak, E. The Disappearing Sperms: Analysis of Reports Published Between 1980 and 2015. Am. J. Men’s Health 2017, 11, 1279–1304. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; James, E.R.; Aston, K.I.; Jenkins, T.G.; Carrell, D.T. Diet and Sperm Quality: Nutrients, Foods and Dietary Patterns. Reprod. Biol. 2019, 19, 219–224. [Google Scholar] [CrossRef]
- Giahi, L.; Mohammadmoradi, S.; Javidan, A.; Sadeghi, M.R. Nutritional Modifications in Male Infertility: A Systematic Review Covering 2 Decades. Nutr. Rev. 2016, 74, 118–130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schulze, M.B.; Martínez-González, M.A.; Fung, T.T.; Lichtenstein, A.H.; Forouhi, N.G. Food Based Dietary Patterns and Chronic Disease Prevention. BMJ 2018, 361, k2396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carlos, S.; De La Fuente-Arrillaga, C.; Bes-Rastrollo, M.; Razquin, C.; Rico-Campà, A.; Martínez-González, M.A.; Ruiz-Canela, M. Mediterranean Diet and Health Outcomes in the SUN Cohort. Nutrients 2018, 10, 439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, S.; Zhang, X.; Zhao, X.; Hao, X.; Zhang, S.; Li, P.; Tan, J. Preconception Dietary Patterns and Associations With IVF Outcomes: An Ongoing Prospective Cohort Study. Front. Nutr. 2022, 9, 808355. [Google Scholar] [CrossRef] [PubMed]
- Figueroa, C.; Echeverría, G.; Villarreal, G.; Martínez, X.; Ferreccio, C.; Rigotti, A. Introducing Plant-Based Mediterranean Diet as a Lifestyle Medicine Approach in Latin America: Opportunities Within the Chilean Context. Front. Nutr. 2021, 8, 680452. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.B. Dietary Pattern Analysis: A New Direction in Nutritional Epidemiology. Curr. Opin. Lipidol. 2002, 13, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Khosrorad, T.; Dolatian, M.; Riazi, H.; Mahmoodi, Z.; Alavimajd, H.; Shahsavari, S.; Bakhtiari, M. Comparison of Lifestyle in Fertile and Infertile Couples in Kermanshah during 2013. Iran. J. Reprod. Med. 2015, 13, 549–556. [Google Scholar]
- Gaskins, A.J.; Nassan, F.L.; Chiu, Y.H.; Arvizu, M.; Williams, P.L.; Keller, M.G.; Souter, I.; Hauser, R.; Chavarro, J.E. Dietary Patterns and Outcomes of Assisted Reproduction. Am. J. Obstet. Gynecol. 2019, 220, 567.e1–567.e18. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Babio, N.; Carrell, D.T.; Bulló, M.; Salas-Salvadó, J. Adherence to the Mediterranean Diet Is Positively Associated with Sperm Motility: A Cross-Sectional Analysis. Sci. Rep. 2019, 9, 3389. [Google Scholar] [CrossRef] [Green Version]
- Barrea, L.; Arnone, A.; Annunziata, G.; Muscogiuri, G.; Laudisio, D.; Salzano, C.; Pugliese, G.; Colao, A.; Savastano, S. Adherence to the Mediterranean Diet, Dietary Patterns and Body Composition in Women with Polycystic Ovary Syndrome (PCOS). Nutrients 2019, 11, 2278. [Google Scholar] [CrossRef] [Green Version]
- Griswold, M.G.; Fullman, N.; Hawley, C.; Arian, N.; Zimsen, S.R.M.; Tymeson, H.D.; Venkateswaran, V.; Tapp, A.D.; Forouzanfar, M.H.; Salama, J.S.; et al. Alcohol Use and Burden for 195 Countries and Territories, 1990-2016: A Systematic Analysis for the Global Burden of Disease Study 2016. Lancet 2018, 392, 1015–1035. [Google Scholar] [CrossRef] [Green Version]
- Silvestris, E.; Lovero, D.; Palmirotta, R. Nutrition and Female Fertility: An Interdependent Correlation. Front. Endocrinol. 2019, 10, 346. [Google Scholar] [CrossRef] [Green Version]
- Noli, S.A.; Ricci, E.; Cipriani, S.; Ferrari, S.; Castiglioni, M.; La Vecchia, I.; Somigliana, E.; Parazzini, F. Dietary Carbohydrate Intake, Dietary Glycemic Load and Outcomes of in Vitro Fertilization: Findings from an Observational Italian Cohort Study. Nutrients 2020, 12, 1568. [Google Scholar] [CrossRef] [PubMed]
- Koloverou, E.; Esposito, K.; Giugliano, D.; Panagiotakos, D. The Effect of Mediterranean Diet on the Development of Type 2 Diabetes Mellitus: A Meta-Analysis of 10 Prospective Studies and 136,846 Participants. Metabolism 2014, 63, 903–911. [Google Scholar] [CrossRef] [PubMed]
- Abiemo, E.E.; Alonso, A.; Nettleton, J.A.; Steffen, L.M.; Bertoni, A.G.; Jain, A.; Lutsey, P.L. Relationships of the Mediterranean Dietary Pattern with Insulin Resistance and Diabetes Incidence in the Multi-Ethnic Study of Atherosclerosis (MESA). Br. J. Nutr. 2013, 109, 1490–1497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, R.; Du, T.; Xu, Y.; Xu, W.; Chen, X.; Sun, K.; Yu, X. Effects of Mediterranean-Style Diet on Glycemic Control, Weight Loss and Cardiovascular Risk Factors among Type 2 Diabetes Individuals: A Meta-Analysis. Eur. J. Clin. Nutr. 2015, 69, 1200–1208. [Google Scholar] [CrossRef]
- Sleiman, D.; Al-Badri, M.R.; Azar, S.T. Effect of Mediterranean Diet in Diabetes Control and Cardiovascular Risk Modification: A Systematic Review. Front. Public Health 2015, 3, 69. [Google Scholar] [CrossRef] [Green Version]
- Torres-Arce, E.; Vizmanos, B.; Babio, N.; Márquez-Sandoval, F.; Salas-Huetos, A. Dietary Antioxidants in the Treatment of Male Infertility: Counteracting Oxidative Stress. Biology 2021, 10, 241. [Google Scholar] [CrossRef]
- Karayiannis, D.; Kontogianni, M.D.; Mendorou, C.; Douka, L.; Mastrominas, M.; Yiannakouris, N. Association between Adherence to the Mediterranean Diet and Semen Quality Parameters in Male Partners of Couples Attempting Fertility. Hum. Reprod. 2017, 32, 215–222. [Google Scholar] [CrossRef] [Green Version]
- Vujkovic, M.; De Vries, J.H.; Lindemans, J.; MacKlon, N.S.; Van Der Spek, P.J.; Steegers, E.A.P.; Steegers-Theunissen, R.P.M. The Preconception Mediterranean Dietary Pattern in Couples Undergoing in Vitro Fertilization/Intracytoplasmic Sperm Injection Treatment Increases the Chance of Pregnancy. Fertil. Steril. 2010, 94, 2096–2101. [Google Scholar] [CrossRef] [PubMed]
- Smits, R.M.; Mackenzie-Proctor, R.; Yazdani, A.; Stankiewicz, M.T.; Jordan, V.; Showell, M.G. Antioxidants for Male Subfertility. Cochrane Database Syst. Rev. 2019, 3, Cd007411. [Google Scholar] [CrossRef] [PubMed]
- Christ, A.; Lauterbach, M.; Latz, E. Western Diet and the Immune System: An Inflammatory Connection. Immunity 2019, 51, 794–811. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.; Malik, V.S.; Hu, F.B. Cardiovascular Disease Prevention by Diet Modification: JACC Health Promotion Series. J. Am. Coll. Cardiol. 2018, 72, 914–926. [Google Scholar] [CrossRef]
- Dinu, M.; Abbate, R.; Gensini, G.F.; Casini, A.; Sofi, F. Vegetarian, Vegan Diets and Multiple Health Outcomes: A Systematic Review with Meta-Analysis of Observational Studies. Crit. Rev. Food Sci. Nutr. 2017, 57, 3640–3649. [Google Scholar] [CrossRef]
- Satija, A.; Bhupathiraju, S.N.; Spiegelman, D.; Chiuve, S.E.; Manson, J.A.E.; Willett, W.; Rexrode, K.M.; Rimm, E.B.; Hu, F.B. Healthful and Unhealthful Plant-Based Diets and the Risk of Coronary Heart Disease in U.S. Adults. J. Am. Coll. Cardiol. 2017, 70, 411–422. [Google Scholar] [CrossRef]
- McMacken, M.; Shah, S. A Plant-Based Diet for the Prevention and Treatment of Type 2 Diabetes. J. Geriatr. Cardiol. 2017, 14, 342. [Google Scholar]
- Qian, F.; Liu, G.; Hu, F.B.; Bhupathiraju, S.N.; Sun, Q. Association between Plant-Based Dietary Patterns and Risk of Type 2 Diabetes: A Systematic Review and Meta-Analysis. JAMA Intern. Med. 2019, 179, 1335–1344. [Google Scholar] [CrossRef]
- Austin, G.; Ferguson, J.J.A.; Garg, M.L. Effects of Plant-Based Diets on Weight Status in Type 2 Diabetes: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2021, 13, 4099. [Google Scholar] [CrossRef]
- Shah, B.; Newman, J.D.; Woolf, K.; Ganguzza, L.; Guo, Y.; Allen, N.; Zhong, J.; Fisher, E.A.; Slater, J. Anti-Inflammatory Effects of a Vegan Diet versus the American Heart Association–Recommended Diet in Coronary Artery Disease Trial. J. Am. Heart Assoc. 2018, 7, e011367. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Menzel, J.; Biemann, R.; Longree, A.; Isermann, B.; Mai, K.; Schulze, M.B.; Abraham, K.; Weikert, C. Associations of a Vegan Diet with Inflammatory Biomarkers. Sci. Rep. 2020, 10, 1933. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medawar, E.; Huhn, S.; Villringer, A.; Veronica Witte, A. The Effects of Plant-Based Diets on the Body and the Brain: A Systematic Review. Transl. Psychiatry 2019, 9, 226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kljajic, M.; Hammadeh, M.; Wagenpfeil, G.; Baus, S.; Sklavounos, P.; Solomayer, E.F.; Kasoha, M. Impact of the Vegan Diet on Sperm Quality and Sperm Oxidative Stress Values: A Preliminary Study. J. Hum. Reprod. Sci. 2021, 14, 365–371. [Google Scholar] [CrossRef]
- Hall, K.D.; Guo, J.; Courville, A.B.; Boring, J.; Brychta, R.; Chen, K.Y.; Darcey, V.; Forde, C.G.; Gharib, A.M.; Gallagher, I.; et al. Effect of a Plant-Based, Low-Fat Diet versus an Animal-Based, Ketogenic Diet on Ad Libitum Energy Intake. Nat. Med. 2021, 27, 344–353. [Google Scholar] [CrossRef] [PubMed]
- Pawlak, R.; Berger, J.; Hines, I. Iron Status of Vegetarian Adults: A Review of Literature. Am. J. Lifestyle Med. 2018, 12, 486–498. [Google Scholar] [CrossRef]
- Adewoyin, M.; Ibrahim, M.; Roszaman, R.; Isa, M.; Alewi, N.; Rafa, A.; Anuar, M. Male Infertility: The Effect of Natural Antioxidants and Phytocompounds on Seminal Oxidative Stress. Diseases 2017, 5, 9. [Google Scholar] [CrossRef] [Green Version]
- Özer, A.; Bakacak, M.; Kiran, H.; Ercan, Ö.; Köstü, B.; Kanat-Pektaş, M.; Kilinç, M.; Aslan, F. Increased Oxidative Stress Is Associated with Insulin Resistance and Infertility in Polycystic Ovary Syndrome. Ginekol. Pol. 2016, 87, 733–738. [Google Scholar] [CrossRef] [Green Version]
- Murri, M.; Luque-ramírez, M.; Insenser, M.; Ojeda-ojeda, M.; Escobar-morreale, H.F. Circulating Markers of Oxidative Stress and Polycystic Ovary Syndrome (Pcos): A Systematic Review and Meta-Analysis. Hum. Reprod. Update 2013, 19, 268–288. [Google Scholar] [CrossRef]
- Agarwal, A.; Aponte-Mellado, A.; Premkumar, B.J.; Shaman, A.; Gupta, S. The Effects of Oxidative Stress on Female Reproduction: A Review. Reprod. Biol. Endocrinol. 2012, 10, 49. [Google Scholar] [CrossRef] [Green Version]
- Tremellen, K. Oxidative Stress and Male Infertility—A Clinical Perspective. Hum. Reprod. Update 2008, 14, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Alahmar, A. Role of Oxidative Stress in Male Infertility: An Updated Review. J. Hum. Reprod. Sci. 2019, 12, 4–18. [Google Scholar] [CrossRef] [PubMed]
- Wojsiat, J.; Korczyński, J.; Borowiecka, M.; Żbikowska, H.M. The Role of Oxidative Stress in Female Infertility and in Vitro Fertilization. Postepy Hig. Med. Dosw. 2017, 71, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Wang, Z.; Cao, J.; Chen, Y.; Dong, Y. A Novel and Compact Review on the Role of Oxidative Stress in Female Reproduction. Reprod. Biol. Endocrinol. 2018, 16, 80–90. [Google Scholar] [CrossRef] [Green Version]
- Sheweita, S.; Tilmisany, A.; Al-Sawaf, H. Mechanisms of Male Infertility: Role of Antioxidants. Curr. Drug Metab. 2005, 6, 495–501. [Google Scholar] [CrossRef] [Green Version]
- Sharifi-Rad, M.; Anil Kumar, N.V.; Zucca, P.; Varoni, E.M.; Dini, L.; Panzarini, E.; Rajkovic, J.; Tsouh Fokou, P.V.; Azzini, E.; Peluso, I.; et al. Lifestyle, Oxidative Stress, and Antioxidants: Back and Forth in the Pathophysiology of Chronic Diseases. Front. Physiol. 2020, 11, 694. [Google Scholar] [CrossRef]
- Varani, J. Healthful Eating, the Western Style Diet and Chronic Disease. Approaches Poult. Dairy Vet. Sci. 2017, 1, 3. [Google Scholar] [CrossRef] [Green Version]
- Chen, X.F.; Wang, L.; Wu, Y.Z.; Song, S.Y.; Min, H.Y.; Yang, Y.; He, X.; Liang, Q.; Yi, L.; Wang, Y.; et al. Effect of Puerarin in Promoting Fatty Acid Oxidation by Increasing Mitochondrial Oxidative Capacity and Biogenesis in Skeletal Muscle in Diabetic Rats. Nutr. Diabetes 2018, 8, 1. [Google Scholar] [CrossRef] [Green Version]
- Trapp, D.; Knez, W.; Sinclair, W. Could a Vegetarian Diet Reduce Exercise-Induced Oxidative Stress? A Review of the Literature. J. Sport. Sci. 2010, 28, 1261–1268. [Google Scholar] [CrossRef]
- Jideani, A.I.O.; Silungwe, H.; Takalani, T.; Omolola, A.O.; Udeh, H.O.; Anyasi, T.A. Antioxidant-Rich Natural Fruit and Vegetable Products and Human Health. Int. J. Food Prop. 2021, 24, 41–67. [Google Scholar] [CrossRef]
- Carlsen, M.H.; Halvorsen, B.L.; Holte, K.; Bøhn, S.K.; Dragland, S.; Sampson, L.; Willey, C.; Senoo, H.; Umezono, Y.; Sanada, C.; et al. The Total Antioxidant Content of More than 3100 Foods, Beverages, Spices, Herbs and Supplements Used Worldwide. Nutr. J. 2010, 9, 3. [Google Scholar] [CrossRef] [PubMed]
- Salleh, N. Diverse Roles of Prostaglandins in Blastocyst Implantation. Sci. World J. 2014, 2014, 968141. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshipura, K.J.; Ascherio, A.; Manson, J.A.E.; Stampfer, M.J.; Rimm, E.B.; Speizer, F.E.; Hennekens, C.H.; Spiegelman, D.; Willett, W.C. Fruit and Vegetable Intake in Relation to Risk of Ischemic Stroke. J. Am. Med. Assoc. 1999, 282, 1233–1239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miller, V.; Mente, A.; Dehghan, M.; Rangarajan, S.; Zhang, X.; Swaminathan, S.; Dagenais, G.; Gupta, R.; Mohan, V.; Lear, S.; et al. Fruit, Vegetable, and Legume Intake, and Cardiovascular Disease and Deaths in 18 Countries (PURE): A Prospective Cohort Study. Lancet 2017, 390, 2037–2049. [Google Scholar] [CrossRef] [Green Version]
- Sanderman, E.A.; Willis, S.K.; Wise, L.A. Female Dietary Patterns and Outcomes of in Vitro Fertilization (IVF): A Systematic Literature Review. Nutr. J. 2022, 21, 5. [Google Scholar] [CrossRef]
- Kumar, N.; Singh, A. Trends of Male Factor Infertility, an Important Cause of Infertility: A Review of Literature. J. Hum. Reprod. Sci. 2015, 8, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Buettner, G.R. Superoxide Dismutase in Redox Biology: The Roles of Superoxide and Hydrogen Peroxide. Anticancer Agents Med. Chem. 2011, 11, 341–346. [Google Scholar] [CrossRef]
- Wang, S.; He, G.; Chen, M.; Zuo, T.; Xu, W.; Liu, X. The Role of Antioxidant Enzymes in the Ovaries. Oxid. Med. Cell. Longev. 2017, 2017, 4371714. [Google Scholar] [CrossRef] [Green Version]
- Lewandowski, Ł.; Kepinska, M.; Milnerowicz, H. The Copper-Zinc Superoxide Dismutase Activity in Selected Diseases. Eur. J. Clin. Investig. 2019, 49, e13036. [Google Scholar] [CrossRef] [Green Version]
- Sabatini, L.; Wilson, C.; Lower, A.; Al-Shawaf, T.; Grudzinskas, J.G. Superoxide Dismutase Activity in Human Follicular Fluid after Controlled Ovarian Hyperstimulation in Women Undergoing in Vitro Fertilization. Fertil. Steril. 1999, 72, 1027–1034. [Google Scholar] [CrossRef]
- Barrea, L.; Marzullo, P.; Muscogiuri, G.; Di Somma, C.; Scacchi, M.; Orio, F.; Aimaretti, G.; Colao, A.; Savastano, S. Source and Amount of Carbohydrate in the Diet and Inflammation in Women with Polycystic Ovary Syndrome. Nutr. Res. Rev. 2018, 31, 291–301. [Google Scholar] [CrossRef] [PubMed]
- Insulin Resistance. Available online: https://www.ncbi.nlm.nih.gov/books/NBK507839/ (accessed on 10 January 2023).
- Rama Raju, G.A.; Jaya Prakash, G.; Murali Krishna, K.; Madan, K.; Siva Narayana, T.; Ravi Krishna, C.H. Noninsulin-Dependent Diabetes Mellitus: Effects on Sperm Morphological and Functional Characteristics, Nuclear DNA Integrity and Outcome of Assisted Reproductive Technique. Andrologia 2012, 44, 490–498. [Google Scholar] [CrossRef] [PubMed]
- Zhong, O.; Ji, L.; Wang, J.; Lei, X.; Huang, H. Association of Diabetes and Obesity with Sperm Parameters and Testosterone Levels: A Meta-Analysis. Diabetol. Metab. Syndr. 2021, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Lutz, W.; Leridon, H.; Aitken, R.J.; Von Eyben, F.E. Fertility Rates and Future Population Trends: Will Europe’s Birth Rate Recover or Continue to Decline? Int. J. Androl. 2006, 29, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Castela, Â.; Costa, C. Molecular Mechanisms Associated with Diabetic Endothelial-Erectile Dysfunction. Nat. Rev. Urol. 2016, 13, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Lotti, F.; Corona, G.; Degli Innocenti, S.; Filimberti, E.; Scognamiglio, V.; Vignozzi, L.; Forti, G.; Maggi, M. Seminal, Ultrasound and Psychobiological Parameters Correlate with Metabolic Syndrome in Male Members of Infertile Couples. Andrology 2013, 1, 229–239. [Google Scholar] [CrossRef] [PubMed]
- Martins, A.D.; Majzoub, A.; Agawal, A. Metabolic Syndrome and Male Fertility. World J. Men’s Health 2019, 37, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Imani, M.; Talebi, A.R.; Fesahat, F.; Rahiminia, T.; Seifati, S.M.; Dehghanpour, F. Sperm Parameters, DNA Integrity, and Protamine Expression in Patients with Type II Diabetes Mellitus. J. Obstet. Gynaecol. 2021, 41, 439–446. [Google Scholar] [CrossRef]
- Bhattacharya, S.M.; Ghosh, M.; Nandi, N. Diabetes Mellitus and Abnormalities in Semen Analysis. J. Obstet. Gynaecol. Res. 2014, 40, 167–171. [Google Scholar] [CrossRef]
- Busetto, G.M.; Agarwal, A.; Virmani, A.; Antonini, G.; Ragonesi, G.; Del Giudice, F.; Micic, S.; Gentile, V.; De Berardinis, E. Effect of Metabolic and Antioxidant Supplementation on Sperm Parameters in Oligo-Astheno-Teratozoospermia, with and without Varicocele: A Double-Blind Placebo-Controlled Study. Andrologia 2018, 50, e12927. [Google Scholar] [CrossRef] [Green Version]
- Braga, D.P.D.A.F.; Halpern, G.; Figueira, R.D.C.S.; Setti, A.S.; Iaconelli, A.; Borges, E. Food Intake and Social Habits in Male Patients and Its Relationship to Intracytoplasmic Sperm Injection Outcomes. Fertil. Steril. 2012, 97, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Keskes-Ammar, L.; Feki-Chakroun, N.; Rebai, T.; Sahnoun, Z.; Ghozzi, H.; Hammami, S.; Zghal, K.; Fki, H.; Damak, J.; Bahloul, A. Sperm Oxidative Stress and the Effect of an Oral Vitamin E and Selenium Supplement on Semen Quality in Infertile Men. Arch. Androl. 2003, 49, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Barratt, C.L.R.; Björndahl, L.; De Jonge, C.J.; Lamb, D.J.; Martini, F.O.; McLachlan, R.; Oates, R.D.; van der Poel, S.; John, B.S.; Sigman, M.; et al. The Diagnosis of Male Infertility: An Analysis of the Evidence to Support the Development of Global WHO Guidance-Challenges and Future Research Opportunities. Hum. Reprod. Update 2017, 23, 660–680. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cardoso, J.P.; Cocuzza, M.; Elterman, D. Optimizing Male Fertility: Oxidative Stress and the Use of Antioxidants. World J. Urol. 2019, 37, 1029–1034. [Google Scholar] [CrossRef]
- Kothari, R.P.; Chaudhari, A.R. Zinc Levels in Seminal Fluid in Infertile Males and Its Relation with Serum Free Testosterone. J. Clin. Diagn. Res. 2016, 10, CC05–CC08. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Miura, C.; Kikuchi, K.; Celino, F.T.; Agusa, T.; Tanabe, S.; Miura, T. Zinc Is an Essential Trace Element for Spermatogenesis. Proc. Natl. Acad. Sci. USA 2009, 106, 10859–10864. [Google Scholar] [CrossRef] [Green Version]
- Mirnamniha, M.; Faroughi, F.; Tahmasbpour, E.; Ebrahimi, P.; Harchegani, A.B. An Overview on Role of Some Trace Elements in Human Reproductive Health, Sperm Function and Fertilization Process. Rev. Environ. Health 2019, 34, 339–348. [Google Scholar] [CrossRef]
- Fallah, A.; Mohammad-Hasani, A.; Colagar, A.H. Zinc Is an Essential Element for Male Fertility: A Review of Zn Roles in Men’s Health, Germination, Sperm Quality, and Fertilization. J. Reprod. Infertil. 2018, 19, 69–81. [Google Scholar]
- Gammoh, N.Z.; Rink, L. Zinc in Infection and Inflammation. Nutrients 2017, 9, 624. [Google Scholar] [CrossRef] [Green Version]
- Schisterman, E.F.; Sjaarda, L.A.; Clemons, T.; Carrell, D.T.; Perkins, N.J.; Johnstone, E.; Lamb, D.; Chaney, K.; Van Voorhis, B.J.; Ryan, G.; et al. Effect of Folic Acid and Zinc Supplementation in Men on Semen Quality and Live Birth among Couples Undergoing Infertility Treatment: A Randomized Clinical Trial. JAMA—J. Am. Med. Assoc. 2020, 323, 35–48. [Google Scholar] [CrossRef]
- Lerda, D. Study of Sperm Characteristics in Persons Occupationally Exposed to Lead. Am. J. Ind. Med. 1992, 22, 567–571. [Google Scholar] [CrossRef] [PubMed]
- Hawkes, W.C.; Turek, P.J. Effects of Dietary Selenium on Sperm Motility in Healthy Men. J. Androl. 2001, 22, 764–772. [Google Scholar] [PubMed]
- Mintziori, G.; Mousiolis, A.; Duntas, L.H.; Goulis, D.G. Evidence for a Manifold Role of Selenium in Infertility. Hormones 2020, 19, 55–59. [Google Scholar] [CrossRef] [PubMed]
- Majzoub, A.; Agarwal, A. Systematic Review of Antioxidant Types and Doses in Male Infertility: Benefits on Semen Parameters, Advanced Sperm Function, Assisted Reproduction and Live-Birth Rate. Arab J. Urol. 2018, 16, 113–124. [Google Scholar] [CrossRef] [Green Version]
- Durairajanayagam, D.; Agarwal, A.; Ong, C.; Prashast, P. Lycopene and Male Infertility. Asian J. Androl. 2014, 16, 420–425. [Google Scholar]
- Bakaloudi, D.R.; Halloran, A.; Rippin, H.L.; Oikonomidou, A.C.; Dardavesis, T.I.; Williams, J.; Wickramasinghe, K.; Breda, J.; Chourdakis, M. Intake and Adequacy of the Vegan Diet. A Systematic Review of the Evidence. Clin. Nutr. 2021, 40, 3503–3521. [Google Scholar] [CrossRef]
- Sakkas, H.; Bozidis, P.; Touzios, C.; Kolios, D.; Athanasiou, G.; Athanasopoulou, E.; Gerou, I.; Gartzonika, C. Nutritional Status and the Influence of the Vegan Diet on the Gut Microbiota and Human Health. Medicina 2020, 56, 88. [Google Scholar] [CrossRef] [Green Version]
- Neufingerl, N.; Eilander, A. Nutrient Intake and Status in Adults Consuming Plant-Based Diets Compared to Meat-Eaters: A Systematic Review. Nutrients 2022, 14, 29. [Google Scholar] [CrossRef]
- Craig, W.J.; Mangels, A.R.; Fresán, U.; Marsh, K.; Miles, F.L.; Saunders, A.V.; Haddad, E.H.; Heskey, C.E.; Johnston, P.; Larson-meyer, E.; et al. The Safe and Effective Use of Plant-based Diets with Guidelines for Health Professionals. Nutrients 2021, 13, 4144. [Google Scholar] [CrossRef]
- Toledo, E.; Lopez-Del Burgo, C.; Ruiz-Zambrana, A.; Donazar, M.; Navarro-Blasco, Í.; Martínez-González, M.A.; De Irala, J. Dietary Patterns and Difficulty Conceiving: A Nested Case-Control Study. Fertil. Steril. 2011, 96, 1149–1153. [Google Scholar] [CrossRef] [Green Version]
- Willis, S.K.; Wise, L.A.; Wesselink, A.K.; Rothman, K.J.; Mikkelsen, E.M.; Tucker, K.L.; Trolle, E.; Hatch, E.E. Glycemic Load, Dietary Fiber, and Added Sugar and Fecundability in 2 Preconception Cohorts. Am. J. Clin. Nutr. 2020, 112, 27–38. [Google Scholar] [CrossRef]
- Walczak-Jedrzejowska, R.; Wolski, J.K.; Slowikowska-Hilczer, J. The Role of Oxidative Stress and Antioxidants in Male Fertility. Cent. Eur. J. Urol. 2013, 66, 60–67. [Google Scholar] [CrossRef] [Green Version]
- Hatch, E.E.; Wesselink, A.K.; Hahn, K.A.; Michiel, J.J.; Mikkelsen, E.M.; Sorensen, H.T.; Rothman, K.J.; Wise, L.A. Intake of Sugar-Sweetened Beverages and Fecundability in a North American Preconception Cohort. Epidemiology 2018, 29, 369–378. [Google Scholar] [CrossRef]
- Schliep, K.C.; Schisterman, E.F.; Mumford, S.L.; Pollack, A.Z.; Perkins, N.J.; Ye, A.; Zhang, C.J.; Stanford, J.B.; Porucznik, C.A.; Hammoud, A.O.; et al. Energy-Containing Beverages: Reproductive Hormones and Ovarian Function in the Biocycle Study1-3. Am. J. Clin. Nutr. 2013, 97, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Lim, S.X.; Loy, S.L.; Colega, M.T.; Lai, J.S.; Godfrey, K.M.; Lee, Y.S.; Tan, K.H.; Yap, F.; Shek, L.P.C.; Chong, Y.S.; et al. Prepregnancy Adherence to Plant-Based Diet Indices and Exploratory Dietary Patterns in Relation to Fecundability. Am. J. Clin. Nutr. 2022, 115, 559–569. [Google Scholar] [CrossRef]
- Chiu, Y.H.; Afeiche, M.C.; Gaskins, A.J.; Williams, P.L.; Mendiola, J.; Jorgensen, N.; Swan, S.H.; Chavarro, J.E. Sugar-Sweetened Beverage Intake in Relation to Semen Quality and Reproductive Hormone Levels in Young Men. Hum. Reprod. 2014, 29, 1575–1584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hatch, E.E.; Wise, L.A.; Mikkelsen, E.M.; Christensen, T.; Riis, A.H.; Sørensen, H.T.; Rothman, K.J. Caffeinated Beverage and Soda Consumption and Time to Pregnancy. Epidemiology 2012, 23, 393–401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kazemi, M.; Hadi, A.; Pierson, R.A.; Lujan, M.E.; Zello, G.A.; Chilibeck, P.D. Effects of Dietary Glycemic Index and Glycemic Load on Cardiometabolic and Reproductive Profiles in Women with Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Adv. Nutr. 2021, 12, 161–178. [Google Scholar] [CrossRef] [PubMed]
- Caprio, M.; Infante, M.; Moriconi, E.; Armani, A.; Fabbri, A.; Mantovani, G.; Mariani, S.; Lubrano, C.; Poggiogalle, E.; Migliaccio, S.; et al. Very-Low-Calorie Ketogenic Diet (VLCKD) in the Management of Metabolic Diseases: Systematic Review and Consensus Statement from the Italian Society of Endocrinology (SIE). J. Endocrinol. Investig. 2019, 42, 1365–1386. [Google Scholar] [CrossRef] [PubMed]
- Gaskins, A.J.; Mumford, S.L.; Zhang, C.; Wactawski-Wende, J.; Hovey, K.M.; Whitcomb, B.W.; Howards, P.P.; Perkins, N.J.; Yeung, E.; Schisterman, E.F. Effect of Daily Fiber Intake on Reproductive Function: The BioCycle Study. Am. J. Clin. Nutr. 2009, 90, 1061–1069. [Google Scholar] [CrossRef] [Green Version]
- Colombo, O.; Pinelli, G.; Comelli, M.; Marchetti, P.; Sieri, S.; Brighenti, F.; Nappi, R.E.; Tagliabue, A. Dietary Intakes in Infertile Women a Pilot Study. Nutr. J. 2009, 8, 53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rostami, K.; Bold, J.; Parr, A.; Johnson, M.W. Gluten-Free Diet Indications, Safety, Quality, Labels, and Challenges. Nutrients 2017, 9, 846. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vici, G.; Belli, L.; Biondi, M.; Polzonetti, V. Gluten Free Diet and Nutrient Deficiencies: A Review. Clin. Nutr. 2016, 35, 1236–1241. [Google Scholar] [CrossRef] [PubMed]
- Diez-Sampedro, A.; Olenick, M.; Maltseva, T.; Flowers, M. A Gluten-Free Diet, Not an Appropriate Choice without a Medical Diagnosis. J. Nutr. Metab. 2019, 2019, 2438934. [Google Scholar] [CrossRef] [PubMed]
- Kemp, B.; Grooten, H.J.G.; Den Hartog, L.A.; Luiting, P.; Verstegen, M.W.A. The Effect of a High Protein Intake on Sperm Production in Boars at Two Semen Collection Frequencies. Anim. Reprod. Sci. 1988, 17, 103–113. [Google Scholar] [CrossRef]
- Farshchi, H.; Rane, A.; Love, A.; Kennedy, R.L. Diet and Nutrition in Polycystic Ovary Syndrome (PCOS): Pointers for Nutritional Management. J. Obstet. Gynaecol. 2007, 27, 762–773. [Google Scholar] [CrossRef] [PubMed]
- Mumford, S.L.; Alohali, A.; Wactawski-Wende, J. Dietary Protein Intake and Reproductive Hormones and Ovulation: The BioCycle Study. Fertil. Steril. 2015, 104, e2. [Google Scholar] [CrossRef]
- Walters, K.A.; Handelsman, D.J. Role of Androgens in the Ovary. Mol. Cell. Endocrinol. 2018, 465, 36–47. [Google Scholar] [CrossRef]
- Souter, I.; Chiu, Y.H.; Batsis, M.; Afeiche, M.C.; Williams, P.L.; Hauser, R.; Chavarro, J.E. The Association of Protein Intake (Amount and Type) with Ovarian Antral Follicle Counts among Infertile Women: Results from the EARTH Prospective Study Cohort. BJOG Int. J. Obstet. Gynaecol. 2017, 124, 1547–1555. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Zhang, B.; Zhang, B.; Zhang, B.; Zhou, W.; Zhou, W.; Zhou, W.; Zhou, W.; Shi, Y.; Shi, Y.; et al. Lifestyle and Environmental Contributions to Ovulatory Dysfunction in Women of Polycystic Ovary Syndrome. BMC Endocr. Disord. 2020, 20, 19–26. [Google Scholar] [CrossRef] [Green Version]
- Mendiola, J.; Torres-Cantero, A.M.; Moreno-Grau, J.M.; Ten, J.; Roca, M.; Moreno-Grau, S.; Bernabeu, R. Food Intake and Its Relationship with Semen Quality: A Case-Control Study. Fertil. Steril. 2009, 91, 812–818. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Furtado, J.; Toth, T.L.; Ford, J.; Keller, M.; Campos, H.; Hauser, R. Trans-Fatty Acid Levels in Sperm Are Associated with Sperm Concentration among Men from an Infertility Clinic. Fertil. Steril. 2011, 95, 1794–1797. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Chiu, Y.H.; Williams, P.L.; Gaskins, A.J.; Toth, T.L.; Tanrikut, C.; Hauser, R.; Chavarro, J.E. Men’s Meat Intake and Treatment Outcomes among Couples Undergoing Assisted Reproduction. Fertil. Steril. 2015, 104, 972–979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nassan, F.L.; Chiu, Y.H.; Vanegas, J.C.; Gaskins, A.J.; Williams, P.L.; Ford, J.B.; Attaman, J.; Hauser, R.; Chavarro, J.E. Intake of Protein-Rich Foods in Relation to Outcomes of Infertility Treatment with Assisted Reproductive Technologies. Am. J. Clin. Nutr. 2018, 108, 1104–1112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unfer, V.; Casini, M.L.; Gerli, S.; Costabile, L.; Mignosa, M.; Di Renzo, G.C. Phytoestrogens May Improve the Pregnancy Rate in in Vitro Fertilization-Embryo Transfer Cycles: A Prospective, Controlled, Randomized Trial. Fertil. Steril. 2004, 82, 1509–1513. [Google Scholar] [CrossRef] [PubMed]
- Mumford, S.L.; Sundaram, R.; Schisterman, E.F.; Sweeney, A.M.; Barr, D.B.; Rybak, M.E.; Maisog, J.M.; Parker, D.L.; Pfeiffer, C.M.; Louis, G.M.B. Higher Urinary Lignan Concentrations in Women but Not Men Are Positively Associated with Shorter Time to Pregnancy. J. Nutr. 2014, 144, 352–358. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vanegas, J.C.; Afeiche, M.C.; Gaskins, A.J.; Mínguez-Alarcón, L.; Williams, P.L.; Wright, D.L.; Toth, T.L.; Hauser, R.; Chavarro, J.E. Soy Food Intake and Treatment Outcomes of Women Undergoing Assisted Reproductive Technology. Fertil. Steril. 2015, 103, 749–755. [Google Scholar] [CrossRef] [Green Version]
- Rizzo, G.; Feraco, A.; Storz, M.A.; Lombardo, M. The Role of Soy and Soy Isoflavones on Women’s Fertility and Related Outcomes: An Update. J. Nutr. Sci. 2022, 11, e17. [Google Scholar] [CrossRef] [PubMed]
- Hamilton-Reeves, J.M.; Vazquez, G.; Duval, S.J.; Phipps, W.R.; Kurzer, M.S.; Messina, M.J. Clinical Studies Show No Effects of Soy Protein or Isoflavones on Reproductive Hormones in Men: Results of a Meta-Analysis. Fertil. Steril. 2010, 94, 997–1007. [Google Scholar] [CrossRef]
- Van Die, M.D.; Bone, K.M.; Williams, S.G.; Pirotta, M.V. Soy and Soy Isoflavones in Prostate Cancer: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. BJU Int. 2014, 113, E119–E130. [Google Scholar] [CrossRef] [Green Version]
- Reed, K.E.; Camargo, J.; Hamilton-Reeves, J.; Kurzer, M.; Messina, M. Neither Soy nor Isoflavone Intake Affects Male Reproductive Hormones: An Expanded and Updated Meta-Analysis of Clinical Studies. Reprod. Toxicol. 2021, 100, 60–67. [Google Scholar] [CrossRef] [PubMed]
- Chavarro, J.E.; Toth, T.L.; Sadio, S.M.; Hauser, R. Soy Food and Isoflavone Intake in Relation to Semen Quality Parameters among Men from an Infertility Clinic. Hum. Reprod. 2008, 23, 2584–2590. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, B.K.; Jaceldo-Siegl, K.; Knutsen, S.F.; Fan, J.; Oda, K.; Fraser, G.E. Soy Isoflavone Intake and the Likelihood of Ever Becoming a Mother: The Adventist Health Study-2. Int. J. Women’s. Health 2014, 6, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.A.; Willett, W.C. Dietary Fatty Acid Intakes and the Risk of Ovulatory Infertility. Am. J. Clin. Nutr. 2007, 85, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bauer, J.L.; Kuhn, K.; Bradford, A.P.; Al-Safi, Z.A.; Harris, M.A.; Eckel, R.H.; Robledo, C.Y.; Malkhasyan, A.; Johnson, J.; Gee, N.R.; et al. Reduction in FSH Throughout the Menstrual Cycle After Omega-3 Fatty Acid Supplementation in Young Normal Weight but Not Obese Women. Reprod. Sci. 2019, 26, 1025–1033. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, M.; Lovejoy, J.C.; Smith, S.R.; Delany, J.P.; Champagne, C.; Most, M.M.; Denkins, Y.; De Jonge, L.; Rood, J.; Bray, G.A. Comparison of the Acute Response to Meals Enriched with Cis- or Trans-Fatty Acids on Glucose and Lipids in Overweight Individuals with Differing FABP2 Genotypes. Metabolism 2005, 54, 1652–1658. [Google Scholar] [CrossRef]
- Belani, M.; Purohit, N.; Pillai, P.; Gupta, S.; Gupta, S. Modulation of Steroidogenic Pathway in Rat Granulosa Cells with Subclinical Cd Exposure and Insulin Resistance: An Impact on Female Fertility. Biomed Res. Int. 2014, 2014, 460251. [Google Scholar] [CrossRef] [Green Version]
- Baer, D.J.; Judd, J.T.; Clevidence, B.A.; Tracy, R.P. Dietary Fatty Acids Affect Plasma Markers of Inflammation in Healthy Men Fed Controlled Diets: A Randomized Crossover Study. Am. J. Clin. Nutr. 2004, 79, 969–973. [Google Scholar] [CrossRef] [Green Version]
- Diamanti-Kandarakis, E.; Dunaif, A. Insulin Resistance and the Polycystic Ovary Syndrome Revisited: An Update on Mechanisms and Implications. Endocr. Rev. 2012, 33, 981–1030. [Google Scholar] [CrossRef] [PubMed]
- Wise, L.A.; Wesselink, A.K.; Tucker, K.L.; Saklani, S.; Mikkelsen, E.M.; Cueto, H.; Riis, A.H.; Trolle, E.; McKinnon, C.J.; Hahn, K.A.; et al. Dietary Fat Intake and Fecundability in 2 Preconception Cohort Studies. Am. J. Epidemiol. 2018, 187, 60–74. [Google Scholar] [CrossRef] [Green Version]
- de Souza, R.J.; Mente, A.; Maroleanu, A.; Cozma, A.I.; Ha, V.; Kishibe, T.; Uleryk, E.; Budylowski, P.; Schünemann, H.; Beyene, J.; et al. Intake of Saturated and Trans Unsaturated Fatty Acids and Risk of All Cause Mortality, Cardiovascular Disease, and Type 2 Diabetes: Systematic Review and Meta-Analysis of Observational Studies. BMJ 2015, 351, h3978. [Google Scholar] [CrossRef] [Green Version]
- Çekici, H.; Akdevelioğlu, Y. The Association between Trans Fatty Acids, Infertility and Fetal Life: A Review. Hum. Fertil. 2019, 22, 154–163. [Google Scholar] [CrossRef]
- Douglas, C.C.; Norris, L.E.; Oster, R.A.; Darnell, B.E.; Azziz, R.; Gower, B.A. Difference in Dietary Intake between Women with Polycystic Ovary Syndrome and Healthy Controls. Fertil. Steril. 2006, 86, 411–417. [Google Scholar] [CrossRef]
- Carmina, E.; Legro, R.S.; Stamets, K.; Lowell, J.; Lobo, R.A. Difference in Body Weight between American and Italian Women with Polycystic Ovary Syndrome: Influence of the Diet. Hum. Reprod. 2003, 18, 2289–2293. [Google Scholar] [CrossRef] [Green Version]
- Attaman, J.A.; Toth, T.L.; Furtado, J.; Campos, H.; Hauser, R.; Chavarro, J.E. Dietary Fat and Semen Quality among Men Attending a Fertility Clinic. Hum. Reprod. 2012, 27, 1466–1474. [Google Scholar] [CrossRef] [Green Version]
- Braga, D.P.A.F.; Halpern, G.; Setti, A.S.; Figueira, R.C.S.; Iaconelli, A.; Borges, E. The Impact of Food Intake and Social Habits on Embryo Quality and the Likelihood of Blastocyst Formation. Reprod. Biomed. Online 2015, 31, 30–38. [Google Scholar] [CrossRef] [Green Version]
- Axmon, A.; Rylander, L.; Strömberg, U.; Hagmar, L. Female Fertility in Relation to the Consumption of Fish Contaminated with Persistent Organochlorine Compounds. Scand. J. Work. Environ. Health 2002, 28, 124–132. [Google Scholar] [CrossRef] [Green Version]
- Comerford, K.B.; Ayoob, K.T.; Murray, R.D.; Atkinson, S.A. The Role of Avocados in Maternal Diets during the Periconceptional Period, Pregnancy, and Lactation. Nutrients 2016, 8, 313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mumford, S.L.; Browne, R.W.; Kim, K.; Nichols, C.; Wilcox, B.; Silver, R.M.; Connell, M.T.; Holland, T.L.; Kuhr, D.L.; Omosigho, U.R.; et al. Preconception Plasma Phospholipid Fatty Acids and Fecundability. J. Clin. Endocrinol. Metab. 2018, 103, 4501–4510. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Falsig, A.M.L.; Gleerup, C.S.; Knudsen, U.B. The Influence of Omega-3 Fatty Acids on Semen Quality Markers: A Systematic PRISMA Review. Andrology 2019, 7, 794–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moran, L.J.; Tsagareli, V.; Noakes, M.; Norman, R. Altered Preconception Fatty Acid Intake Is Associated with Improved Pregnancy Rates in Overweight and Obesewomen Undertaking in Vitro Fertilisation. Nutrients 2016, 8, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Salas-Huetos, A.; Arvizu, M.; Mínguez-Alarcón, L.; Mitsunami, M.; Ribas-Maynou, J.; Yeste, M.; Ford, J.B.; Souter, I.; Chavarro, J.E. Women’s and Men’s Intake of Omega-3 Fatty Acids and Their Food Sources and Assisted Reproductive Technology Outcomes. Am. J. Obstet. Gynecol. 2022, 227, 246.e1–246.e11. [Google Scholar] [CrossRef] [PubMed]
- Mumford, S.L.; Chavarro, J.E.; Zhang, C.; Perkins, N.J.; Sjaarda, L.A.; Pollack, A.Z.; Schliep, K.C.; Michels, K.A.; Zarek, S.M.; Plowden, T.C.; et al. Dietary Fat Intake and Reproductive Hormone Concentrations and Ovulation in Regularly Menstruating Women. Am. J. Clin. Nutr. 2016, 103, 868–877. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nehra, D.; Le, H.D.; Fallon, E.M.; Carlson, S.J.; Woods, D.; White, Y.A.; Pan, A.H.; Guo, L.; Rodig, S.J.; Tilly, J.L.; et al. Prolonging the Female Reproductive Lifespan and Improving Egg Quality with Dietary Omega-3 Fatty Acids. Aging Cell 2012, 11, 1046–1054. [Google Scholar] [CrossRef] [Green Version]
- Hammiche, F.; Vujkovic, M.; Wijburg, W.; De Vries, J.H.M.; MacKlon, N.S.; Laven, J.S.E.; Steegers-Theunissen, R.P.M. Increased Preconception Omega-3 Polyunsaturated Fatty Acid Intake Improves Embryo Morphology. Fertil. Steril. 2011, 95, 1820–1823. [Google Scholar] [CrossRef]
- Wathes, D.C.; Abayasekara, D.R.E.; Aitken, R.J. Polyunsaturated Fatty Acids in Male and Female Reproduction. Biol. Reprod. 2007, 77, 190–201. [Google Scholar] [CrossRef]
- Ruan, Y.C.; Guo, J.H.; Liu, X.; Zhang, R.; Tsang, L.L.; Da Dong, J.; Chen, H.; Yu, M.K.; Jiang, X.; Zhang, X.H.; et al. Activation of the Epithelial Na+ Channel Triggers Prostaglandin E2 Release and Production Required for Embryo Implantation. Nat. Med. 2012, 18, 1112–1117. [Google Scholar] [CrossRef]
- Salas-Huetos, A.; Moraleda, R.; Giardina, S.; Anton, E.; Blanco, J.; Salas-Salvadó, J.; Bulló, M. Effect of Nut Consumption on Semen Quality and Functionality in Healthy Men Consuming a Western-Style Diet: A Randomized Controlled Trial. Am. J. Clin. Nutr. 2018, 108, 953–962. [Google Scholar] [CrossRef] [Green Version]
- Robbins, W.A.; Xun, L.; FitzGerald, L.Z.; Esguerra, S.; Henning, S.M.; Carpenter, C.L. Walnuts Improve Semen Quality in Men Consuming a Western-Style Diet: Randomized Control Dietary Intervention Trial. Biol. Reprod. 2012, 87, 101–108. [Google Scholar] [CrossRef]
- Afeiche, M.C.; Chiu, Y.H.; Gaskins, A.J.; Williams, P.L.; Souter, I.; Wright, D.L.; Hauser, R.; Chavarro, J.E. Dairy Intake in Relation to in Vitro Fertilization Outcomes among Women from a Fertility Clinic. Hum. Reprod. 2016, 31, 563–571. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.; Wactawski-Wende, J.; Michels, K.A.; Plowden, T.C.; Chaljub, E.N.; Sjaarda, L.A.; Mumford, S.L. Dairy Food Intake Is Associated with Reproductive Hormones and Sporadic Anovulation among Healthy Premenopausal Women. J. Nutr. 2017, 147, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Chavarro, J.E.; Rich-Edwards, J.W.; Rosner, B.; Willett, W.C. A Prospective Study of Dairy Foods Intake and Anovulatory Infertility. Hum. Reprod. 2007, 22, 1340–1347. [Google Scholar] [CrossRef] [Green Version]
- Greenlee, A.R.; Arbuckle, T.E.; Chyou, P.H. Risk Factors for Female Infertility in an Agricultural Region. Epidemiology 2003, 14, 429–436. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvadó, J.; Guasch-Ferré, M.; Díaz-López, A.; Babio, N. Yogurt and Diabetes: Overview of Recent Observational Studies. J. Nutr. 2017, 147, 1452–1461. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wen, L.; Duffy, A. Factors Influencing the Gut Microbiota, Inflammation, and Type 2 Diabetes. J. Nutr. 2017, 147, 1468s–1475s. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janiszewska, J.; Ostrowska, J.; Szostak-Węgierek, D. Milk and Dairy Products and Their Impact on Carbohydrate Metabolism and Fertility—A Potential Role in the Diet of Women with Polycystic Ovary Syndrome. Nutrients 2020, 12, 3491. [Google Scholar] [CrossRef] [PubMed]
- Afeiche, M.C.; Bridges, N.D.; Williams, P.L.; Gaskins, A.J.; Tanrikut, C.; Petrozza, J.C.; Hauser, R.; Chavarro, J.E. Dairy Intake and Semen Quality among Men Attending a Fertility Clinic. Fertil. Steril. 2014, 101, 1280–1287.e2. [Google Scholar] [CrossRef] [Green Version]
Diet Component/Dietary Pattern | Active Components/Set of Components | Impact on Fertility |
---|---|---|
Vegetables and fruits | Plant protein | Plant protein is a super-fertile ingredient. Consuming 5% of energy from plant protein instead of animal protein reduces the risk of anovulatory infertility by over 50% [20]. Consuming only plant products in a vegan diet has a positive effect on semen quality [75]. |
Antioxidants, vitamins, minerals, folic acid | Antioxidants are important for proper ovulation [9,55,56,57,58,59,60] and quality of semen [7,43,52,61,64]. A high amount of antioxidants in the diet greatly increases fertility, especially the antioxidants from berries and green vegetables [16,78,87,90,91,92,93]. | |
Fiber | A diet rich in vegetables and fruits promotes fertility [15,16,78,87,90,91,92,93,138]. Adequate supply of fiber along with the diet is crucial; too low and too high a dose negatively affects fertility [7,133,142,143]. | |
Refined grains, sweets, sweetened beverages, meals with a high glycemic load | Excess simple sugars, low content of fiber | Eating foods with a high glycemic index and meals with a high glycemic load may lead to metabolic complications and increase the risk of insulin resistance, diabetes, dyslipidemia, and oxidative stress, which adversely affect fertility and reproductive function [32,109,133]. The consumption of sweetened beverages negatively affects fertility and may also reduce the chances of reproductive success with ART [135,136,137]. |
Red meat | SFAs | Processed red meat has been shown to have a particularly negative effect on fertility [152]. Saturated fat content has been linked to lower semen concentration in males [177] and has a particularly negative effect on ovulation [174]. Eating red meat before IVF had a negative effect on the development of the embryo and the likelihood of clinical pregnancy [178]. |
Processed foods and fast-food | TFAs | Trans-fatty acids (TFAs) appear to have the most negative impact on fertility. The more TFAs in a woman’s diet, the greater the risk of ovulation disorders [166,168,169,170]. TFAs can also negatively affect semen quality and spermatogenesis [7,154]. |
Low-fat dairy products | Calcium, vitamins, probiotics | They can support the pro-fertility effect of the diet. It is recommended to choose low-fat dairy products, especially fermented. They have a positive effect on the gut microflora and reduce the risk of type 2 diabetes [7,195,197,198]. |
Oily sea fish | PUFA, omega-3, fat-soluble vitamins A, D, E, K | Fish are the most pro-fertile sources of fat and protein. They have a positive effect on semen parameters, the course of ovulation, and the success of fertilization [167,177,182,183,184,185,186,187,188,189]. Omega-3 fatty-acid intake should still be recommended to these groups as part of a healthy fertility diet [13]. |
Nuts, seeds | MUFA, fiber, tocopherols, phytosterols, polyphenols | The consumption of walnuts also has a positive effect on fertility due to the omega-3 content. The use of nuts in the diet may have a beneficial effect on the quality of sperm (longer viability, motility, and morphology) [172,177,185,190,191]. |
Avocado | MUFA, antioxidants, fiber, folate, potassium | Avocados are an important part of a woman’s fertility diet as they contain much higher amounts of a key nutrient. Associated with better pregnancy outcomes [180]. |
Plant-based pattern | High in plant protein, antioxidants, fiber, polyphenols, vitamins, minerals. Low-processed food, well-balanced meals. Based on the assumptions of MD. | The plant-based diet, especially high-quality plant foods, can help prevent chronic disease [26]. The plant-based nutritional model can lead to a positive effect on a couple’s fertility [15,16,18,19,20]. Plant-based diets that are high in fiber and polyphenols are also associated with a variety of gut microbiota that produce metabolites that have anti-inflammatory functions that can help manage disease processes, which can prove very beneficial in the context of infertility in couples [131]. |
Mediterranean pattern | High consumption of plant-derived food, oily sea fish, low-fat dairy and poultry, olive oil, and whole-grain products. Low consumption of simple sugars, red meat, and alcohol. | The MD decreased risk of all-cause mortality, cardiovascular disease, cancer, and other chronic diseases [46,52]. The MD supports proper ovulation in women [9,55,56,57,58,59,60] and has benefits in terms of sperm motility [52]. The MD model increases successful pregnancies by 40% among couples undergoing in vitro fertilization [63]. The MD should be recommended for couples undergoing in vitro fertilization [32]. |
Western pattern | High-glycemic-index carbohydrates, sweets, beverages, animal protein, SFAs and TFAs, processed foods. Low consumption of FAVs, fiber, vitamins, and sea fish. | It has an antifertility effect and can increase the oxidative stress that causes carbohydrate disturbance. Insulin resistance or diabetes mellitus are related to the deterioration of fertility in women and men, mainly due to the generation of high oxidative stress, which is the main cause leading to an increased risk of infertility and hormonal disorders [16,17,19,86,88]. |
Low-carb pattern | Low content of carbs, high in fat | There is a lack of reliable research on long-term effects on fertility [141]. |
Gluten-free pattern | No gluten | Gluten-free diets have been shown to have lower nutritional value compared to traditional diets [144,145]. This is a risky nutritional intervention for fertility, given that it involves eating less fiber and more saturated fatty acids and foods with a higher glycemic index [146]. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Łakoma, K.; Kukharuk, O.; Śliż, D. The Influence of Metabolic Factors and Diet on Fertility. Nutrients 2023, 15, 1180. https://doi.org/10.3390/nu15051180
Łakoma K, Kukharuk O, Śliż D. The Influence of Metabolic Factors and Diet on Fertility. Nutrients. 2023; 15(5):1180. https://doi.org/10.3390/nu15051180
Chicago/Turabian StyleŁakoma, Klaudia, Olha Kukharuk, and Daniel Śliż. 2023. "The Influence of Metabolic Factors and Diet on Fertility" Nutrients 15, no. 5: 1180. https://doi.org/10.3390/nu15051180
APA StyleŁakoma, K., Kukharuk, O., & Śliż, D. (2023). The Influence of Metabolic Factors and Diet on Fertility. Nutrients, 15(5), 1180. https://doi.org/10.3390/nu15051180