Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity
Abstract
:1. Introduction
2. Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Clinical Trials Registration
References
- McNamara, K.; Alzubaidi, H.; Jackson, J.K. Cardiovascular Disease as a Leading Cause of Death: How Are Pharmacists Getting Involved? Integr. Pharm. Res. Pract. 2019, 8, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunt, V.E.; Gioscia-Ryan, R.A.; Casso, A.G.; VanDongen, N.S.; Ziemba, B.P.; Sapinsley, Z.J.; Richey, J.J.; Zigler, M.C.; Neilson, A.P.; Davy, K.P.; et al. Trimethylamine-N-Oxide Promotes Age-Related Vascular Oxidative Stress and Endothelial Dysfunction in Mice and Healthy Humans. Hypertension 2020, 76, 101–112. [Google Scholar] [CrossRef] [PubMed]
- Janeiro, M.H.; Ramírez, M.J.; Milagro, F.I.; Martínez, J.A.; Solas, M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients 2018, 10, 1398. [Google Scholar] [CrossRef] [Green Version]
- Wang, B.; Qiu, J.; Lian, J.; Yang, X.; Zhou, J. Gut Metabolite Trimethylamine-N-Oxide in Atherosclerosis: From Mechanism to Therapy. Front. Cardiovasc. Med. 2021, 8, 723886. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Roberts, A.B.; Buffa, J.A.; Levison, B.S.; Zhu, W.; Org, E.; Gu, X.; Huang, Y.; Zamanian-Daryoush, M.; Culley, M.K.; et al. Non-Lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis. Cell 2015, 163, 1585–1595. [Google Scholar] [CrossRef] [Green Version]
- Naghipour, S.; Cox, A.J.; Peart, J.N.; Du Toit, E.F.; Headrick, J.P. Trimethylamine N-Oxide: Heart of the Microbiota-CVD Nexus? Nutr. Res. Rev. 2021, 34, 125–146. [Google Scholar] [CrossRef]
- Ge, X.; Zheng, L.; Zhuang, R.; Yu, P.; Xu, Z.; Liu, G.; Xi, X.; Zhou, X.; Fan, H. The Gut Microbial Metabolite Trimethylamine N-Oxide and Hypertension Risk: A Systematic Review and Dose–Response Meta-Analysis. Adv. Nutr. 2020, 11, 66–76. [Google Scholar] [CrossRef]
- Heianza, Y.; Ma, W.; Manson, J.E.; Rexrode, K.M.; Qi, L. Gut Microbiota Metabolites and Risk of Major Adverse Cardiovascular Disease Events and Death: A Systematic Review and Meta-Analysis of Prospective Studies. J. Am. Heart Assoc. 2017, 6, e004947. [Google Scholar] [CrossRef]
- De Filippis, F.; Pellegrini, N.; Vannini, L.; Jeffery, I.B.; La Storia, A.; Laghi, L.; Serrazanetti, D.I.; Di Cagno, R.; Ferrocino, I.; Lazzi, C.; et al. High-Level Adherence to a Mediterranean Diet Beneficially Impacts the Gut Microbiota and Associated Metabolome. Gut 2016, 65, 1812–1821. [Google Scholar] [CrossRef]
- Tomova, A.; Bukovsky, I.; Rembert, E.; Yonas, W.; Alwarith, J.; Barnard, N.D.; Kahleova, H. The Effects of Vegetarian and Vegan Diets on Gut Microbiota. Front. Nutr. 2019, 6, 47. [Google Scholar] [CrossRef] [Green Version]
- Videja, M.; Sevostjanovs, E.; Upmale-Engela, S.; Liepinsh, E.; Konrade, I.; Dambrova, M. Fasting-Mimicking Diet Reduces Trimethylamine N-Oxide Levels and Improves Serum Biochemical Parameters in Healthy Volunteers. Nutrients 2022, 14, 1093. [Google Scholar] [CrossRef] [PubMed]
- Clauss, M.; Gérard, P.; Mosca, A.; Leclerc, M. Interplay Between Exercise and Gut Microbiome in the Context of Human Health and Performance. Front. Nutr. 2021, 8, 637010. [Google Scholar] [CrossRef] [PubMed]
- Monda, V.; Villano, I.; Messina, A.; Valenzano, A.; Esposito, T.; Moscatelli, F.; Viggiano, A.; Cibelli, G.; Chieffi, S.; Monda, M.; et al. Exercise Modifies the Gut Microbiota with Positive Health Effects. Oxid. Med. Cell. Longev. 2017, 2017, 3831972. [Google Scholar] [CrossRef] [PubMed]
- Erickson, M.L.; Malin, S.K.; Wang, Z.; Brown, J.M.; Hazen, S.L.; Kirwan, J.P. Effects of Lifestyle Intervention on Plasma Trimethylamine N-Oxide in Obese Adults. Nutrients 2019, 11, 179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Steele, C.N.; Baugh, M.E.; Griffin, L.E.; Neilson, A.P.; Davy, B.M.; Hulver, M.W.; Davy, K.P. Fasting and Postprandial Trimethylamine N-oxide in Sedentary and Endurance-trained Males Following a Short-term High-fat Diet. Physiol. Rep. 2021, 9, e14970. [Google Scholar] [CrossRef]
- Argyridou, S.; Bernieh, D.; Henson, J.; Edwardson, C.L.; Davies, M.J.; Khunti, K.; Suzuki, T.; Yates, T. Associations between Physical Activity and Trimethylamine N-Oxide in Those at Risk of Type 2 Diabetes. BMJ Open Diabetes Res. Care 2020, 8, e001359. [Google Scholar] [CrossRef]
- Ma, Z.; Li, W. How and Why Men and Women Differ in Their Microbiomes: Medical Ecology and Network Analyses of the Microgenderome. Adv. Sci. 2019, 6, 1902054. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heiston, E.M.; Gilbertson, N.M.; Eichner, N.Z.M.; Malin, S.K. A Low-Calorie Diet with or without Exercise Reduces Postprandial Aortic Waveform in Females with Obesity. Med. Sci. Sports Exerc. 2021, 53, 796–803. [Google Scholar] [CrossRef]
- Koeth, R.A.; Wang, Z.; Levison, B.S.; Buffa, J.A.; Org, E.; Sheehy, B.T.; Britt, E.B.; Fu, X.; Wu, Y.; Li, L.; et al. Intestinal Microbiota Metabolism of L-Carnitine, a Nutrient in Red Meat, Promotes Atherosclerosis. Nat. Med. 2013, 19, 576–585. [Google Scholar] [CrossRef] [Green Version]
- Kirsch, S.H.; Herrmann, W.; Rabagny, Y.; Obeid, R. Quantification of Acetylcholine, Choline, Betaine, and Dimethylglycine in Human Plasma and Urine Using Stable-Isotope Dilution Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2010, 878, 3338–3344. [Google Scholar] [CrossRef]
- Lee, Y.; Nemet, I.; Wang, Z.; Lai, H.T.M.; de Oliveira Otto, M.C.; Lemaitre, R.N.; Fretts, A.M.; Sotoodehnia, N.; Budoff, M.; DiDonato, J.A.; et al. Longitudinal Plasma Measures of Trimethylamine N-Oxide and Risk of Atherosclerotic Cardiovascular Disease Events in Community-Based Older Adults. J. Am. Heart Assoc. 2021, 10, e020646. [Google Scholar] [CrossRef]
- Papandreou, C.; Moré, M.; Bellamine, A. Trimethylamine N-Oxide in Relation to Cardiometabolic Health—Cause or Effect? Nutrients 2020, 12, 1330. [Google Scholar] [CrossRef]
- Argyridou, S.; Davies, M.J.; Biddle, G.J.H.; Bernieh, D.; Suzuki, T.; Dawkins, N.P.; Rowlands, A.V.; Khunti, K.; Smith, A.C.; Yates, T. Evaluation of an 8-Week Vegan Diet on Plasma Trimethylamine-N-Oxide and Postchallenge Glucose in Adults with Dysglycemia or Obesity. J. Nutr. 2021, 151, 1844–1853. [Google Scholar] [CrossRef] [PubMed]
- Park, J.E.; Miller, M.; Rhyne, J.; Wang, Z.; Hazen, S.L. Differential Effect of Short-Term Popular Diets on TMAO and Other Cardio-Metabolic Risk Markers. Nutr. Metab. Cardiovasc. Dis. 2019, 29, 513–517. [Google Scholar] [CrossRef] [PubMed]
- Sowah, S.A.; Milanese, A.; Schübel, R.; Wirbel, J.; Kartal, E.; Johnson, T.S.; Hirche, F.; Grafetstätter, M.; Nonnenmacher, T.; Kirsten, R.; et al. Calorie Restriction Improves Metabolic State Independently of Gut Microbiome Composition: A Randomized Dietary Intervention Trial. Genome Med. 2022, 14, 30. [Google Scholar] [CrossRef] [PubMed]
- Avolio, A.P.; Van Bortel, L.M.; Boutouyrie, P.; Cockcroft, J.R.; McEniery, C.M.; Protogerou, A.D.; Roman, M.J.; Safar, M.E.; Segers, P.; Smulyan, H. Role of Pulse Pressure Amplification in Arterial Hypertension. Hypertension 2009, 54, 375–383. [Google Scholar] [CrossRef] [Green Version]
- Van Parys, A.; Lysne, V.; Svingen, G.F.T.; Ueland, P.M.; Dhar, I.; Øyen, J.; Dierkes, J.; Nygård, O.K. Dietary Choline Is Related to Increased Risk of Acute Myocardial Infarction in Patients with Stable Angina Pectoris. Biochimie 2020, 173, 68–75. [Google Scholar] [CrossRef] [Green Version]
- Jaworska, K.; Hering, D.; Mosieniak, G.; Bielak-Zmijewska, A.; Pilz, M.; Konwerski, M.; Gasecka, A.; Kapłon-Cieślicka, A.; Filipiak, K.; Sikora, E.; et al. TMA, A Forgotten Uremic Toxin, but Not TMAO, Is Involved in Cardiovascular Pathology. Toxins 2019, 11, 490. [Google Scholar] [CrossRef] [Green Version]
- Arias, N.; Arboleya, S.; Allison, J.; Kaliszewska, A.; Higarza, S.G.; Gueimonde, M.; Arias, J.L. The Relationship between Choline Bioavailability from Diet, Intestinal Microbiota Composition, and Its Modulation of Human Diseases. Nutrients 2020, 12, 2340. [Google Scholar] [CrossRef] [PubMed]
- Zamani, P.; Jacobs, D.R.; Segers, P.; Duprez, D.A.; Brumback, L.; Kronmal, R.A.; Lilly, S.M.; Townsend, R.R.; Budoff, M.; Lima, J.A.; et al. Reflection Magnitude as a Predictor of Mortality. Hypertension 2014, 64, 958–964. [Google Scholar] [CrossRef] [Green Version]
- Jaworska, K.; Bielinska, K.; Gawrys-Kopczynska, M.; Ufnal, M. TMA (Trimethylamine), but Not Its Oxide TMAO (Trimethylamine-Oxide), Exerts Haemodynamic Effects: Implications for Interpretation of Cardiovascular Actions of Gut Microbiome. Cardiovasc. Res. 2019, 115, 1948–1949. [Google Scholar] [CrossRef] [PubMed]
- DiNicolantonio, J.J.; Lavie, C.J.; Fares, H.; Menezes, A.R.; O’Keefe, J.H. L-Carnitine in the Secondary Prevention of Cardiovascular Disease: Systematic Review and Meta-Analysis. Mayo Clin. Proc. 2013, 88, 544–551. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.-Y.; Liu, Y.-Y.; Liu, G.-H.; Lu, H.-B.; Mao, C.-Y. L-Carnitine and Heart Disease. Life Sci. 2018, 194, 88–97. [Google Scholar] [CrossRef]
- Mate, A.; Miguel-Carrasco, J.L.; Vázquez, C.M. The Therapeutic Prospects of Using L-Carnitine to Manage Hypertension-Related Organ Damage. Drug Discov. Today 2010, 15, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Gürlek, A.; Tutar, E.; Akçil, E.; Dinçer, I.; Erol, C.; Kocatürk, P.A.; Oral, D. The Effects of L-Carnitine Treatment on Left Ventricular Function and Erythrocyte Superoxide Dismutase Activity in Patients with Ischemic Cardiomyopathy. Eur. J. Heart Fail. 2000, 2, 189–193. [Google Scholar] [CrossRef]
- Song, X.; Qu, H.; Yang, Z.; Rong, J.; Cai, W.; Zhou, H. Efficacy and Safety of L-Carnitine Treatment for Chronic Heart Failure: A Meta-Analysis of Randomized Controlled Trials. BioMed Res. Int. 2017, 2017, 6274854. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Little, W.C.; Oh, J.K. Echocardiographic Evaluation of Diastolic Function Can Be Used to Guide Clinical Care. Circulation 2009, 120, 802–809. [Google Scholar] [CrossRef] [Green Version]
- Lemaitre, R.N.; Jensen, P.N.; Wang, Z.; Fretts, A.M.; McKnight, B.; Nemet, I.; Biggs, M.L.; Sotoodehnia, N.; de Oliveira Otto, M.C.; Psaty, B.M.; et al. Association of Trimethylamine N-Oxide and Related Metabolites in Plasma and Incident Type 2 Diabetes: The Cardiovascular Health Study. JAMA Netw. Open 2021, 4, e2122844. [Google Scholar] [CrossRef]
- Rath, S.; Rox, K.; Kleine Bardenhorst, S.; Schminke, U.; Dörr, M.; Mayerle, J.; Frost, F.; Lerch, M.M.; Karch, A.; Brönstrup, M.; et al. Higher Trimethylamine-N-Oxide Plasma Levels with Increasing Age Are Mediated by Diet and Trimethylamine-Forming Bacteria. mSystems 2021, 6, e00945-21. [Google Scholar] [CrossRef]
- Wilson Tang, W.H.; Wang, Z.; Kennedy, D.J.; Wu, Y.; Buffa, J.A.; Agatisa-Boyle, B.; Li, X.S.; Levison, B.S.; Hazen, S.L. Gut Microbiota-Dependent Trimethylamine N-Oxide (TMAO) Pathway Contributes to Both Development of Renal Insufficiency and Mortality Risk in Chronic Kidney Disease. Circ. Res. 2015, 116, 448–455. [Google Scholar] [CrossRef] [Green Version]
- Miao, J.; Ling, A.V.; Manthena, P.V.; Gearing, M.E.; Graham, M.J.; Crooke, R.M.; Croce, K.J.; Esquejo, R.M.; Clish, C.B.; Vicent, D.; et al. Flavin-Containing Monooxygenase 3 as a Potential Player in Diabetes-Associated Atherosclerosis. Nat. Commun. 2015, 6, 6498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, H.-S.; Kang, G.; Kim, J.S.; Choi, B.H.; Koo, S.-H. Regulation of Glucose Metabolism from a Liver-Centric Perspective. Exp. Mol. Med. 2016, 48, e218. [Google Scholar] [CrossRef] [PubMed] [Green Version]
LCD | LCD+INT | ANOVA p Value | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Test | G × T | |
n (female) | 12 | - | 11 | - | ||
Non-Hispanic white | 11 | - | 6 | - | ||
Non-Hispanic black | 0 | - | 3 | - | ||
Hispanic | 1 | - | 1 | - | ||
Asian Pacific Islander | 0 | - | 1 | - | ||
Age, yr | 48.4 ± 2.6 | - | 47.6 ± 4.3 | - | ||
Weight, kg | 102.1 ± 5.0 | 99.7 ± 4.9 | 104.9 ± 6.9 | 103.2 ± 6.8 | <0.01 | 0.19 |
BMI, kg/m2 | 37.8 ± 1.6 | 37.0 ± 1.6 | 38.0 ± 2.3 | 37.4 ± 2.3 | <0.01 | 0.13 |
Body fat, % | 51.5 ± 1.4 | 50.2 ± 1.5 | 49.1 ± 2.5 | 48.2 ± 2.7 | <0.01 | 0.89 |
FFM, kg | 49.4 ± 1.5 | 49.0 ± 1.3 | 52.5 ± 2.8 | 52.7 ± 2.9 | 0.78 | 0.45 |
VO2peak, L/min | 1.83 ± 0.1 | 1.65 ± 0.1 | 1.9 ± 0.1 | 2.0 ± 0.1 | 0.61 | 0.03 |
VO2peak, ml/kg/min | 18.1 ± 1.0 | 17.5 ± 1.1 | 19.0 ± 1.6 | 20.3 ± 1.8 | 0.50 | 0.05 |
HDL Cholesterol, mg/dL | 50.8 ± 2.2 | 43.7 ± 2.0 | 42.9 ±1.7 | 49.1 ± 4.6 | 0.06 | <0.01 |
LDL Cholesterol, mg/dL | 136.3 ± 13.0 | 115.0 ± 11.5 | 114.4 ± 8.2 | 100.2 ± 5.7 | <0.01 | 0.62 |
Glucose | ||||||
Fasting, mg/dL | 97.1 ± 1.5 | 94.2 ± 2.5 | 97.0 ± 2.5 | 92.9 ± 2.2 | 0.05 | 0.71 |
120 min, mg/dL | 113.1 ± 6.3 | 115.3 ± 9.0 | 112.8 ± 7.0 | 126.0 ± 8.3 | 0.66 | 0.93 |
tAUC, mg/dlx180 min | 20,482.6 ± 965.8 | 20,550.8 ± 1242.4 | 22,612.2 ± 1039.3 | 22,416.7 ± 1245.0 | 0.91 | 0.82 |
Insulin | ||||||
Fasting, μU/mL | 15.3 ± 2.1 | 11.8 ± 2.3 | 22.3 ± 6.2 | 18.2 ± 4.1 | 0.03 | 0.77 |
120 min, μU/mL | 83.2 ± 14.9 | 74.2 ± 16.0 | 125.3 ± 20.5 | 80.2 ± 19.1 | 0.45 | 0.68 |
tAUC, μU/mLx180 min | 12,681.0 ± 1794.0 | 12,737.4 ± 1864.7 | 19,252.2 ± 2805.5 | 12,905.5 ± 1043.3 | 0.01 | 0.31 |
LCD | LCD+INT | ANOVA p Value | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Test | G × T | |
Total Kcal, kcal | 2013.9 ± 191.9 | 1608.9 ± 88.2 | 2047.7 ± 191.1 | 1346.5 ± 29.1 | <0.01 | 0.67 |
Carbohydrates, g | 235.5 ± 25.5 | 175.2 ± 6.6 | 238.7 ± 28.8 | 217.6 ± 13.1 | 0.05 | 0.33 |
Fiber, g | 17.3 ± 1.9 | 10.5 ± 0.7 | 17.2 ± 1.4 | 10.1 ± 1.1 | <0.01 | 0.92 |
Fat, g | 86.7 ± 7.7 | 44.5 ± 2.0 | 84.1 ± 8.7 | 49.6 ± 4.3 | <0.01 | 0.51 |
Protein, g | 83.3 ± 8.1 | 61.8 ± 3.0 | 78.2 ± 8.9 | 71.9 ± 3.7 | 0.03 | 0.20 |
LCD | LCD+INT | ANOVA p Value | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Test | G × T | |
bSBP | ||||||
Fasting, mmHg | 131.8 ± 5.6 | 129.4 ± 4.6 | 139.5 ± 6.6 | 137.5 ± 7.8 | 0.47 | 0.93 |
120 min, mmHg | 133.3 ± 7.0 | 130.7 ± 3.6 | 133.5 ± 4.8 | 136.1 ± 7.3 | 0.96 | 0.36 |
tAUC, mmHgx180 min | 24,577.5 ± 1040.1 | 23,410.0 ± 712.7 | 24,256.4 ± 883.9 | 24,409.1 ± 1271.9 | 0.97 | 0.73 |
bDBP | ||||||
Fasting, mmHg | 82.8 ± 3.6 | 77.2 ± 3.5 | 80.2 ± 3.4 | 82.0 ± 5.0 | 0.39 | 0.11 |
120 min, mmHg | 81.1 ± 3.7 | 75.8 ± 3.5 | 77.4 ± 3.7 | 78.0 ± 3.8 | 0.37 | 0.16 |
tAUC, mmHgx180 min | 14,825.0 ± 615.1 | 13,805.0 ± 562.7 | 14,075.4 ± 560.2 | 14,269.1 ± 767.9 | 0.30 | 0.07 |
cSBP | ||||||
Fasting, mmHg | 122.7 ± 4.9 | 117.2 ± 2.8 | 128.0 ± 6.1 | 126.9 ± 7.5 | 0.48 | 0.73 |
120 min, mmHg | 121.2 ± 6.5 | 118.5 ± 3.4 | 119.6 ± 5.1 | 121.1 ± 6.9 | 0.93 | 0.44 |
tAUC, mmHgx180 min | 21,309.0 ± 425.3 | 20,541 ± 312.2 | 21,867.3 ± 925.3 | 21,916.4 ± 1210.9 | 0.41 | 0.28 |
cDBP | ||||||
Fasting, mmHg | 84.0 ± 3.6 | 78.3 ± 3.5 | 82.1 ± 3.5 | 83.2 ± 5.0 | 0.30 | 0.15 |
120 min, mmHg | 82.4 ± 4.2 | 78.5 ± 3.8 | 76.8 ± 3.4 | 79.3 ± 4.1 | 0.31 | 0.18 |
tAUC, mmHgx180 min | 14,596.4 ± 492.4 | 14,030.0 ± 564.9 | 14,350.9 ± 572.6 | 14,479.1 ± 789.3 | 0.43 | 0.26 |
PPA | ||||||
Fasting, mmHg | 1.27 ± 0.0 | 1.24 ± 0.0 | 1.26 ± 0.0 | 1.28 ± 0.0 | 0.90 | 0.33 |
120 min, mmHg | 1.36 ± 0.0 | 1.32 ± 0.0 | 1.38 ± 0.0 | 1.41 ± 0.1 | 0.92 | 0.23 |
tAUC, mmHgx180 min | 238.7 ± 3.67 | 237.0 ± 5.6 | 243.3 ± 7.6 | 243.2 ± 4.5 | 0.98 | 0.97 |
AIx75 | ||||||
Fasting, % | 29.9 ± 3.4 | 28.0 ± 3.3 | 29.5 ± 5.7 | 24.7 ± 6.1 | 0.28 | 0.63 |
120 min, % | 24.5 ± 4.7 | 20.8 ± 3.5 | 16.4 ± 5.3 | 17.1 ± 5.5 | 0.68 | 0.50 |
tAUC, %x180 min | 4917.5 ± 524.8 | 3830.0 ±576.6 | 3927.0 ± 856.6 | 3645.0 ± 911.9 | 0.08 | 0.30 |
AP | ||||||
Fasting, mmHg | 13.5 ± 1.0 | 15.1 ± 1.8 | 15.4 ± 2.8 | 13.6 ± 2.9 | 0.96 | 0.30 |
120 min, mmHg | 10.9 ± 2.0 | 11.3 ± 1.9 | 8.5 ± 2.4 | 8.8 ± 2.4 | 0.82 | 0.99 |
tAUC, mmHgx180 min | 2337.5 ± 225.9 | 2077.5 ± 317.5 | 1956.0 ± 426.9 | 1713.0 ± 414.7 | 0.19 | 0.96 |
Pf | ||||||
Fasting, mmHg | 26.5 ± 1.1 | 26.1 ± 1.7 | 31.4 ± 2.3 | 25.6 ± 1.9 | 0.04 | 0.27 |
120 min, mmHg | 27.3 ± 1.7 | 27.4 ± 1.1 | 26.5 ± 1.2 | 30.0 ± 2.9 | 0.36 | 0.36 |
tAUC, mmHgx180 min | 4848.4 ± 131.1 | 4628.0 ± 208.6 | 5335.3 ± 268.4 | 5382.3 ± 241.9 | 0.55 | 0.30 |
Pb | ||||||
Fasting, mmHg | 17.1 ± 1.0 | 18.2 ± 1.2 | 20.7 ± 1.6 | 19.4 ± 2.4 | 0.93 | 0.56 |
120 min, mmHg | 16.7 ± 1.7 | 18.3 ± 1.2 | 19.1 ± 1.0 | 18.2 ± 2.2 | 0.81 | 0.36 |
tAUC, mmHgx180 min | 3027.4 ± 141.8 | 3015.7 ± 214.9 | 3443.0 ± 219.5 | 3523.5 ± 305.6 | 0.29 | 0.73 |
RM | ||||||
Fasting, % | 65.3 ± 4.3 | 70.3 ± 4.4 | 65.8 ± 3.0 | 67.9 ± 5.3 | 0.45 | 0.68 |
120 min, % | 60.7 ± 3.8 | 63.4 ± 3.1 | 69.5 ± 4.5 | 60.2 ± 4.9 | 0.33 | 0.13 |
tAUC, %x180 min | 11,146.7 ± 512.1 | 11,566.7 ± 458.0 | 11,139.0 ± 466.4 | 10,941.4 ± 877.7 | 0.88 | 0.51 |
HR | ||||||
Fasting, bpm | 64.3 ± 2.0 | 60.3 ± 1.3 | 68.8 ± 3.0 | 66.9 ± 3.3 | 0.08 | 0.52 |
120 min, bpm | 68.9 ± 1.6 | 62.4 ± 2.0 | 71.2 ± 2.4 | 72.3 ± 3.2 | 0.21 | 0.09 |
tAUC, bpmx180 min | 12,167.5 ± 237.8 | 11,350.0 ± 261.0 | 12,248.2 ± 584.5 | 12,585.0 ± 499.0 | 0.55 | 0.05 |
LCD | LCD+INT | ANOVA p Value | ||||
---|---|---|---|---|---|---|
Pre | Post | Pre | Post | Test | G × T | |
TMA (μM) | 16.9 ± 1.0 | 16.5 ± 1.3 | 15.6 ± 0.8 | 15.6 ± 1.0 | 0.62 | 0.62 |
Carnitine (μM) | 35.6 ± 2.0 | 35.2 ± 2.3 | 33.4 ± 1.6 | 33.6 ± 1.9 | 0.89 | 0.67 |
Choline (μM) | 8.0 ± 0.5 | 6.6 ± 0.6 | 9.7 ± 0.6 | 7.9 ± 0.3 | <0.01 | 0.60 |
Betaine (μM) | 22.9 ± 1.8 | 22.6 ± 1.9 | 24.0 ± 1.6 | 23.3 ± 1.8 | 0.54 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Battillo, D.J.; Malin, S.K. Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity. Nutrients 2023, 15, 1455. https://doi.org/10.3390/nu15061455
Battillo DJ, Malin SK. Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity. Nutrients. 2023; 15(6):1455. https://doi.org/10.3390/nu15061455
Chicago/Turabian StyleBattillo, Daniel J., and Steven K. Malin. 2023. "Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity" Nutrients 15, no. 6: 1455. https://doi.org/10.3390/nu15061455
APA StyleBattillo, D. J., & Malin, S. K. (2023). Impact of Caloric Restriction and Exercise on Trimethylamine N-Oxide Metabolism in Women with Obesity. Nutrients, 15(6), 1455. https://doi.org/10.3390/nu15061455