Study of Diet Habits and Cognitive Function in the Chinese Middle-Aged and Elderly Population: The Association between Folic Acid, B Vitamins, Vitamin D, Coenzyme Q10 Supplementation and Cognitive Ability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Population Study
2.2. Data Collection
2.3. Assessments
2.4. Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jia, L.; Du, Y.; Chu, L.; Zhang, Z.; Li, F.; Lyu, D.; Li, Y.; Li, Y.; Zhu, M.; Jiao, H.; et al. Prevalence, risk factors, and management of dementia and mild cognitive impairment in adults aged 60 years or older in China: A cross-sectional study. Lancet Public Health 2020, 5, e661–e671. [Google Scholar] [CrossRef] [PubMed]
- Alzheimer’s Association. 2022 Alzheimer’s disease facts and figures. Alzheimers Dement. 2022, 18, 700–789. [Google Scholar] [CrossRef] [PubMed]
- Scheltens, P.; De Strooper, B.; Kivipelto, M.; Holstege, H.; Chetelat, G.; Teunissen, C.E.; Cummings, J.; van der Flier, W.M. Alzheimer’s disease. Lancet 2021, 397, 1577–1590. [Google Scholar] [CrossRef] [PubMed]
- Krantic, S. From Current Diagnostic Tools and Therapeutics for Alzheimer’s Disease Towards Earlier Diagnostic Markers and Treatment Targets. Curr. Alzheimer Res. 2017, 14, 2–5. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.X.; Tian, Y.; Wang, Z.T.; Ma, Y.H.; Tan, L.; Yu, J.T. The Epidemiology of Alzheimer’s Disease Modifiable Risk Factors and Prevention. J. Prev. Alzheimers Dis. 2021, 8, 313–321. [Google Scholar] [CrossRef] [PubMed]
- Shi, H.; Xu, J. Experts consensus on brain health nutrition intervention for Alzheimer’s Disease. Sci. Sin. Vitae 2021, 51, 1762–1788. [Google Scholar]
- Tardy, A.L.; Poutean, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef] [Green Version]
- Gil Martínez, V.; Avedillo Salas, A.; Santander Ballestín, S. Vitamin Supplementation and Dementia: A Systematic Review. Nutrients 2022, 14, 1033. [Google Scholar] [CrossRef]
- Ford, T.C.; Downey, L.A.; Simpson, T.; McPhee, G.; Oliver, C.; Stough, C. The Effect of a High-Dose Vitamin B Multivitamin Supplement on the Relationship between Brain Metabolism and Blood Biomarkers of Oxidative Stress: A Randomized Control Trial. Nutrients 2018, 10, 1860. [Google Scholar] [CrossRef] [Green Version]
- Bai, D.; Fan, J.; Li, M.; Li, M.; Dong, C.; Gao, Y.; Fu, M.; Huang, G.; Liu, H. Effects of Folic Acid Combined with DHA Supplementation on Cognitive Function and Amyloid-beta-Related Biomarkers in Older Adults with Mild Cognitive Impairment by a Randomized, Double Blind, Placebo-Controlled Trial. J. Alzheimers Dis. 2021, 81, 155–167. [Google Scholar] [CrossRef]
- Roy, N.M.; Al-Harthi, L.; Neela Sampat, R.A.-M.; Mahadevan, S.; Adawi, S.A.; Essa, M.M.; Subhi, L.A.; AlBalushi, B.; Qoronfleh, M.W. Impact of vitamin D on neurocognitive function in dementia, depression, schizophrenia and ADHD. Front. Biosci. 2021, 26, 566–611. [Google Scholar] [CrossRef] [PubMed]
- Mccleery, J.; Abraham, R.P.; Denyon, D.A.; Rutjes, A.W.; Chong, L.Y.; Al-Assaf, A.S.; Griffith, D.J.; Rafeeq, S.; Yaman, H.; Malik, M.A.; et al. Vitamin and mineral supplementation for preventing dementia or delaying cognitive decline in people with mild cognitive impairment. Cochrane Database Syst. Rev. 2018, 11, CD011905. [Google Scholar] [CrossRef] [PubMed]
- Fernandez-Portero, C.; Amian, J.G.; de la Bella, R.; Lopez-Lluch, G.; Alarcon, D. Coenzyme Q10 levels associated to cognitive functioning and executive function in older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2022, 78, 1–8. [Google Scholar] [CrossRef] [PubMed]
- The Chinese Dietary Guidelines. 2016. Available online: http://dg.cnsoc.org/article/04/op9MZtpBQHehHCo0SSqsmw.html (accessed on 15 May 2016).
- Sacks, F.M.; Svetkey, L.P.; Vollmer, W.M.; Appel, L.J.; Bray, G.A.; Harsha, D.; Obarzanek, E.; Conlin, P.R.; Miller, E.R., 3rd. Effects on blood pressure of reduced dietary sodium and the dietary approaches to stop hypertension (DASH) diet. N. Engl. J. Med. 2001, 344, 3–10. [Google Scholar] [CrossRef]
- Fresan, U.; Bes-Rastrollo, M.; Segovia-Siapco, G.; Sanchez-Villegas, A.; Lahortiga, F.; de la Rosa, P.A.; Martinez-Gonzalez, M.A. Does the MIND diet decrease depression risk? A comparison with Mediterranean diet in the SUN cohort. Eur. J. Nutr. 2019, 58, 1271–1282. [Google Scholar] [CrossRef]
- Wesselman, L.M.P.; Doorduijn, A.S.; de Leeuw, F.A.; Verfaillie, S.C.J.; van Leeuwenstijn-Koopman, M.; Slot, R.E.R.; Kester, M.I.; Prins, N.D.; van de Rest, O.; de van der Schueren, M.A.E.; et al. Dietary Patterns Are Related to Clinical Characteristics in Memory Clinic Patients with Subjective Cognitive Decline: The SCIENCe Project. Nutrients 2019, 11, 1057. [Google Scholar] [CrossRef] [Green Version]
- Nagpal, R.; Neth, B.J.; Wang, S.; Craft, S.; Yadav, H. Modified Mediterranean-ketogenic diet modulates gut microbiome and short-chain fatty acids in association with Alzheimer’s disease markers in subjects with mild cognitive impairment. EBioMedicine 2019, 47, 529–542. [Google Scholar] [CrossRef] [Green Version]
- Mckhann, G.M.; Knopman, D.S.; Chertkow, H.; Hyman, B.T.; Jack, C.R., Jr.; Kawas, C.H.; Klunk, W.E.; Koroshetz, W.J.; Manly, J.J.; Mayeux, R.; et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011, 7, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Winblad, B.; Palmer, K.; Kivipelto, M.; Jelic, V.; Fratiglioni, L.; Wahlund, L.-O.; Nordberg, A.; Bäckman, L.; Albert, M.; Almkvist, O.; et al. Mild cognitive impairment—Beyond controversies, towards a consensus: Report of the International Working Group on Mild Cognitive Impairment. J. Intern. Med. 2004, 256, 240–246. [Google Scholar] [CrossRef]
- Petersen, R.C.; Smith, G.E.; Waring, S.C.; Ivnik, R.J.; Tangalos, E.G.; Kokmen, E. Mild Cognitive Impairment Clinical Characterization and Outcome. Arch. Neurol. 1999, 56, 303–308. [Google Scholar] [CrossRef]
- Jessen, F.; Amariglio, R.E.; Van Boxtel, M.; van Boxtel, M.; Breteler, M.; Ceccaldi, M.; Chetelat, G.; Dubois, B.; Dufouil, C.; Ellis, K.A.; et al. A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement. 2014, 10, 844–852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.L.; Xu, Y.; Chu, A.Q.; Ding, D.; Liang, X.N.; Nasreddine, Z.S.; Dong, Q.; Hong, Z.; Zhao, Q.H.; Guo, Q.H. Validation of the Chinese Version of Montreal Cognitive Assessment Basic for Screening Mild Cognitive Impairment. J. Am. Geriatr. Soc. 2016, 64, e285–e290. [Google Scholar] [CrossRef]
- Pan, F.F.; Wang, Y.; Huang, L.; Huang, Y.; Guo, Q.H. Validation of the Chinese Version of Addenbrooke’s Cognitive Examination III for detecting mild cognitive impairment. Aging Ment. Health. 2022, 26, 384–391. [Google Scholar] [CrossRef] [PubMed]
- Kulda, V. Vitamin D Metabolism. Vnitr. Lek. 2012, 58, 400–404. [Google Scholar] [PubMed]
- Bivona, G.; Gambino, C.M.; Iacolino, G.; Ciaccio, M. Vitamin D and the nervous system. Neurol. Res. 2019, 41, 827–835. [Google Scholar] [CrossRef]
- Morello, M.; Landel, V.; Lacassagne, E.; Baranger, K.; Annweiler, C.; Feron, F.; Millet, P. Vitamin D Improves Neurogenesis and Cognition in a Mouse Model of Alzheimer’s Disease. Mol. Neurobiol. 2018, 55, 6463–6479. [Google Scholar] [CrossRef] [Green Version]
- Lai, R.H.; Hsu, C.C.; Yu, B.H.; Lo, Y.R.; Hsu, Y.Y.; Chen, M.H.; Juang, J.L. Vitamin D supplementation worsens Alzheimer’s progression: Animal model and human cohort studies. Aging Cell 2022, 21, e13670. [Google Scholar] [CrossRef]
- Jia, J.; Hu, J.; Huo, X.; Miao, R.; Zhang, Y.; Ma, F. Effects of vitamin D supplementation on cognitive function and blood Abeta-related biomarkers in older adults with Alzheimer’s disease: A randomised, double-blind, placebo-controlled trial. J. Neurol. Neurosurg. Psychiatry 2019, 90, 1347–1352. [Google Scholar]
- Navale, S.S.; Mulugeta, A.; Zhou, A.; Llewellyn, D.J.; Hypponen, E. Vitamin D and brain health: An observational and Mendelian randomization study. Am. J. Clin. Nutr. 2022, 116, 531–540. [Google Scholar] [CrossRef]
- Jayedi, A.; Rashidy-Pour, A.; Shab-Bidar, S. Vitamin D status and risk of dementia and Alzheimer’s disease: A meta-analysis of dose-response (dagger). Nutr. Neurosci. 2019, 22, 750–759. [Google Scholar] [CrossRef]
- Gall, Z.; Szekely, O. Role of Vitamin D in Cognitive Dysfunction: New Molecular Concepts and Discrepancies between Animal and Human Findings. Nutrients 2021, 13, 3672. [Google Scholar] [CrossRef]
- Rossom, R.C.; EspelandS, M.A.; Manson, J.E.; Dysken, M.W.; Johnson, K.C.; Lane, D.S.; LeBlanc, E.S.; Lederle, F.A.; Masaki, K.H.; Margolis, K.L. Calcium and vitamin D supplementation and cognitive impairment in the women’s health initiative. J. Am. Geriatr. Soc. 2012, 60, 2197–2205. [Google Scholar] [CrossRef] [PubMed]
- Vinueza Veloz, A.F.; Carpio Arias, T.V.; Vargas Mejía, J.S.; Tapia Veloz, E.C.; Piedra Andrade, J.S.; Nicolalde Cifuentes, T.M.; Heredia Aguirre, S.I.; Vinueza Veloz, M.F. Cognitive function and vitamin B12 and D among community-dwelling elders: A cross-sectional study. Clin. Nutr. ESPEN 2022, 50, 270–276. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Vyas, C.M.; Okereke, O.I.; Ogata, S.; Albert, M.; Lee, I.M.; D’Agostino, D.; Buring, J.E.; Cook, N.R.; Grodstein, F.; et al. Effect of vitamin D on cognitive decline: Results from two ancillary studies of the VITAL randomized trial. Sci. Rep. 2021, 11, 23253. [Google Scholar] [CrossRef]
- Zheng, Y.; Chen, Z.Y.; Ma, W.J.; Wang, Q.Z.; Liang, H.; Ma, A.G. B Vitamins Supplementation Can Improve Cognitive Functions and May Relate to the Enhancement of Transketolase Activity in A Rat Model of Cognitive Impairment Associated with High-fat Diets. Curr. Med. Sci. 2021, 41, 847–856. [Google Scholar] [CrossRef] [PubMed]
- Sundarakumar, J.S.; Shahul Hameed, S.K.; SANSCOG Study Team; Ravindranath, V. Burden of Vitamin D, Vitamin B12 and Folic Acid Deficiencies in an Aging, Rural Indian Community. Front. Public Health 2021, 9, 707036. [Google Scholar] [CrossRef] [PubMed]
- An, Y.; Feng, L.; Zhang, X.; Wang, Y.; Wang, Y.; Tao, L.; Qin, Z.; Xiao, R. Dietary intakes and biomarker patterns of folate, vitamin B6, and vitamin B12 can be associated with cognitive impairment by hypermethylation of redox-related genes NUDT15 and TXNRD1. Clin. Epigenet. 2019, 11, 139. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Zhu, W.; Xing, Y.; Jia, J.; Tang, Y. B vitamins and prevention of cognitive decline and incident dementia: A systematic review and meta-analysis. Nutr. Rev. 2022, 80, 931–949. [Google Scholar] [CrossRef]
- Zhou, D.; Lv, X.; Wang, Y.; Liu, H.; Luo, S.; Li, W.; Huang, G. Folic acid alleviates age-related cognitive decline and inhibits apoptosis of neurocytes in senescence-accelerated mouse prone 8: Deoxythymidine triphosphate biosynthesis as a potential mechanism. J. Nutr. Biochem. 2021, 97, 108796. [Google Scholar] [CrossRef]
- Zhou, F.; Chen, S. Hyperhomocysteinemia and risk of incident cognitive outcomes: An updated dose-response meta-analysis of prospective cohort studies. Ageing Res. Rev. 2019, 51, 55–66. [Google Scholar] [CrossRef]
- Smith, A.D.; Refsum, H. Homocysteine, B Vitamins and Cognitive Impairment. Annu. Rev. Nutr. 2016, 36, 211–239. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Ge, B.; Zhou, D.; Li, M.; Li, W.; Ma, F.; Liu, Z.; Ji, Y.; Huang, G. Effects of Folic Acid and Vitamin B12 Supplementation on Cognitive Impairment and Inflammation in Patients with Alzheimer’s Disease: A Randomized, Single-Blinded, Placebo-Controlled Trial. J. Prev. Alzheimers Dis. 2021, 8, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Liu, S.; Ji, L.; Wu, T.; Ji, Y.; Zhou, Y.; Zheng, M.; Zhang, M.; Xu, W.; Huang, G. Folic Acid Supplementation Mitigates Alzheimer’s Disease by Reducing Inflammation: A Randomized Controlled Trial. Mediat. Inflamm. 2016, 2016, 5912146. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, F.; Zhou, X.; Li, Q.; Zhao, J.; Song, A.; An, P.; Du, Y.; Xu, W.; Huang, G. Effects of Folic Acid and Vitamin B12, Alone and in Combination on Cognitive Function and Inflammatory Factors in the Elderly with Mild Cognitive Impairment: A Single-blind Experimental Design. Curr. Alzheimer Res. 2019, 16, 622–632. [Google Scholar] [CrossRef]
- Huo, J.; Xu, Z.; Hosoe, K.; Kubo, H.; Miyahara, H.; Dai, J.; Mori, M.; Sawashita, J.; Higuchi, K. Coenzyme Q10 Prevents Senescence and Dysfunction Caused by Oxidative Stress in Vascular Endothelial Cells. Oxid. Med. Cell Longev. 2018, 2018, 3181759. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Monsef, A.; Shahidi, S.; Komaki, A. Influence of Chronic Coenzyme Q10 Supplementation on Cognitive Function, Learning, and Memory in Healthy and Diabetic Middle-Aged Rats. Neuropsychobiology 2019, 77, 92–100. [Google Scholar] [CrossRef] [PubMed]
- Nagase, M.; Yamamoto, Y.; Matsumoto, N.; Arai, Y.; Hirose, N. Increased oxidative stress and coenzyme Q10 deficiency in centenarians. J. Clin. Biochem. Nutr. 2018, 63, 129–136. [Google Scholar] [CrossRef] [Green Version]
- Yang, M.; Tan, H.; Zhang, K.; Lian, N.; Yu, Y.; Yu, Y. Protective effects of Coenzyme Q10 against sevoflurane-induced cognitive impairment through regulating apolipoprotein E and phosphorylated Tau expression in young mice. Int. J. Dev. Neurosci. 2020, 80, 418–428. [Google Scholar] [CrossRef]
- Fatemi, I.; Saeed Askari, P.; Hakimizadeh, E.; Kaeidi, A.; Esmaeil Moghaddam, S.; Pak-Hashemi, M.; Allahtavakoli, M. Chronic treatment with coenzyme Q10 mitigates the behavioral dysfunction of global cerebral ischemia/reperfusion injury in rats. Iran. J. Basic Med. Sci. 2022, 25, 39–45. [Google Scholar]
Category One | Category Two | Category Three | |||||||
---|---|---|---|---|---|---|---|---|---|
NC Group | SCD Group | pa | MCI Group | AD Group | pa | Normal Cognitive Group | Cognitive Impairment Group | pa | |
N | 185 | 227 | 296 | 184 | 412 | 480 | |||
Demographic Data | |||||||||
Education | 12.6 ± 2.9 | 12.6 ± 3.0 | 0.801 | 11.1 ± 3.2 | 9.6 ± 4.1 | <0.001 | 12.6 ± 3.0 | 10.5 ± 3.6 | <0.001 |
Age | 65.1 ± 6.8 | 65.5 ± 7.9 | 0.593 | 67.7 ± 6.8 | 70.7 ± 7.5 | <0.001 | 65.3 ± 7.4 | 68.9 ± 7.2 | <0.001 |
BMI | 23.5 ± 3.1 | 23.4 ± 3.3 | 0.765 | 23.6 ± 2.8 | 23.4 ± 3.1 | 0.295 | 23.5 ± 3.2 | 23.5 ± 2.9 | 0.799 |
Waist (cm) | 85.0 ± 9.3 | 85.2 ± 9.2 | 0.862 | 85.6 ± 8.9 | 86.7 ± 9.2 | 0.205 | 85.1 ± 9.2 | 86.0 ± 9.0 | 0.171 |
Gender Man Female | 68 (36.8) 117 (63.2) | 57 (25.1) 170 (74.9) | 0.011 | 103 (34.8) 193 (65.2) | 73 (39.7) 111 (60.3) | 0.281 | 125 (30.3) 287 (69.7) | 176 (36.7) 304 (63.3) | 0.046 |
Marital status Never married Married Widowed Divorced | 2 (1.1) 171 (92.9) 4 (2.2) 7 (3.8) | 3 (1.3) 214 (94.7) 3 (1.3) 6 (2.7) | 0.820 | 2 (0.7) 171 (91.9) 15 (5.1) 7 (2.4) | 0 (0.0) 171 (92.9) 10 (5.4) 3 (1.6) | 0.823 | 5 (1.2) 385 (93.9) 7 (1.7) 13 (3.2) | 2 (0.4) 442 (92.3) 25 (5.2) 10 (2.1) | 0.002 |
First-degree relatives with AD YES NO | 29 (17.0) 142 (83.0) | 48 (21.4) 176 (78.6) | 0.267 | 47 (16.1) 245 (83.9) | 27 (14.9) 154 (85.1) | 0.732 | 77 (19.5) 318 (80.5) | 74 (15.6) 399 (84.4) | 0.136 |
MMSE Scores | 28.2 ± 1.5 | 27.8 ± 1.7 | 0.017 | 26.3 ± 0.2 | 16.8 ± 0.3 | <0.001 | 27.5 ± 0.2 | 23.1 ± 0.2 | <0.001 |
MoCA-B Scores | 26.0 ± 2.5 | 24.9 ± 3.1 | <0.001 | 21.1 ± 0.2 | 12.8 ± 0.3 | <0.001 | 24.6 ± 0.2 | 18.7 ± 0.2 | <0.001 |
ACE—III Scores | 83.6 ± 6.8 | 79.7 ± 7.6 | 0.005 | 70.0 ± 1.2 | 49.6 ± 1.5 | <0.001 | 79.5 ± 1.1 | 63.9 ± 1.0 | <0.001 |
Basic physical condition | |||||||||
Tooth loss No tooth loss >20 teeth 10–19 teeth 1–9 teeth No teeth | 54 (29.5) 64 (35.0) 26 (14.2) 36 (19.7) 3 (1.6) | 43 (19.5) 80 (36.4) 38 (17.3) 50 (22.7) 9 (4.1) | 0.125 | 60 (21.1) 94 (33.0) 44 (15.4) 77 (27.0) 10 (3.5) | 40 (22.3) 44 (24.6) 37 (20.7) 44 (24.6) 16 (7.8) | 0.071 | 97 (24.1) 144 (35.7) 64 (15.9) 86 (21.3) 12 (3.0) | 100 (21.6) 138 (29.7) 81 (17.5) 121 (26.1) 24 (5.2) | 0.098 |
Chronic periodontitis NO YES | 123 (66.8) 61 (33.2) | 127 (57.7) 93 (42.3) | 0.060 | 190 (65.7) 99 (34.3) | 128 (70.7) 53 (29.3) | 0.262 | 250 (61.9) 154 (38.1) | 318 (67.7) 152 (32.3) | 0.074 |
Periodontitis years <5 years 5–10 years >10 years | 29 (47.5) 11 (18.0) 21 (34.4) | 38 (41.3) 23 (25.0) 31 (33.7) | 0.568 | 45 (46.4) 25 (25.8) 27 (27.8) | 22 (41.5) 14 (26.4) 17 (32.1) | 0.819 | 67 (43.8) 34 (22.2) 52 (34.0) | 67 (44.7) 39 (26.0) 44 (29.3) | 0.613 |
Dieting to lose weight YES NO | 13 (7.1) 170 (92.9) | 15 (6.7) 208 (93.3) | 0.881 | 18 (6.2) 272 (93.8) | 2 (1.1) 179 (98.9) | 0.008 | 28 (6.9) 378 (93.1) | 20 (4.2) 451 (95.8) | 0.085 |
Diarrhea YES NO | 46 (25.1) 137 (74.9) | 82 (36.8) 141 (63.2) | 0.012 | 86 (29.2) 209 (70.8) | 38 (21.0) 143 (79.0) | 0.049 | 128 (31.5) 278 (68.5) | 124 (26.1) 352 (73.9) | 0.073 |
Constipation 2–3 times/WKD 1 time/WKD 1 every 2–4 weeks no | 16 (8.7) 10 (5.4) 15 (8.2) 143 (77.7) | 30 (13.5) 15 (6.7) 26 (11.7) 152 (68.2) | 0.188 | 30 (10.2) 20 (6.8) 31 (10.6) 212 (72.4) | 13 (7.1) 15 (8.2) 13 (7.1) 141 (77.5) | 0.345 | 46 (11.3) 25 (6.1) 41 (10.1) 295 (72.5) | 43 (9.1) 35 (7.4) 44 (9.3) 353 (74.3) | 0.608 |
Surgical history within 1 year YES NO | 21 (11.5) 162 (88.5) | 26 (11.5) 200 (88.5) | 0.993 | 38 (12.8) 258 (87.2) | 13 (7.2) 168 (92.8) | 0.052 | 47 (11.5) 362 (88.5) | 51 (10.7) 426 (89.3) | 0.705 |
Hypertension YES NO | 71 (38.4) 114 (61.6) | 96 (42.5) 130 (57.5) | 0.400 | 109 (37.2) 184 (62,8) | 77 (41.8) 107 (58.2) | 0.311 | 167 (40.6) 244 (59.4) | 186 (39.0) 291 (61.0) | 0.619 |
Diabetes YES NO | 20 (10.8) 165 (89.2) | 34 (15.0) 192 (85.0) | 0.206 | 40 (13.7) 253 (86.2) | 28 (15.2) 156 (84.8) | 0.634 | 54 (13.1) 357 (86.9) | 68 (14.3) 409 (85.7) | 0.630 |
Allergic history YES NO | 39 (21.1) 146 (78.9) | 62 (27.4) 164 (72.6) | 0.137 | 63 (21.3) 233 (78.7) | 25 (13.7) 157 (86.3) | 0.039 | 101 (24.6) 310 (75.4) | 88 (18.4) 390 (81.6) | 0.025 |
Drug history | |||||||||
Metformin NO YES | 160 (87.9) 22 (12.1) | 200 (91.3) 19 (8.7) | 0.262 | 252 (89.4) 30 (10.6) | 160 (88.9) 20 (11.1) | 0.873 | 360 (89.8) 41 (10.2) | 412 (89.2) 50 (10.8) | 0.775 |
Antibiotics YES NO | 25 (13.5) 160 (86.5) | 41 (18.1) 185 (81.9) | 0.204 | 42 (14.2) 253 (85.8) | 17 (9.3) 165 (90.7) | 0.115 | 66 (16.1) 345 (83.9) | 59 (12.4) 418 (87.6) | 0.115 |
Cognitive drug use YES NO | 3 (1.6) 182 (98.4) | 12 (5.3) 214 (94.7) | 0.047 | 24 (8.1) 271 (91.9) | 56 (30.6) 127 (69.4) | <0.001 | 15 (3.6) 396 (96.4) | 80 (16.7) 398 (83.3) | <0.001 |
Smoking habit | |||||||||
Smoking at present YES NO | 16 (43.2) 21 (56.8) | 13 (52.0) 12 (48.0) | 0.498 | 20 (40.8) 29 (59.2) | 15 (39.5) 23 (60.5) | 0.899 | 29 (46.8) 33 (53.2) | 35 (40.2) 52 (59.8) | 0.426 |
Secondhand smoke environment YES NO | 151 (84.4) 28 (15.6) | 167 (78.8) 45 (21.2) | 0.158 | 222 (79.0) 59 (21.0) | 143 (82.7) 30 (17.3) | 0.341 | 318 (81.3) 73 (18.7) | 365 (80.4) 89 (19.6) | 0.731 |
Your parents smoked before you were born NO YES | 116 (63.7) 66 (36.3) | 130 (59.9) 87 (40.1) | 0.433 | 184 (64.8) 100 (35.2) | 93 (53.8) 80 (46.2) | 0.023 | 246 (61.7) 153 (38.3) | 277 (60.6) 180 (39.4) | 0.755 |
Smoke or not >20/Day 10–20/Day 1–10/Day Quit smoking Not at all | 4 (2.2) 3 (1.6) 10 (5.4) 20 (10.8) 148 (80.0) | 1 (0.4) 5 (2.2) 7 (3.1) 12 (5.3) 202 (89.0) | 0.063 | 4 (1.4) 7 (2.4) 12 (4.1) 28 (9.5) 244 (82.7) | 3 (1.6) 1 (0.5) 9 (4.9) 23 (12.6) 147 (80.3) | 0.466 | 5 (1.2) 8 (1.9) 17 (4.1) 32 (7.8) 350 (85.0) | 7 (1.5) 8 (1.7) 21 (4.4) 51 (10.7) 391 (81.8) | 0.646 |
Drinking habits | |||||||||
Drinking frequency Not at all Occasionally 1–3 times/WKD >4 times/WKD | 94 (51.1) 73 (39.7) 7 (3.8) 10 (5.4) | 143 (63.0) 67 (29.5) 5 (2.2) 12 (5.3) | 0.091 | 178 (60.1) 92 (31.1) 8 (2.7) 18 (6.1) | 117 (63.9) 47 (25.7) 5 (2.7) 14 (7.7) | 0.611 | 237 (57.7) 140 (34.1) 12 (2.9) 22 (5.4) | 295 (61.6) 139 (29.0) 13 (2.7) 32 (6.7) | 0.385 |
Vitamin Supplementation | |||||||||
Folic acid Daily Occasionally Not at all | 98.9% b 23 (12.6) 24 (13.1) 136 (74.3) | 97.4% b 27 (12.2) 30 (13.6) 164 (74.2) | 0.987 | 98.3% b 29 (10.0) 26 (8.9) 236 (81.1) | 98.9% b 9 (4.9) 14 (7.7) 159 (87.4) | 0.120 | 98.1% b 50 (12.4) 54 (13.4) 300 (74.3) | 98.5% b 38 (8.0) 40 (8.5) 395 (83.5) | 0.003 |
B vitamins Daily Occasionally Not at all | 98.9% b 42 (23.0) 34 (18.6) 107 (58.5) | 97.4% b 40 (18.1) 62 (28.1) 119 (53.8) | 0.070 | 98.6% b 32 (11.0) 49 (16.8) 211 (72.3) | 98.4% b 17 (9.4) 28 (15.5) 136 (75.1) | 0.775 | 98.1% b 82 (20.3) 96 (23.8) 226 (55.9) | 98.5% b 49 (10.4) 77 (16.3) 347 (73.4) | <0.001 |
Vitamin D Daily Occasionally Not at all | 98.9% b 44 (24.0) 40 (21.9) 99 (54.1) | 96.5% b 49 (22.4) 59 (26.9) 111 (50.7) | 0.500 | 97.3% b 49 (17.0) 69 (24.0) 170 (59.0) | 96.7% b 20 (11.2) 32 (18.0) 126 (70.8) | 0.035 | 97.6% b 93 (23.1) 99 (24.6) 210 (52.2) | 97.1% b 69 (14.8) 101 (21.7) 296 (63.5) | 0.001 |
CoQ10 Daily Occasionally Not at all | 98.9% b 34 (18.6) 19 (10.4) 130 (71.0) | 96.9% b 36 (16.4) 29 (13.2) 155 (70.5) | 0.624 | 97.3% b 32 (11.1) 31 (10.8) 225 (78.1) | 97.8% b 14 (7.8) 15 (8.3) 151 (83.9) | 0.305 | 97.8% b 70 (17.4) 48 (11.9) 285 (70.7) | 97.5% b 46 (9.8) 46 (9.8) 376 (80.3) | 0.002 |
Reference Group | B | SE | Wald | df | p | OR | 95%CI | ||
---|---|---|---|---|---|---|---|---|---|
Vitamin D | |||||||||
Model a | Not at all | Everyday | −0.597 | 0.290 | 4.225 | 1 | 0.040 | 0.551 | 0.312–0.973 |
Not at all | Occasionally | −0.469 | 0.244 | 3.691 | 1 | 0.055 | 0.626 | 0.388–1.010 | |
Model b | Not at all | Everyday | −0.929 | 0.359 | 6.708 | 1 | 0.010 | 0.395 | 0.196–0.798 |
Not at all | Occasionally | −0.559 | 0.274 | 4.152 | 1 | 0.042 | 0.572 | 0.334–0.979 |
Reference Group | B | SE | Wald | df | p | OR | 95%CI | ||
---|---|---|---|---|---|---|---|---|---|
Folic Acid | |||||||||
Model a | Not at all | Everyday | −0.550 | 0.228 | 5.787 | 1 | 0.016 | 0.577 | 0.369–0.903 |
Model b | Not at all | Everyday | −0.562 | 0.256 | 4.843 | 1 | 0.028 | 0.570 | 0.345–0.940 |
B vitamins | |||||||||
Model a | Not at all | Everyday | −0.944 | 0.200 | 22.314 | 1 | 0.000 | 0.389 | 0.263–0.576 |
Not at all | Occasionally | −0.649 | 0.175 | 13.729 | 1 | 0.000 | 0.522 | 0.371–0.736 | |
Model b | Not at all | Everyday | −0.939 | 0.228 | 17.003 | 1 | 0.000 | 0.391 | 0.250–0.611 |
Not at all | Occasionally | −0.447 | 0.200 | 5.000 | 1 | 0.025 | 0.639 | 0.432–0.946 | |
Model c | Not at all | Everyday | −0.824 | 0.273 | 9.088 | 1 | 0.003 | 0.439 | 0.257–0.750 |
Vitamin D | |||||||||
Model a | Not at all | Everyday | −0.642 | 0.183 | 12.336 | 1 | 0.000 | 0.526 | 0.368–0.753 |
Model b | Not at all | Everyday | −0.632 | 0.211 | 8.968 | 1 | 0.003 | 0.532 | 0.351–0.804 |
CoQ10 | |||||||||
Model a | Not at all | Everyday | −0.697 | 0.205 | 11.512 | 1 | 0.001 | 0.498 | 0.333–0.745 |
Model b | Not at all | Everyday | −0.520 | 0.228 | 5.222 | 1 | 0.022 | 0.594 | 0.380–0.929 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, X.; Guo, Y.; Cui, L.; Huang, L.; Guo, Q.; Huang, G. Study of Diet Habits and Cognitive Function in the Chinese Middle-Aged and Elderly Population: The Association between Folic Acid, B Vitamins, Vitamin D, Coenzyme Q10 Supplementation and Cognitive Ability. Nutrients 2023, 15, 1243. https://doi.org/10.3390/nu15051243
Jiang X, Guo Y, Cui L, Huang L, Guo Q, Huang G. Study of Diet Habits and Cognitive Function in the Chinese Middle-Aged and Elderly Population: The Association between Folic Acid, B Vitamins, Vitamin D, Coenzyme Q10 Supplementation and Cognitive Ability. Nutrients. 2023; 15(5):1243. https://doi.org/10.3390/nu15051243
Chicago/Turabian StyleJiang, Xinting, Yihan Guo, Liang Cui, Lin Huang, Qihao Guo, and Gaozhong Huang. 2023. "Study of Diet Habits and Cognitive Function in the Chinese Middle-Aged and Elderly Population: The Association between Folic Acid, B Vitamins, Vitamin D, Coenzyme Q10 Supplementation and Cognitive Ability" Nutrients 15, no. 5: 1243. https://doi.org/10.3390/nu15051243
APA StyleJiang, X., Guo, Y., Cui, L., Huang, L., Guo, Q., & Huang, G. (2023). Study of Diet Habits and Cognitive Function in the Chinese Middle-Aged and Elderly Population: The Association between Folic Acid, B Vitamins, Vitamin D, Coenzyme Q10 Supplementation and Cognitive Ability. Nutrients, 15(5), 1243. https://doi.org/10.3390/nu15051243