Sex-Specific Effects of Early-Life Iron Deficiency and Prenatal Choline Treatment on Adult Rat Hippocampal Transcriptome
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Hippocampal Dissection
2.3. RNA Isolation and Sequencing
2.4. Bioinformatics
2.5. Ingenuity Pathway Analysis (IPA)
3. Results
3.1. Maternal ID and Choline Supplementation Altered Offspring’s Hippocampal Gene Expression in a Sex-Specific Manner
3.2. Effects of Fetal-Neonatal ID and Choline Supplementation in Female Rats
3.3. Effects of Fetal-Neonatal ID and Choline Supplementation in Male Rats
3.4. Alternative Approach
3.5. Overrepresentation Analysis
3.6. Gene Set Enrichment Analysis
3.7. Biomarkers
4. Discussion and Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Georgieff, M.K. Iron deficiency in pregnancy. Am. J. Obstet. Gynecol. 2020, 223, 516–524. [Google Scholar] [CrossRef] [PubMed]
- Insel, B.J.; Schaefer, C.A.; McKeague, I.W.; Susser, E.S.; Brown, A.S. Maternal iron deficiency and the risk of schizophrenia in offspring. Arch. Gen. Psychiatry 2008, 65, 1136–1144. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiegersma, A.M.; Dalman, C.; Lee, B.K.; Karlsson, H.; Gardner, R.M. Association of Prenatal Maternal Anemia with Neurodevelopmental Disorders. JAMA Psychiatry 2019, 76, 1294–1304. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Youdim, M.B. Brain iron deficiency and excess; cognitive impairment and neurodegeneration with involvement of striatum and hippocampus. Neurotox. Res. 2008, 14, 45–56. [Google Scholar] [CrossRef]
- McClorry, S.; Zavaleta, N.; Llanos, A.; Casapía, M.; Lönnerdal, B.; Slupsky, C.M. Anemia in infancy is associated with alterations in systemic metabolism and microbial structure and function in a sex-specific manner: An observational study. Am. J. Clin. Nutr. 2018, 108, 1238–1248. [Google Scholar] [CrossRef] [Green Version]
- Nopoulos, P.C.; Conrad, A.L.; Bell, E.F.; Strauss, R.G.; Widness, J.A.; Magnotta, V.A.; Zimmerman, M.B.; Georgieff, M.K.; Lindgren, S.D.; Richman, L.C. Long-term outcome of brain structure in premature infants: Effects of liberal vs. restricted red blood cell transfusions. Arch. Pediatr. Adolesc. Med. 2011, 165, 443–450. [Google Scholar] [CrossRef] [Green Version]
- McCoy, T.E.; Conrad, A.L.; Richman, L.C.; Brumbaugh, J.E.; Magnotta, V.A.; Bell, E.F.; Nopoulos, P.C. The relationship between brain structure and cognition in transfused preterm children at school age. Dev. Neuropsychol. 2014, 39, 226–232. [Google Scholar] [CrossRef] [Green Version]
- Singh, G.; Wallin, D.J.; Abrahante Lloréns, J.E.; Tran, P.V.; Feldman, H.A.; Georgieff, M.K.; Gisslen, T. Dose- and sex-dependent effects of phlebotomy-induced anemia on the neonatal mouse hippocampal transcriptome. Pediatr. Res. 2021, 92, 712–720. [Google Scholar] [CrossRef]
- Rudy, M.; Mayer-Proschel, M. Iron Deficiency Affects Seizure Susceptibility in a Time- and Sex-Specific Manner. ASN Neuro 2017, 9, 1759091417746521. [Google Scholar] [CrossRef] [Green Version]
- Matveeva, T.M.; Singh, G.; Gisslen, T.A.; Gewirtz, J.C.; Georgieff, M.K. Sex differences in adult social, cognitive, and affective behavioral deficits following neonatal phlebotomy-induced anemia in mice. Brain Behav. 2021, 11, e01780. [Google Scholar] [CrossRef]
- Woodman, A.G.; Noble, R.M.N.; Panahi, S.; Gragasin, F.S.; Bourque, S.L. Perinatal iron deficiency combined with a high salt diet in adulthood causes sex-dependent vascular dysfunction in rats. J. Physiol. 2019, 597, 4715–4728. [Google Scholar] [CrossRef]
- Cao, C.; Prado, M.A.; Sun, L.; Rockowitz, S.; Sliz, P.; Paulo, J.A.; Finley, D.; Fleming, M.D. Maternal Iron Deficiency Modulates Placental Transcriptome and Proteome in Mid-Gestation of Mouse Pregnancy. J. Nutr. 2021, 151, 1073–1083. [Google Scholar] [CrossRef]
- Marell, P.S.; Blohowiak, S.E.; Evans, M.D.; Georgieff, M.K.; Kling, P.J.; Tran, P.V. Cord Blood-Derived Exosomal CNTN2 and BDNF: Potential Molecular Markers for Brain Health of Neonates at Risk for Iron Deficiency. Nutrients 2019, 11, 2478. [Google Scholar] [CrossRef] [Green Version]
- Duarte-Guterman, P.; Yagi, S.; Chow, C.; Galea, L.A. Hippocampal learning, memory, and neurogenesis: Effects of sex and estrogens across the lifespan in adults. Horm. Behav. 2015, 74, 37–52. [Google Scholar] [CrossRef] [Green Version]
- Zafer, D.; Aycan, N.; Ozaydin, B.; Kemanli, P.; Ferrazzano, P.; Levine, J.E.; Cengiz, P. Sex differences in Hippocampal Memory and Learning following Neonatal Brain Injury: Is There a Role for Estrogen Receptor-α? Neuroendocrinology 2019, 109, 249–256. [Google Scholar] [CrossRef]
- Barks, A.; Hall, A.M.; Tran, P.V.; Georgieff, M.K. Iron as a model nutrient for understanding the nutritional origins of neuropsychiatric disease. Pediatr. Res. 2019, 85, 176–182. [Google Scholar] [CrossRef] [Green Version]
- Callahan, L.S.; Thibert, K.A.; Wobken, J.D.; Georgieff, M.K. Early-life iron deficiency anemia alters the development and long-term expression of parvalbumin and perineuronal nets in the rat hippocampus. Dev. Neurosci. 2013, 35, 427–436. [Google Scholar] [CrossRef] [Green Version]
- Beard, J.L.; Wiesinger, J.A.; Connor, J.R. Pre- and postweaning iron deficiency alters myelination in Sprague-Dawley rats. Dev. Neurosci. 2003, 25, 308–315. [Google Scholar] [CrossRef]
- DeMaman, A.S.; Homem, J.M.; Lachat, J.J. Early iron deficiency produces persistent damage to visual tracts in Wistar rats. Nutr. Neurosci. 2008, 11, 283–289. [Google Scholar] [CrossRef]
- Rao, R.; Tkac, I.; Townsend, E.L.; Ennis, K.; Gruetter, R.; Georgieff, M.K. Perinatal iron deficiency predisposes the developing rat hippocampus to greater injury from mild to moderate hypoxia-ischemia. J. Cereb. Blood Flow. Metab. 2007, 27, 729–740. [Google Scholar] [CrossRef]
- Liu, S.X.; Barks, A.K.; Lunos, S.; Gewirtz, J.C.; Georgieff, M.K.; Tran, P.V. Prenatal Iron Deficiency and Choline Supplementation Interact to Epigenetically Regulate Jarid1b and Bdnf in the Rat Hippocampus into Adulthood. Nutrients 2021, 13, 4527. [Google Scholar] [CrossRef] [PubMed]
- Krämer, A.; Green, J.; Pollard, J., Jr.; Tugendreich, S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics 2014, 30, 523–530. [Google Scholar] [CrossRef] [PubMed]
- Ashburner, M.; Ball, C.A.; Blake, J.A.; Botstein, D.; Butler, H.; Cherry, J.M.; Davis, A.P.; Dolinski, K.; Dwight, S.S.; Eppig, J.T.; et al. Gene ontology: Tool for the unification of biology. The Gene Ontology Consortium. Nat. Genet. 2000, 25, 25–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liberzon, A.; Subramanian, A.; Pinchback, R.; Thorvaldsdottir, H.; Tamayo, P.; Mesirov, J.P. Molecular signatures database (MSigDB) 3.0. Bioinformatics 2011, 27, 1739–1740. [Google Scholar] [CrossRef]
- Kennedy, B.C.; Dimova, J.G.; Siddappa, A.J.; Tran, P.V.; Gewirtz, J.C.; Georgieff, M.K. Prenatal choline supplementation ameliorates the long-term neurobehavioral effects of fetal-neonatal iron deficiency in rats. J. Nutr. 2014, 144, 1858–1865. [Google Scholar] [CrossRef] [Green Version]
- Tran, P.V.; Kennedy, B.C.; Pisansky, M.T.; Won, K.J.; Gewirtz, J.C.; Simmons, R.A.; Georgieff, M.K. Prenatal Choline Supplementation Diminishes Early-Life Iron Deficiency-Induced Reprogramming of Molecular Networks Associated with Behavioral Abnormalities in the Adult Rat Hippocampus. J. Nutr. 2016, 146, 484–493. [Google Scholar] [CrossRef] [Green Version]
- Hoffman, G.E.; Schadt, E.E. variancePartition: Interpreting drivers of variation in complex gene expression studies. BMC Bioinform. 2016, 17, 483. [Google Scholar] [CrossRef] [Green Version]
- Russell, J.A.; Brunton, P.J. Giving a good start to a new life via maternal brain allostatic adaptations in pregnancy. Front. Neuroendocr. 2019, 53, 100739. [Google Scholar] [CrossRef]
- Weinstock, M. The potential influence of maternal stress hormones on development and mental health of the offspring. Brain Behav. Immun. 2005, 19, 296–308. [Google Scholar] [CrossRef]
- Zeisel, S.H. Epigenetic mechanisms for nutrition determinants of later health outcomes. Am. J. Clin. Nutr. 2009, 89, 1488S–1493S. [Google Scholar] [CrossRef] [Green Version]
- Bastian, T.W.; von Hohenberg, W.C.; Kaus, O.R.; Lanier, L.M.; Georgieff, M.K. Choline Supplementation Partially Restores Dendrite Structural Complexity in Developing Iron-Deficient Mouse Hippocampal Neurons. J. Nutr. 2022, 152, 747–757. [Google Scholar] [CrossRef]
- Carter, R.C.; Senekal, M.; Duggan, C.P.; Dodge, N.C.; Meintjes, E.M.; Molteno, C.D.; Jacobson, J.L.; Jacobson, S.W. Gestational weight gain and dietary energy, iron, and choline intake predict severity of fetal alcohol growth restriction in a prospective birth cohort. Am. J. Clin. Nutr. 2022, 116, 460–469. [Google Scholar] [CrossRef]
- Deckert-Schlüter, M.; Bluethmann, H.; Kaefer, N.; Rang, A.; Schlüter, D. Interferon-gamma receptor-mediated but not tumor necrosis factor receptor type 1- or type 2-mediated signaling is crucial for the activation of cerebral blood vessel endothelial cells and microglia in murine Toxoplasma encephalitis. Am. J. Pathol. 1999, 154, 1549–1561. [Google Scholar] [CrossRef]
- Tau, G.; Rothman, P. Biologic functions of the IFN-gamma receptors. Allergy 1999, 54, 1233–1251. [Google Scholar] [CrossRef]
- Baker, J.A.; Breit, K.R.; Bodnar, T.S.; Weinberg, J.; Thomas, J.D. Choline Supplementation Modifies the Effects of Developmental Alcohol Exposure on Immune Responses in Adult Rats. Nutrients 2022, 14, 2868. [Google Scholar] [CrossRef]
- Chung, Y.J.; Swietach, P.; Curtis, M.K.; Ball, V.; Robbins, P.A.; Lakhal-Littleton, S. Iron-Deficiency Anemia Results in Transcriptional and Metabolic Remodeling in the Heart Toward a Glycolytic Phenotype. Front. Cardiovasc. Med. 2020, 7, 616920. [Google Scholar] [CrossRef]
- Bastian, T.W.; Rao, R.; Tran, P.V.; Georgieff, M.K. The Effects of Early-Life Iron Deficiency on Brain Energy Metabolism. Neurosci Insights 2020, 15, 2633105520935104. [Google Scholar] [CrossRef]
- Stangl, G.I.; Kirchgessner, M. Different degrees of moderate iron deficiency modulate lipid metabolism of rats. Lipids 1998, 33, 889–895. [Google Scholar] [CrossRef]
- Fretham, S.J.; Carlson, E.S.; Georgieff, M.K. Neuronal-specific iron deficiency dysregulates mammalian target of rapamycin signaling during hippocampal development in nonanemic genetic mouse models. J. Nutr. 2013, 143, 260–266. [Google Scholar] [CrossRef] [Green Version]
- Barks, A.; Fretham, S.J.B.; Georgieff, M.K.; Tran, P.V. Early-Life Neuronal-Specific Iron Deficiency Alters the Adult Mouse Hippocampal Transcriptome. J. Nutr. 2018, 148, 1521–1528. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.; Ardais, A.P.; Bastos, C.R.; Gazal, M.; Jansen, K.; de Mattos Souza, L.; da Silva, R.A.; Kaster, M.P.; Lara, D.R.; Ghisleni, G. Impact of genetic variations in ADORA2A gene on depression and symptoms: A cross-sectional population-based study. Purinergic. Signal. 2019, 15, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Siokas, V.; Mouliou, D.S.; Liampas, I.; Aloizou, A.M.; Folia, V.; Zoupa, E.; Papadimitriou, A.; Lavdas, E.; Bogdanos, D.P.; Dardiotis, E. Analysis of ADORA2A rs5760423 and CYP1A2 rs762551 Genetic Variants in Patients with Alzheimer’s Disease. Int. J. Mol. Sci. 2022, 23, 14400. [Google Scholar] [CrossRef] [PubMed]
- Albert, P.R.; Vahid-Ansari, F.; Luckhart, C. Serotonin-prefrontal cortical circuitry in anxiety and depression phenotypes: Pivotal role of pre- and post-synaptic 5-HT1A receptor expression. Front. Behav. Neurosci. 2014, 8, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beyer, K.; Ariza, A. alpha-Synuclein posttranslational modification and alternative splicing as a trigger for neurodegeneration. Mol. Neurobiol. 2013, 47, 509–524. [Google Scholar] [CrossRef]
- Courte, J.; Bousset, L.; Boxberg, Y.V.; Villard, C.; Melki, R.; Peyrin, J.M. The expression level of alpha-synuclein in different neuronal populations is the primary determinant of its prion-like seeding. Sci. Rep. 2020, 10, 4895. [Google Scholar] [CrossRef] [Green Version]
- Febbraro, F.; Giorgi, M.; Caldarola, S.; Loreni, F.; Romero-Ramos, M. alpha-Synuclein expression is modulated at the translational level by iron. Neuroreport 2012, 23, 576–580. [Google Scholar] [CrossRef]
- Zhou, Z.D.; Tan, E.K. Iron regulatory protein (IRP)-iron responsive element (IRE) signaling pathway in human neurodegenerative diseases. Mol. Neurodegener. 2017, 12, 75. [Google Scholar] [CrossRef]
Group | Gene Name | Symbol | Location | Family | Log2FC | p-Value | Tissues | Biomarker Application(s) |
---|---|---|---|---|---|---|---|---|
Female ID | C-X-C motif chemokine receptor 4 | Cxcr4 | Plasma Membrane | G-protein coupled receptor | 0.61 | 0.006 | B, Hc | diagnosis |
Female Ch | Angiotensinogen | Agt | Extracellular Space | Growth factor | 0.50 | 0.000 | B, P/S, Hc | efficacy |
Arginase 1 | Arg1 | Cytoplasm | Enzyme | 1.15 | 0.000 | B, P/S, Hc | unspecified | |
C-X3-C motif chemokine receptor 1 | Cx3cr1 | Plasma Membrane | G-protein coupled receptor | −0.55 | 0.000 | B, P/S, Hc | unspecified | |
GLI family zinc finger 2 | Gli2 | Nucleus | Transcription regulator | 0.98 | 0.000 | B, Hc | efficacy | |
Integrin subunit beta 4 | Itgb4 | Plasma Membrane | Transmembrane receptor | 0.99 | 0.000 | B, Hc | diagnosis | |
Prospero homeobox 1 | Prox1 | Nucleus | Transcription regulator | 0.78 | 0.000 | B, Hc | diagnosis, disease progression | |
Female IDxCh | Early growth response 1 | Egr1 | Nucleus | Transcription regulator | −0.75 | 0.000 | B, P/S, Hc | diagnosis, efficacy |
Gelsolin | Gsn | Extracellular Space | Other | −0.59 | 0.000 | B, CSF, P/S, Hc | disease progression, efficacy | |
Phospholipase A2 group VII | Pla2g7 | Extracellular Space | Enzyme | 0.61 | 0.002 | B, Hc | diagnosis, efficacy | |
Male ID | Annexin A2 | Anxa2 | Plasma Membrane | Other | 0.73 | 0.006 | B, P/S, Hc | diagnosis |
Enolase 2 | Eno2 | Cytoplasm | Enzyme | −0.66 | 0.000 | B, P/S, Hc | diagnosis, efficacy, prognosis | |
Gelsolin | Gsn | Extracellular Space | Other | −0.51 | 0.000 | B, CSF, P/S, Hc | disease progression, efficacy | |
Neuregulin 1 | Nrg1 | Plasma Membrane | Growth factor | 1.06 | 0.002 | B, Hc | diagnosis, response to therapy | |
Male Ch | Inhibin subunit beta B | Inhbb | Extracellular Space | Growth factor | 0.68 | 0.002 | B, P/S, Hc | efficacy |
MAF bzip transcription factor | Maf | Nucleus | Transcription regulator | 0.56 | 0.005 | B, Hc | unspecified | |
Male IDxCh | Endothelin 1 | Edn1 | Extracellular Space | Cytokine | 0.90 | 0.008 | B, P/S, Hc | diagnosis, efficacy, prognosis |
Protein inhibitor of activated STAT 1 | Pias1 | Nucleus | Transcription regulator | −0.58 | 0.001 | B, Hc | unspecified | |
Phosphatase and tensin homolog | Pten | Cytoplasm | Phosphatase | −0.52 | 0.000 | B, Hc | diagnosis, disease progression, efficacy, prognosis, response to therapy | |
Sex hormone binding globulin | Shbg | Extracellular Space | Other | 0.51 | 0.009 | B, P/S, Hc | efficacy, safety |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.X.; Fredrickson, T.K.; Calixto Mancipe, N.; Georgieff, M.K.; Tran, P.V. Sex-Specific Effects of Early-Life Iron Deficiency and Prenatal Choline Treatment on Adult Rat Hippocampal Transcriptome. Nutrients 2023, 15, 1316. https://doi.org/10.3390/nu15061316
Liu SX, Fredrickson TK, Calixto Mancipe N, Georgieff MK, Tran PV. Sex-Specific Effects of Early-Life Iron Deficiency and Prenatal Choline Treatment on Adult Rat Hippocampal Transcriptome. Nutrients. 2023; 15(6):1316. https://doi.org/10.3390/nu15061316
Chicago/Turabian StyleLiu, Shirelle X., Tenille K. Fredrickson, Natalia Calixto Mancipe, Michael K. Georgieff, and Phu V. Tran. 2023. "Sex-Specific Effects of Early-Life Iron Deficiency and Prenatal Choline Treatment on Adult Rat Hippocampal Transcriptome" Nutrients 15, no. 6: 1316. https://doi.org/10.3390/nu15061316
APA StyleLiu, S. X., Fredrickson, T. K., Calixto Mancipe, N., Georgieff, M. K., & Tran, P. V. (2023). Sex-Specific Effects of Early-Life Iron Deficiency and Prenatal Choline Treatment on Adult Rat Hippocampal Transcriptome. Nutrients, 15(6), 1316. https://doi.org/10.3390/nu15061316