Higher Muscle Mass and Higher Serum Prealbumin Levels Are Associated with Better Survival in Hemodialysis Patients during a Five-Year Observation Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Blood and Anthropometric Parameters
2.2. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jager, K.J.; Kovesdy, C.; Langham, R.; Rosenberg, M.; Jha, V.; Zoccali, C. A single number for advocacy and communication-worldwide more than 850 million individuals have kidney diseases. Nephrol Dial Transpl. 2019, 34, 1803–1805. [Google Scholar] [CrossRef] [Green Version]
- Kramer, A.; Pippias, M.; Noordzij, M.; Stel, V.S.; Andrusev, A.M.; Aparicio-Madre, M.I.; Monzón, F.A.; Åsberg, A.; Barbullushi, M.; Beltrán, P.; et al. The European renal association-European Dialysis and transplant association (ERA-EDTA) registry annual report 2016: A summary. Clin. Kidney J. 2019, 12, 702–720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Załuska, W.; Klinger, M.; Kusztal, M.; Lichodziejewska-Niemierko, M.; Miłkowski, A.; Stompór, T.; Sak, J.; Domański, L.; Drożdż, M.; Aksamit, D.; et al. Recommendations of the Working Group of the Polish Society of Nephrology regarding the quality criteria of dialysis treatment for patients due to end-stage renal failure. Nefrol. Dial. Pol. 2015, 19, 6–11. [Google Scholar]
- Sahathevan, S.; Khor, B.H.; Ng, H.M.; GAfor, A.H.A.; Daud, Z.A.M.; MAfra, D.; KArapaiah, T. Understanding Development of Malnutrition in Hemodialysis Patients: A Narrative Review. Nutrience 2020, 12, 3147. [Google Scholar]
- Ashuntantang, G.; Osafo, C.; Olowu, W.A.; Arogundade, F.; Niang, A.; Porter, J.; Naicker, S.; Luyckx, V.A. Outcomes in adults and children with end-stage kidney disease requiring dialysis in sub-Saharan Africa: A systematic review. Lancet Glob. Health. 2017, 5, e408–e417. [Google Scholar] [CrossRef] [Green Version]
- Ostrowska, J.; Jeznach-Steinhagen, A. Fight against malnutrition (FAM). Selected results of 2006-2012 nutrition day survey in Poland. Rocz. Panstw. Zakl. Hig. 2016, 67, 291–300. [Google Scholar]
- Essadik, R.; Msaad, R.; Lebrazil, H.; Taki, H.; Tahri, E.H.; Kettani, A.; Madkouri, G.; Ramdani, B.; Saïle, R. Assessing the prevalence of protein-energy wasting in haemodialysis patients: A cross-sectional monocentric study. Nephrol. Ther. 2017, 13, 537–543. [Google Scholar]
- Bergström, J. Nutrition and mortality in hemodialysis. J. Am. Soc. Nephrol. 1995, 6, 1329–1340. [Google Scholar] [CrossRef] [PubMed]
- Stenvinkel, P.; Heimbűrger, O.; Lindholm, B.; Kaysen, G.A.; Bergström, J. Are there two types of malnutrition in chronic renal failure? Evidence for relationships between malnutrition, inflammation and atherosclerosis (MIA syndrome). Nephrol. Dial. Transpl. 2000, 15, 953–960. [Google Scholar]
- Bologa, R.M.; Levin, D.M.; Parker, T.S.; Cheigh, J.S.; Serur, D.; Stenzel, K.H.; Rubin, A.L. Interleukin-6 predicts hypoalbuminemia, hypocholesterolemia and mortality in hemodialysis patients. Am. J. Kidney Dis. 1998, 32, 107–115. [Google Scholar] [CrossRef]
- Taheri, S.; Baradaran, A.; Alikabarian, M.; Mortazavi, M. Level of inflammatory factors in chronic hemodialysis patients with and without cardiovascular disease. J. Res. Med. Sci. 2017, 26, 22–47. [Google Scholar]
- Wathanavasis, W.; BAnjongiit, A.; Avihingsanon, Y.; Praditpornsilpa, K.; Tungsanga, K.; Eiam-Ong, S.; Susantitaphong, P. Prevalence of Sarcopenia and Its Impact on Cardiovascular Events and Mortality among Dialysis Patients: A Systematic Review and Meta-Analysis. Nutrience 2022, 14, 4077. [Google Scholar] [CrossRef] [PubMed]
- Chazot, C.; Vo-Van, C.; Blanc, C.; Hurot, J.M.; Jean, G.; Vanel, T.; Terrat, J.C.; Charra, B. Stability of nutritional parameters during a 5-year follow-up in patients treated with sequential long-hour hemodialysis. Hemodial. Int. 2006, 10, 389–393. [Google Scholar] [CrossRef] [PubMed]
- Dai, L.; Golembiewska, E.; Lindholm, B.; Stenvinkel, P. End-Stage Renal Disease, Inflammation and Cardiovascular Outcomes. Contrib. Nephrol. 2017, 191, 32–43. [Google Scholar]
- Tosic Dragovic, J.; Popovic, J.; Djuric, P.; Jankovic, A.; Bulatovic, A.; Barovic, M.; Pravica, V.; Marinkovic, J.; Dimkovic, N. Relative risk for cardiovascular morbidity in hemodialysis patients regarding gen polymorphism for IL-10, IL-6, and TNF. Can. J. Physiol. Pharmacol. 2016, 94, 1106–1109. [Google Scholar]
- World Health Organization Committee. Physical Status: The Use and Interpretation of Anthropometry; Technical Report Series Np. 854; WHO: Geneva, Switzerland, 1995; pp. 427–438. [Google Scholar]
- Szczygieł, B.; Pertkiewicz, M.; Majewska, K. Niedożywienie i jego następstwa IN: Żywienie Pozajelitowe I Dojelitowe w Chirurgii; Szczygieł, B., Socha, J., Eds.; PZWL: Warsaw, Poland, 1994; pp. 19–27. [Google Scholar]
- Fouque, D.; Kalantar-Zadeh, K.; Kopple, J.; Cano, N.; Chauveau, P.; Cuppari, L.; Franch, H.; Guarnieri, G.; Ikizler, T.A.; Kaysen, G.; et al. A proposed nomenclature and diagnostics criteria for protein-energy wasting in acute and chronic kidney disease. Kidney Int. 2008, 73, 391–398. [Google Scholar] [PubMed] [Green Version]
- Spelta, F.; Fratta Pasini, A.M.; Cazzoletti, L.; Ferrari, M. Body weight and mortality in COPD: Focus on the obesity paradox. Eat Weight Disord 2018, 23, 15–22. [Google Scholar]
- Pinho, E.; Lourenço, P.; Silva, S.; Laszczyńska, O.; Leite, A.; Gomes, F.; Pimenta, J.; Azevedo, A.; Bettencourt, P. Higher BMI in heart failure patients is associated with longer survival only in the absence of diabetes. J. Cardiovasc. Med. (Hagerstown) 2015, 16, 576–582. [Google Scholar]
- Wilkinson, T.J.; Miksza, J.; Yates, T.; Lightfoot, C.J.; Baker, L.A.; Watson, E.L.; Zaccardi, F.; Smith, A.C. Association of sarcopenia with mortality and end-stage renal disease in those with chronic kidney disease: A UK Biobank study. J. Cachexia Sarcopenia Muscle 2021, 12, 586–598. [Google Scholar] [CrossRef]
- Ebrahimi, V.; Khademian, M.H.; Masoumi, S.J.; Morvaridi, M.R.; Jahromi, S.E. Factors influencing survival time of hemodialysis patients; time to event analysis using parametric models: A cohort study. BMC Nephrol. 2019, 20, 215. [Google Scholar] [CrossRef] [Green Version]
- Atkins, J.L.; Whincup, P.H.; Morris, R.W.; Lennon, L.T.; Papacosta, O.; Wannamethee, S.G. Sarcopenic obesity and risk of cardiovascular disease and mortality: A population-based cohort study of older men. J. Am. Geriatr. Soc. 2014, 62, 253–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fukasawa, H.; Kaneko, M.; Niwa, H.; Matsuyama, T.; Yasuda, H.; Kumagai, H.; Furuya, R. Lower thigh muscle mass is associated with all-cause and cardiovascular mortality in elderly hemodialysis patients. Eur. J. Clin. Nutr. 2017, 71, 64–69. [Google Scholar] [CrossRef] [PubMed]
- Caetano, C.; Valente, A.; Oliveira, T.; Garagarza, C. Body composition and mortality predictors in hemodialysis patients. J. Ren. Nutr. 2016, 26, 81–86. [Google Scholar] [CrossRef] [PubMed]
- Marcelli, D.; Usvyat, L.A.; Kotanko, P.; Bayh, I.; Canaud, B.; Etter, M.; Gatti, E.; Grassmann, A.; Wang, Y.; Marelli, C.; et al. Body composition and survival in dialysis patients: Results from an international cohort study. Clin. J. Am. Soc. Nephrol. 2015, 10, 1192–1200. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rymarz, A.; Gibińska, J.; Zajbt, M.; Piechota, W.; Niemczyk, S. Low lean tissue mass can be a predictor of one-year survival in hemodialysis patients. Ren. Fail. 2018, 40, 231–237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Srikanthan, P.; Horwich, T.B.; Tseng, C.H. Relation of Muscle Mass and Fat Mass to Cardiovascular Disease Mortality. Am. J. Cardiol. 2016, 117, 1355–1360. [Google Scholar] [CrossRef] [PubMed]
- Oh, D.J.; Kim, H.R.; Lee, M.K.; Woo, Y.S. Profile of human β-defensins 1,2 and proinflammatory cytokines (TNF-α, IL-6) in patients with chronic kidney disease. Kidney Blood Press Res. 2013, 37, 602–610. [Google Scholar] [CrossRef]
- Boniecka, I.; Jeznach-Steinhagen, A.; Michalska, W.; Rymarz, A.; SZostak-Węgierek, D.; Niemczyk, S. Nutritional status, selected Nutrience Intake and Their Relationship with the Concentration of Ghrelin and Adiponectin in Patients with Diabetic Nephropathy. Nutrience 2021, 13, 4416. [Google Scholar] [CrossRef]
- Lichtenberg, S.; Korzets, A.; Zingerman, B.; Green, H.; Erman, A.; Gafter, U.; Rozen-Zvi, B. An intradialytic increase in serum interleukin-6 levels is associated with an increased mortality in hemodialysis patients. Int. J. Artif. Organs 2015, 38, 237–243. [Google Scholar] [CrossRef]
- Rambod, M.; Kovesdy, C.P.; Bross, R.; Kopple, J.D.; Kalantar-Zadeh, K. Association of serum prealbumin and its changes over time with clinical outcomes and survival in patients receiving hemodialysis. Am. J. Clin. Nutr. 2008, 88, 1485–1494. [Google Scholar] [CrossRef] [Green Version]
- Kamijo, Y.; Kanda, E.; Ishibashi, Y.; Yoshida, M. Sarcopenia and Frailty in PD: Impact on Mortality, Malnutrition, and Inflammation. Perit. Dial Int. 2018, 38, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.D.S.; Moreira, T.R.; Da Silva, R.G.; Da Costa, G.D.; Da Silva, L.S.; Cavalier, S.B.D.O.; Silva, B.O.; Dias, H.H.; Borges, L.D.; Machado, J.C.; et al. Survival and analysis of predictors of mortality in patients undergoing replacement renal therapy: A 20-year cohort. BMC Nephrol. 2020, 21, 502. [Google Scholar] [CrossRef] [PubMed]
- Franco, J.; Formiga, F.; Trullas, J.C.; Salamanca Bautista, P.; Conde, A.; Manzano, L.; Quirós, R.; González Franco, A.; Ezquerro, A.M.; Montero-Pérez-Barquero, M. on behalf of RICA investigators group. Impact of prealbumin on mortality and hospital readmission in patients with acute heart failure. Eur. J. Intern. Med. 2017, 43, 36–41. [Google Scholar] [CrossRef] [PubMed]
Parameter | Norm |
---|---|
BMI [10] | <18.5 kg/m2 underweight 18.5–20 kg/m2 normal 25.1–30 kg/m2 overweight 30.1–40 kg/m2 obesity >40 kg/m2 extreme obesity |
the triceps skin fold thickness [11] | women 16.5 mm men 12.5 mm |
mid-upper arm circumference [11] | women 28.5 cm men 29.3 cm |
muscle mass [11] | women 23.2 cm2 men 25.3 cm2 |
fat % [11] | women 20–35% men 10–20% |
WHR [10] | women < 0.8 men < 0.95 |
albumin [11,12] | 35–55 mg/dL |
prealbumin [11,12] | 20–40 mg/dL |
IL-6 [vs. control group] | 0.96 pg/mL |
Parameter | Mean (±SD)/% |
---|---|
age [years] | 58.50 (±5.60) |
sex [%] female male | 37.70 62.30 |
renal failure [%] chronic glomerulonephritis diabetic nephropathy chronic pyelonephritis reflux nephropathy nephrosclerosis other | 37.70 17.00 15.10 7.50 7.50 15.10 |
body mass [kg] | 69.30 (±16.05) |
BMI [kg/m2] | 24.25 (±5.10) |
WHR | 0.95 (±0.10) |
triceps skinfold thickness [mm] | 17.50 (±7.00) |
muscle mass [cm2] | 5.41 (±2.27) |
fat [%] | 25.05 (±9.65) |
IL-6 [pg/mL] | 2.45 (±1.75) |
albumin [mg/dL] | 38.00 (±3.50) |
prealbumin [mg/dL] | 30.10 (±8.95) |
Variable | N | Level | 5-Year Survival | 95% C.I. | p Value |
---|---|---|---|---|---|
age (years) | 16 | (29, 55) | 68.80 | (49.40, 95.70) | 0.005 |
16 | (55, 65) | 68.70 | (49.40, 95.70) | ||
18 | (65, 100) | 44.40 | (26.50, 74.50) | ||
sex | 18 | female | 44.40 | (26.50, 74.50) | 0.404 |
32 | male | 68.80 | (54.40, 86.80) | ||
prealbumin (mg/dL) | 29 | (0, 30) | 44.80 | (29.90, 67.10) | 0.072 |
21 | (30, 60) | 81.00 | (65.80, 99.60) | ||
albumin (mg/dL) | 20 | (0, 38) | 45.00 | (27.70, 73.10) | 0.226 |
30 | (38, 50) | 70.00 | (55.40, 88.50) | ||
BMI (kg/m2) | 23 | (0, 23) | 47.80 | (31.20, 73.30) | 0.226 |
27 | (23, 50) | 70.40 | (55.10, 89.90) | ||
muscle mass (cm2) | 13 | (1.88, 3.53) | 30.80 | (13.60, 69.50) | 0.055 |
14 | (3.53, 5.34) | 64.30 | (43.50, 95.00) | ||
10 | (5.34, 6.83) | 70.00 | (46.70, 100.00) | ||
13 | (6.83, 13.5) | 76.90 | (57.10, 100.00) | ||
WHR | 11 | below limit | 54.50 | (31.80, 93.60) | 0.226 |
39 | above limit | 61.50 | (48.00, 78.90) | ||
weight (kg) | 13 | (39.5, 61.5) | 53.80 | (32.60, 89.10) | 0.415 |
12 | (61.5, 70) | 41.70 | (21.30, 81.40) | ||
13 | (70, 76.1) | 61.50 | (40.00, 94.60) | ||
12 | (76.1, 135) | 83.30 | (64.70, 100.00) | ||
fat (%) | 12 | (22.9, 32) | 75.00 | (54.10, 100.00) | 0.473 |
13 | (8.1, 17.2) | 46.20 | (25.70, 83.00) | ||
12 | (17.2, 22.9) | 66.70 | (44.70, 99.50) | ||
13 | (32, 50.5) | 53.80 | (32.60, 89.10) | ||
IL-6 (pg/mL) | 20 | (0, 1.65) | 60.00 | (42.00, 85.80) | 0.030 |
7 | (1.65, 1.94) | 57.10 | (30.10, 100.00) | ||
8 | (1.94, 2.52) | 62.50 | (36.50, 100.00) | ||
11 | (2.52, 8.6) | 63.60 | (40.70, 99.50) |
Variable | Adjusted HR (95% CI) | p Value |
---|---|---|
age [years] ref. = (29, 55) | ||
(55, 65) | 1.28 (0.58, 2.79) | 0.541 |
(65, 100) | 5.43 (2.1, 14.07) | <0.001 |
prealbumin [mg/dL] (30, 60) vs. (0, 30) | 0.45 (0.24, 0.84) | 0.012 |
fat [%] ref. = (22.9, 32) | ||
(8.1, 17.2) | 2.07 (0.81, 5.32) | 0.129 |
(17.2, 22.9) | 1.57 (0.61, 4.07) | 0.351 |
(32, 50.5) | 3.65 (1.23, 10.84) | 0.019 |
Variable | OR (95%) | p (Wald’s Test) |
---|---|---|
age [years] ref. = (29, 55) (55, 65) (65, 100) | 1.00 (0.224, 4.459) 0.36 (0.09, 1.49) | >0.999 0.159 |
sex [male vs. female] | 2.75 (0.83, 9.07) | 0.093 |
prealbumin [mg/dL] (30, 60) vs. (0, 30) | 5.23 (1.41, 19.43) | 0.013 |
albumin [g/dL] (3.8, 5) vs. (0, 3.8) | 2.85 (0.88, 9.26) | 0.081 |
BMI [kg/m2 ] (23, 50) vs. (0, 23) | 2.59 (0.81, 8.29) | 0.109 |
IL-6 [pg/mL] ref. = (0,1.65) (1.65, 1.94) (1.94, 2.52) (2.52, 8.6) | 0.89 (0.16, 5.08) 1.11 (0.21, 6.01) 1.17 (0.26, 5.33) | 0.895 0.903 0.842 |
muscle mass [cm2] ref. = (1.88, 3.53) (3.53, 5.34) (5.34, 6.83) (6.83, 13.5) | 4.05 (0.81, 20.2) 5.25 (0.87, 31.55) 7.50 (1.31, 43.03) | 0.088 0.070 0.024 |
fat [%] ref. = (22.9, 9.32) (8.1, 17.2) (17.2, 22.9) (32, 50.5) | 0.29 (0.05, 1.57) 0.67 (0.11, 3.93) 0.39 (0.07, 2.13) | 0.149 0.654 0.277 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeznach-Steinhagen, A.; Boniecka, I.; Rymarz, A.; Staszków, M.; Romaszko, J.; Czerwonogrodzka-Senczyna, A. Higher Muscle Mass and Higher Serum Prealbumin Levels Are Associated with Better Survival in Hemodialysis Patients during a Five-Year Observation Period. Nutrients 2023, 15, 1237. https://doi.org/10.3390/nu15051237
Jeznach-Steinhagen A, Boniecka I, Rymarz A, Staszków M, Romaszko J, Czerwonogrodzka-Senczyna A. Higher Muscle Mass and Higher Serum Prealbumin Levels Are Associated with Better Survival in Hemodialysis Patients during a Five-Year Observation Period. Nutrients. 2023; 15(5):1237. https://doi.org/10.3390/nu15051237
Chicago/Turabian StyleJeznach-Steinhagen, Anna, Iwona Boniecka, Aleksandra Rymarz, Monika Staszków, Jerzy Romaszko, and Aneta Czerwonogrodzka-Senczyna. 2023. "Higher Muscle Mass and Higher Serum Prealbumin Levels Are Associated with Better Survival in Hemodialysis Patients during a Five-Year Observation Period" Nutrients 15, no. 5: 1237. https://doi.org/10.3390/nu15051237
APA StyleJeznach-Steinhagen, A., Boniecka, I., Rymarz, A., Staszków, M., Romaszko, J., & Czerwonogrodzka-Senczyna, A. (2023). Higher Muscle Mass and Higher Serum Prealbumin Levels Are Associated with Better Survival in Hemodialysis Patients during a Five-Year Observation Period. Nutrients, 15(5), 1237. https://doi.org/10.3390/nu15051237