The Discriminant Power of Specific Physical Activity and Dietary Behaviors to Distinguish between Lean, Normal and Excessive Fat Groups in Late Adolescents
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics
2.2. Participants and Study Design
2.3. Data Collection and Measurements
2.4. Statistics
3. Results
3.1. The Interrelationship between Physical Activity Domains/Intensity, Sitting Time, and Dietary Behaviors
3.2. The Set of Physical Activity and Dietary Behaviors That Effectively Distinguished between Lean, Normal, and Excessive Fat Groups
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leis, R.; Jurado-Castro, J.M.; Llorente-Cantarero, F.J.; Anguita-Ruiz, A.; Iris Rupérez, A.; Bedoya-Carpente, J.J.; Vázquez-Cobela, R.; Aguilera, C.M.; Bueno, G.; Gil-Campos, M. Cluster Analysis of Physical Activity Patterns, and Relationship with Sedentary Behavior and Healthy Lifestyles in Prepubertal Children: Genobox Cohort. Nutrients 2020, 12, 1288. [Google Scholar] [CrossRef] [PubMed]
- Swinburn, B.A.; Sacks, G.; Hall, K.D.; McPherson, K.; Finegood, D.T.; Moodie, M.L.; Gortmaker, S.L. The global obesity pandemic: Shaped by global drivers and local environments. Lancet 2011, 378, 804–814. [Google Scholar] [CrossRef] [PubMed]
- Goryakin, Y.; Lobstein, T.; James, W.P.; Suhrcke, M. The impact of economic, political and social globalization on overweight and obesity in the 56 low and middle income countries. Soc. Sci. Med. 2015, 133, 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Godala, M.; Krzyżak, M.; Maślach, D.; Gaszyńska, E. Relationship between Dietary Behaviors and Physical Activity and the Components of Metabolic Syndrome: A Case-Control Study. Int. J. Environ. Res. Public Health 2022, 19, 6562. [Google Scholar] [CrossRef] [PubMed]
- Hutcheson, R.; Rocic, P. The metabolic syndrome, oxidative stress, environment, and cardiovascular disease: The great exploration. Exp. Diabetes Res. 2012, 2021, 271028. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, I.; LeBlanc, A.G. Systematic review of the health benefits of physical activity and fitness in school-aged children and youth. Int. J. Behav. Nutr. Phys. Act. 2010, 7, 40. [Google Scholar] [CrossRef] [Green Version]
- Sarwer, D.B.; Polonsky, H.M. The Psychosocial Burden of Obesity. Endocrinol. Metab. Clin. North Am. 2016, 45, 677–688. [Google Scholar] [CrossRef]
- Chin, S.-H.; Kahathuduwa, C.N.; Binks, M. Physical activity and obesity: What we know and what we need to know. Obes. Rev. 2016, 17, 1226–1244. [Google Scholar] [CrossRef]
- Wadolowska, L.; Kowalkowska, J.; Lonnie, M.; Czarnocinska, J.; Jezewska-Zychowicz, M.; Babicz-Zielinska, E. Associations between physical activity patterns and dietary patterns in a representative sample of Polish girls aged 13–21 years: A crosssectional study (GEBaHealth Project). BMC Public Health 2016, 16, 698. [Google Scholar] [CrossRef] [Green Version]
- Spencer, R.A.; Rehman, L.; Kirk, S.F. Understanding gender norms, nutrition, and physical activity in adolescent girls: A scoping review. Int. J. Behav. Nutr. Phys. Act. 2015, 12, 6. [Google Scholar] [CrossRef] [Green Version]
- Latorre-Millán, M.; Rupérez, A.I.; González-Gil, E.M.; Santaliestra-Pasías, A.; Vázquez-Cobela, R.; Gil-Campos, M.; Aguilera, C.M.; Gil, Á.; Moreno, L.A.; Leis, R.; et al. Dietary Patterns and Their Association with Body Composition and Cardiometabolic Markers in Children and Adolescents: Genobox Cohort. Nutrients 2020, 12, 3424. [Google Scholar] [CrossRef] [PubMed]
- Denney-Wilson, E.; Crawford, D.; Dobbins, T.; Hardy, L.; Okely, A.D. Influences on consumption of soft drinks and fast foods in adolescents. Asia Pac. J. Clin. Nutr. 2009, 18, 447–452. Available online: http://apjcn.nhri.org.tw/server/APJCN/18/3/447.pdf (accessed on 11 February 2023).
- Domaradzki, J. Congruence between Physical Activity Patterns and Dietary Patterns Inferred from Analysis of Sex Differences in Lifestyle Behaviors of Late Adolescents from Poland: Cophylogenetic Approach. Nutrients 2023, 15, 608. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Sang, X.; Wu, Y.; Liu, T.; Niu, R.; Han, L.; Wang, Q.; Liang, X. Correlation between Frequency of Eating Out of Home and Dietary Intake, Sleep, and Physical Activity: A Survey of Young CDC Employees in China. Int. J. Environ. Res. Public Health 2022, 19, 3209. [Google Scholar] [CrossRef] [PubMed]
- Manz, K.; Mensink, G.B.M.; Finger, J.D.; Haftenberger, M.; Brettschneider, A.K.; Lage Barbosa, C.; Krug, S.; Schienkiewitz, A. Associations between Physical Activity and Food Intake among Children and Adolescents: Results of KiGGS Wave 2. Nutrients 2019, 11, 1060. [Google Scholar] [CrossRef] [Green Version]
- Michels, K.B.; Schulze, M.B. Can dietary patterns help us detect diet–disease associations? Nutr. Res. Rev. 2005, 18, 241–248. [Google Scholar] [CrossRef] [PubMed]
- Kant, A.K. Dietary patterns and health outcomes. J. Am. Diet. Assoc. 2004, 104, 615–635. [Google Scholar] [CrossRef]
- Hermassi, S.; van den Tillaar, R.; Bragazzi, N.L.; Schwesig, R. The Associations Between Physical Performance and Anthropometric Characteristics in Obese and Non-obese Schoolchild Handball Players. Front. Physiol. 2021, 11, 580991. [Google Scholar] [CrossRef]
- LeBlanc, A.G.; Spence, J.C.; Carson, V.; Gorber, S.C.; Dillman, C.; Janssen, I.; Kho, M.E.; Stearns, J.A.; Timmons, B.W.; Tremblay, M.S. Systematic review of sedentary behaviour and health indicators in the early years (aged 0–4 years). Appl. Physiol. Nutr. Metab. 2012, 37, 753–772. [Google Scholar] [CrossRef] [Green Version]
- Neto, A.S.; de Campos, W.; dos Santos, G.C.; Junior, O.M. Metabolic syndrome risk score and time expended in moderate to vigorous physical activity in adolescents. BMC Pediatr. 2014, 14, 42. [Google Scholar] [CrossRef] [Green Version]
- Lake, A.A.; Mathers, J.C.; Rugg-Gunn, A.J.; Adamson, A.J. Longitudinal change in food habits between adolescence (11–12 years) and adulthood (32–33 years): The ASH30 Study. J. Public Health 2006, 28, 10–16. [Google Scholar] [CrossRef]
- World Health Organization. Global Action Plan on Physical Activity 2018–2030: More Active People for a Healthier World; Licence: CC BY-NC-SA 3.0 IGO; World Health Organization: Geneva, Switzerland, 2018; Available online: https://apps.who.int/iris/bitstream/handle/10665/272722/9789241514187-eng.pdf (accessed on 11 February 2023).
- Secretary-General, United Nations. Global Strategy for Women’s, Children’s and Adolescent Health: 2016–2030; Every Woman Every Child; WHO: New York, NY, USA, 2015; Available online: https://www.everywomaneverychild.org/wp-content/uploads/2017/10/EWEC_GSUpdate_Brochure_EN_2017_web.pdf (accessed on 11 February 2023).
- Troesch, B.; Biesalski, H.K.; Bos, R.; Buskens, E.; Calder, P.C.; Saris, W.H.M.; Spieldenner, J.; Verkade, H.J.; Weber, P.; Eggersdorfer, M. Increased Intake of Foods with High Nutrient Density Can Help to Break the Intergenerational Cycle of Malnutrition and Obesity. Nutrients 2015, 7, 6016–6037. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Popkin, B.M.; Adair, L.S.; Ng, S.W. Global nutrition transition and the pandemic of obesity in developing countries. Nutr. Rev. 2012, 70, 3–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IPAQ Research Committee. Guidelines for the Data Processing and Analysis of the International Physical Activity Questionnaire. 2005. Available online: https://docs.google.com/viewer?a=v&pid=sites&srcid=ZGVmYXVsdGRvbWFpbnx0aGVpcGFxfGd4OjE0NDgxMDk3NDU1YWRlZTM (accessed on 15 November 2022).
- Questionnaire of Eating Behaviour. Available online: https://docs.google.com/forms/d/e/1FAIpQLSdEKO_zdm_kGlom2Bq5Hxqun1lNJtyhcT2HHXBRj1dYah3P6w/viewform (accessed on 15 November 2022).
- Littell, R.C.; Stroup, W.W.; Freund, R.J. SAS for Linear Models, 4th ed.; SAS Institute: Cary, NC, USA, 2002. [Google Scholar]
- Heymans, M.W.; Eekhout, I. Applied Missing Data Analysis with SPSS and R(Studio). 2019. Available online: https://bookdown.org/mwheymans/bookmi/ (accessed on 15 November 2022).
- Austin, P.C.; White, I.R.; Lee, D.S.; van Buuren, S. Missing Data in Clinical Research: A Tutorial on Multiple Imputation. Can. J. Cardiol. 2021, 37, 1322–1331. [Google Scholar] [CrossRef]
- Raymaekers, J.; Rousseeuw, P.J. Transforming variables to central normality. Mach. Learn. 2021, 110, 1–36. [Google Scholar] [CrossRef]
- Gu, Z.; Gu, L.; Eils, R.; Schlesner, M.; Brors, B. circlize Implements and enhances circular visualization in R. Bioinformatics 2014, 30, 2811–2812. [Google Scholar] [CrossRef] [Green Version]
- Mitchell, J.J.; Bu, F.; Fancourt, D.; Steptoe, A.; Bone, J.K. Longitudinal associations between physical activity and other health behaviours during the COVID-19 pandemic: A fixed effects analysis. Sci. Rep. 2022, 12, 15956. [Google Scholar] [CrossRef]
- Robinson, E.; Boyland, E.; Chisholm, A.; Harrold, J.; Maloney, N.G.; Marty, L.; Mead, B.R.; Noonan, R.; Hardman, C.A. Obesity, eating behavior and physical activity during COVID-19 lockdown: A study of UK adults. Appetite 2021, 156, 104853. [Google Scholar] [CrossRef]
- Balanzá-Martínez, V.; Kapczinski, F.; de Azevedo Cardoso, T.; Atienza-Carbonell, B.; Rosa, A.R.; Mota, J.C.; De Boni, R.B. The assessment of lifestyle changes during the COVID-19 pandemic using a multidimensional scale. Rev. Psiquiatr. Salud Ment. 2021, 14, 16–26. [Google Scholar] [CrossRef]
- Pellegrini, M.; Ponzo, V.; Rosato, R.; Scumaci, E.; Goitre, I.; Benso, A.; Belcastro, S.; Crespi, C.; De Michieli, F.; Ghigo, E.; et al. Changes in Weight and Nutritional Habits in Adults with Obesity during the “Lockdown” Period Caused by the COVID-19 Virus Emergency. Nutrients 2020, 12, 2016. [Google Scholar] [CrossRef]
- Beaulieu, K.; Oustric, P.; Finlayson, G. The impact of physical activity on food reward: Review and conceptual synthesis of evidence from observational, acute, and chronic exercise training studies. Curr. Obes. Rep. 2020, 9, 63–80. [Google Scholar] [CrossRef] [Green Version]
- Horner, K.M.; Finlayson, G.; Byrne, N.M.; King, N.A. Food reward in active compared to inactive men: Roles for gastric emptying and body fat. Physiol. Behav. 2016, 160, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Blundell, J.E.; Gibbons, C.; Caudwell, P.; Finlayson, G.; Hopkins, M. Appetite control and energy balance: Impact of exercise. Obes. Rev. 2015, 16 (Suppl. S1), 67–76. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Leow, S.; Jackson, B.; Alderson, J.A.; Guelfi, K.J.; Dimmock, J.A. A Role for Exercise in Attenuating Unhealthy Food Consumption in Response to Stress. Nutrients 2018, 10, 176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matusiak-Wieczorek, E.; Lipert, A.; Kochan, E.; Jegier, A. The time spent sitting does not always mean a low level of physical activity. BMC Public Health 2020, 20, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pépin, J.L.; Bruno, R.M.; Yang, R.; Vercamer, V.; Jouhaud, P.; Escourrou, P.; Boutouyrie, P. Wearable Activity Trackers for Monitoring Adherence to Home Confinement During the COVID-19 Pandemic Worldwide: Data Aggregation and Analysis. J. Med. Internet Res. 2020, 22, e19787. [Google Scholar] [CrossRef] [PubMed]
- Guthold, R.; Stevens, G.A.; Riley, L.M.; Bull, F.C. Worldwide trends in insufficient physical activity from 2001 to 2016: A pooled analysis of 358 population-based surveys with 1·9 million participants. Lancet. Glob. Health 2018, 6, e1077–e1086. [Google Scholar] [CrossRef] [Green Version]
- Haerens, L.; Cerin, E.; Maes, L.; Cardon, G.; Deforche, B.; De Bourdeaudhuij, I. Explaining the effect of a 1-year intervention promoting physical activity in middle schools: A mediation analysis. Public Health Nutr. 2008, 11, 501–512. [Google Scholar] [CrossRef] [Green Version]
- Müller, A.M.; Alley, S.; Schoeppe, S.; Vandelanotte, C. The effectiveness of e-& mHealth interventions to promote physical activity and healthy diets in developing countries: A systematic review. Int. J. Behav. Nutr. Phys. Act. 2016, 13, 109. [Google Scholar] [CrossRef] [Green Version]
- Winkvist, A.; Hultén, B.; Kim, J.L.; Johansson, I.; Toren, K.; Brisman, J.; Forslund, H.B. Dietary intake, leisure time activities and obesity among adolescents in Western Sweden: A cross-sectional study. Nutr. J. 2015, 15, 41. [Google Scholar] [CrossRef] [Green Version]
- Jago, R.; Salway, R.; Emm-Collison, L.; Sebire, S.J.; Thompson, J.L.; Lawlor, D.A. Association of BMI category with change in children’s physical activity between ages 6 and 11 years: A longitudinal study. Int. J. Obes. 2020, 44, 104–113. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waters, E.; de Silva-Sanigorski, A.; Burford, B.J.; Brown, T.; Campbell, K.J.; Gao, Y.; Armstrong, R.; Prosser, L.; Summerbell, C.D. Interventions for preventing obesity in children. CDSR 2011, 12, CD001871. [Google Scholar] [CrossRef] [PubMed]
- Dobbins, M.; De Corby, K.; Robeson, P.; Husson, H.; Tirilis, D. School-based physical activity programs for promoting physical activity and fitness in children and adolescents aged 6–18. CDSR 2009, 21, CD007651. [Google Scholar] [CrossRef]
- Santos, F.; Sousa, H.; Gouveia, É.R.; Lopes, H.; Peralta, M.; Martins, J.; Murawska-Ciałowicz, E.; Żurek, G.; Marques, A. School-Based Family-Oriented Health Interventions to Promote Physical Activity in Children and Adolescents: A Systematic Review. AJHP 2023, 37, 243–262. [Google Scholar] [CrossRef]
- Hollingdale, K.; Firebaugh, C.M.; Morgan, S.M. A brief report relating physical activity and depressive symptoms in women during the COVID-19 pandemic. Hum. Mov. 2022, 24, 100–103. [Google Scholar] [CrossRef]
- Faulkner, G.E.; Buliung, R.N.; Flora, P.K.; Fusco, C. Active school transport, physical activity levels and body weight of children and youth: A systematic review. Prev. Med. 2009, 48, 3–8. [Google Scholar] [CrossRef]
- Audrey, S.; Procter, S.; Cooper, A.R. The contribution of walking to work to adult physical activity levels: A cross sectional study. Int. J. Behav. Nutr. Phys. Act. 2014, 11, 37. [Google Scholar] [CrossRef] [Green Version]
- Bassett, D.; Pucher, J.; Buehler, R.; Thompson, D.; Crouter, S. Walking, cycling and obesity rates in Europe, North America, and Australia. J. Phys. Act. Health 2008, 5, 795–814. [Google Scholar] [CrossRef]
- Pucher, J.; Buehler, R.; Bassett, D.; Dannenberg, A. Walking and cycling to health: A comparative analysis of city, state, and international data. Am. J. Public Health 2010, 100, 986–1992. [Google Scholar] [CrossRef]
- Hallal, P.C.; Andersen, L.B.; Bull, F.C.; Guthold, R.; Haskell, W.; Ekelund, U. Global physical activity levels: Surveillance progress, pitfalls, and prospects. Lancet 2012, 80, 247–257. [Google Scholar] [CrossRef]
- Xu, H.; Wen, L.M.; Rissel, C. The relationships between active transport to work or school and cardiovascular health or body weight: A systematic review. Asia-Pac. J. Public Health 2013, 25, 298–315. [Google Scholar] [CrossRef]
- Saunders, L.E.; Green, J.M.; Petticrew, M.P.; Steinbach, R.; Roberts, H. What are the health benefits of active travel? A systematic review of trials and cohort studies. PLoS ONE 2013, 8, e69912. [Google Scholar] [CrossRef] [Green Version]
- Wanner, M.; Götschi, T.; Martin-Deiner, E.; Kahlmeier, S.; Martin, B.W. Active transport, physical activity, and body weight in adults: A systematic review. Am. J. Prev. Med. 2012, 42, 493–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lindstrom, M. Means of transportation to work and overweight and obesity: A population-based study in southern Sweden. Prev. Med. 2008, 46, 22–28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flint, E.; Cummins, S.; Sacker, A. Associations between active commuting, body fat, and body mass index: Population based, cross sectional study in the United Kingdom. BMJ 2014, 349, g4887. [Google Scholar] [CrossRef] [Green Version]
- WHO. Fact Sheet No 394. 2018. Available online: https://www.who.int/publications/m/item/healthy-diet-factsheet394 (accessed on 9 February 2023).
- Al-Jawaldeh, A.; Abbass, M.M.S. Unhealthy Dietary Habits and Obesity: The Major Risk Factors Beyond Non-Communicable Diseases in the Eastern Mediterranean Region. Front. Nutr. 2022, 9, 817808. [Google Scholar] [CrossRef] [PubMed]
- Mu, M.; Xu, L.F.; Hu, D.; Wu, J.; Bai, M.J. Dietary Patterns and Overweight/Obesity: A Review Article. Iran. J. Public Health 2017, 46, 869–876. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5563867/pdf/IJPH-46-869.pdf (accessed on 11 February 2023).
- Elliot, C.A.; Hamlin, M.J. Combined diet and physical activity is better than diet or physical activity alone at improving health outcomes for patients in New Zealand’s primary care intervention. BMC Public Health 2018, 18, 230. [Google Scholar] [CrossRef] [Green Version]
- Berge, J.M. A review of familial correlates of child and adolescent obesity: What has the 21st century though us so far? J. Adolesc. Med. Health 2009, 21, 457–483. [Google Scholar] [CrossRef]
- Magnusson, M.B.; Hulthén, L.; Kjellgren, K.I. Obesity, dietary pattern and physical activity among children in a suburb with a high proportion of immigrants. J. Hum. Nutr. Dietet. 2005, 18, 187–194. [Google Scholar] [CrossRef]
Standardized Variables | Lean | Lower Norm | Upper Norm | Excessive Fat | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | Mean | 95% CI | |||||
body height | −0.12 | −0.54 | 0.30 | 0.24 | −0.16 | 0.64 | −0.08 | −0.40 | 0.24 | −0.10 | −0.53 | 0.34 |
body weight | −0.68 | −0.95 | −0.40 | 0.05 | −0.28 | 0.38 | −0.03 | −0.40 | 0.34 | 0.61 | 0.17 | 1.06 |
body fat percentage | −0.84 | −1.03 | −0.65 | −0.20 | −0.46 | 0.07 | −0.14 | −0.41 | 0.14 | 1.20 | 0.85 | 1.55 |
work/school | −0.12 | −0.56 | 0.33 | 0.12 | −0.23 | 0.46 | 0.10 | −0.28 | 0.49 | −0.15 | −0.57 | 0.28 |
active transport | 0.01 | −0.36 | 0.37 | 0.04 | −0.36 | 0.44 | −0.26 | −0.60 | 0.08 | 0.23 | −0.23 | 0.68 |
domestic/gardening | 0.09 | −0.33 | 0.51 | −0.03 | −0.37 | 0.32 | −0.11 | −0.57 | 0.34 | 0.07 | −0.31 | 0.45 |
leisure time | 0.31 | −0.14 | 0.77 | −0.43 | −0.74 | −0.12 | 0.17 | −0.20 | 0.55 | 0.04 | −0.38 | 0.47 |
vigorous | 0.06 | −0.43 | 0.56 | −0.13 | −0.47 | 0.22 | 0.07 | −0.33 | 0.48 | 0.02 | −0.34 | 0.38 |
moderate | −0.02 | −0.43 | 0.38 | 0.01 | −0.35 | 0.37 | −0.15 | −0.64 | 0.33 | 0.18 | −0.14 | 0.50 |
walking | 0.07 | −0.31 | 0.46 | −0.01 | −0.40 | 0.37 | 0.03 | −0.31 | 0.37 | −0.09 | −0.57 | 0.40 |
healthy diet | −0.06 | −0.47 | 0.35 | 0.01 | −0.39 | 0.40 | −0.11 | −0.50 | 0.28 | 0.16 | −0.23 | 0.55 |
unhealthy diet | −0.28 | −0.65 | 0.09 | 0.14 | −0.26 | 0.54 | 0.00 | −0.44 | 0.44 | 0.09 | −0.26 | 0.44 |
Subset | Wilk’s Lambda | w/s | at | d/g | lt | Vig | Mod | Walk | Sit | Hdi | Unhdi |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.755 | 0.30 ** | 0.91 * | 0.30 * | 0.94 | ||||||
2 | 0.755 | 0.30 | 0.93 | 0.30 | 0.99 | ||||||
3 | 0.763 | 0.28 | 0.59 | 0.62 | 0.30 | ||||||
4 | 0.767 | 0.81 | 0.26 | 0.93 | 0.25 |
Function | Intercept | at | F (p) | lt | F (p) | Walk | F (p) | Hdi | F (p) |
---|---|---|---|---|---|---|---|---|---|
1 | −0.12 | −1.72 (−1.51) | 5.49 (0.002) | 0.51 (0.49) | 3.86 (0.012) | 1.59 (1.42) | 5.07 (0.003) | −0.47 (−0.45) | 2.17 (0.095) |
2 | 0.10 | 0.64 (0.56) | 0.94 (0.91) | −0.99 (−0.89) | −0.02 (−0.01) |
Function for Group | Intercept | at | lt | Walk | Hdi |
---|---|---|---|---|---|
lean | −1.80 | −1.00 | 0.27 | 1.13 | −0.59 |
norm 1 | −1.39 | −0.02 | −0.58 | 0.21 | 0.08 |
norm 2 | −1.52 | −1.05 | 0.30 | 0.79 | −0.01 |
excessive fat | −1.61 | 1.10 | −0.01 | −1.07 | 0.12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domaradzki, J. The Discriminant Power of Specific Physical Activity and Dietary Behaviors to Distinguish between Lean, Normal and Excessive Fat Groups in Late Adolescents. Nutrients 2023, 15, 1230. https://doi.org/10.3390/nu15051230
Domaradzki J. The Discriminant Power of Specific Physical Activity and Dietary Behaviors to Distinguish between Lean, Normal and Excessive Fat Groups in Late Adolescents. Nutrients. 2023; 15(5):1230. https://doi.org/10.3390/nu15051230
Chicago/Turabian StyleDomaradzki, Jarosław. 2023. "The Discriminant Power of Specific Physical Activity and Dietary Behaviors to Distinguish between Lean, Normal and Excessive Fat Groups in Late Adolescents" Nutrients 15, no. 5: 1230. https://doi.org/10.3390/nu15051230
APA StyleDomaradzki, J. (2023). The Discriminant Power of Specific Physical Activity and Dietary Behaviors to Distinguish between Lean, Normal and Excessive Fat Groups in Late Adolescents. Nutrients, 15(5), 1230. https://doi.org/10.3390/nu15051230