Association of Bioelectrical Impedance Phase Angle with Physical Performance and Nutrient Intake of Older Adults
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Designs and Population Characteristics
2.1.1. Vienna Active Ageing Study
2.1.2. NutriAging Protein Study
2.1.3. NutriAging Vitamin D Study
2.1.4. Participants’ Flow
2.2. Outcomes
2.3. Body Composition
2.4. Physical Performance
2.5. Assessment of Nutrient Intake
2.6. Assessment of Comorbidities
2.7. Statistical Analysis
3. Results
3.1. Participants’ Characteristics
3.2. Agreement of Body Composition Parameters Measured by BIA and DXA
3.3. Association between BIA Raw Parameters, Physical Performance, Age, BMI and Nutrient Intake
3.4. Hierarchical Multiple Regression Analyses
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Després, J.-P. Body Fat Distribution and Risk of Cardiovascular Disease: An update. Circulation 2012, 126, 1301–1313. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pi-Sunyer, X. Changes in body composition and metabolic disease risk. Eur. J. Clin. Nutr. 2019, 73, 231–235. [Google Scholar] [CrossRef] [PubMed]
- Yip, C.; Dinkel, C.; Mahajan, A.; Siddique, M.; Cook, G.; Goh, V. Imaging body composition in cancer patients: Visceral obesity, sarcopenia and sarcopenic obesity may impact on clinical outcome. Insights Imaging 2015, 6, 489–497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kim, S.; Leng, X.L.; Kritchevsky, S.B. Body Composition and Physical Function in Older Adults with Various Comorbidities. Innov. Aging 2017, 1, igx008. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cruz-Jentoft, A.J.; Bahat, G.; Bauer, J.; Boirie, Y.; Bruyère, O.; Cederholm, T.; Cooper, C.; Landi, F.; Rolland, Y.; Sayer, A.A.; et al. Sarcopenia: Revised European consensus on definition and diagnosis. Age Ageing 2019, 48, 16–31. [Google Scholar] [CrossRef] [Green Version]
- Wleklik, M.; Uchmanowicz, I.; Jankowska, E.A.; Vitale, C.; Lisiak, M.; Drozd, M.; Pobrotyn, P.; Tkaczyszyn, M.; Lee, C. Multidimensional Approach to Frailty. Front. Psychol. 2020, 11, 564. [Google Scholar] [CrossRef]
- Daly, R.M.; Iuliano, S.; Fyfe, J.J.; Scott, D.; Kirk, B.; Thompson, M.Q.; Dent, E.; Fetterplace, K.; Wright, O.R.L.; Lynch, G.S.; et al. Screening, Diagnosis and Management of Sarcopenia and Frailty in Hospitalized Older Adults: Recommendations from the Australian and New Zealand Society for Sarcopenia and Frailty Research (ANZSSFR) Expert Working Group. J. Nutr. Health Aging 2022, 26, 637–651. [Google Scholar] [CrossRef]
- Kuriyan, R. Body composition techniques. Indian J. Med. Res. 2018, 148, 648–658. [Google Scholar] [CrossRef]
- Ceniccola, G.D.; Castro, M.G.; Piovacari, S.M.F.; Horie, L.M.; Corrêa, F.G.; Barrere, A.P.N.; Toledo, D.O. Current technologies in body composition assessment: Advantages and disadvantages. Nutrition 2018, 62, 25–31. [Google Scholar] [CrossRef]
- Schubert, M.M.; Seay, R.F.; Spain, K.K.; Clarke, H.; Taylor, J.K. Reliability and validity of various laboratory methods of body composition assessment in young adults. Clin. Physiol. Funct. Imaging 2018, 39, 150–159. [Google Scholar] [CrossRef]
- Rose, G.L.; Farley, M.J.; Ward, L.C.; Slater, G.J.; Skinner, T.L.; Keating, S.E.; Schaumberg, M.A. Accuracy of body composition measurement techniques across the age span. Appl. Physiol. Nutr. Metab. 2022, 47, 482–494. [Google Scholar] [CrossRef] [PubMed]
- Kyle, U.G.; Bosaeus, I.; De Lorenzo, A.D.; Deurenberg, P.; Elia, M.; Gómez, J.M.; Heitmann, B.L.; Kent-Smith, L.; Melchior, J.-C.; Pirlich, M.; et al. Bioelectrical impedance analysis—Part II: Utilization in clinical practice. Clin. Nutr. 2004, 23, 1430–1453. [Google Scholar] [CrossRef] [PubMed]
- Scafoglieri, A.; Clarys, J.P. Dual energy X-ray absorptiometry: Gold standard for muscle mass? J. Cachex-Sarcopenia Muscle 2018, 9, 786–787. [Google Scholar] [CrossRef] [PubMed]
- Mullie, L.; Obrand, A.; Bendayan, M.; Trnkus, A.; Ouimet, M.; Moss, E.; Chen-Tournoux, A.; Rudski, L.G.; Afilalo, J. Phase Angle as a Biomarker for Frailty and Postoperative Mortality: The BICS Study. J. Am. Heart Assoc. 2018, 7, e008721. [Google Scholar] [CrossRef]
- Kilic, M.K.; Kizilarslanoglu, M.C.; Arik, G.; Bolayir, B.; Kara, O.; Varan, H.D.; Sumer, F.; Kuyumcu, M.E.; Halil, M.; Ulger, Z. Association of Bioelectrical Impedance Analysis–Derived Phase Angle and Sarcopenia in Older Adults. Nutr. Clin. Pract. 2016, 32, 103–109. [Google Scholar] [CrossRef]
- Rosas-Carrasco, O.; Ruiz-Valenzuela, R.E.; López-Teros, M.T. Phase Angle Cut-Off Points and Their Association with Sarcopenia and Frailty in Adults of 50–64 Years Old and Older Adults in Mexico City. Front. Med. 2021, 8, 617126. [Google Scholar] [CrossRef]
- Tanaka, S.; Ando, K.; Kobayashi, K.; Seki, T.; Hamada, T.; Machino, M.; Ota, K.; Morozumi, M.; Kanbara, S.; Ito, S.; et al. Low Bioelectrical Impedance Phase Angle Is a Significant Risk Factor for Frailty. BioMed Res. Int. 2019, 2019, 6283153. [Google Scholar] [CrossRef] [Green Version]
- Matias, C.; Nunes, C.; Francisco, S.; Tomeleri, C.; Cyrino, E.; Sardinha, L.; Silva, A. Phase angle predicts physical function in older adults. Arch. Gerontol. Geriatr. 2020, 90, 104151. [Google Scholar] [CrossRef]
- Abe, T.; Yoshimura, Y.; Imai, R.; Yoneoka, Y.; Tsubaki, A.; Sato, Y. Impact of Phase Angle on Physical Function in Patients with Acute Stroke. J. Stroke Cerebrovasc. Dis. 2021, 30, 105941. [Google Scholar] [CrossRef]
- Kyle, U.G.; Soundar, E.P.; Genton, L.; Pichard, C. Can phase angle determined by bioelectrical impedance analysis assess nutritional risk? A comparison between healthy and hospitalized subjects. Clin. Nutr. 2012, 31, 875–881. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Macchia, P.E.; Di Somma, C.; Falco, A.; Savanelli, M.C.; Colao, A.; Savastano, S. Mediterranean Diet and Phase Angle in a Sample of Adult Population: Results of a Pilot Study. Nutrients 2017, 9, 151. [Google Scholar] [CrossRef] [Green Version]
- de França, N.A.; Callegari, A.; Gondo, F.F.; Corrente, J.E.; Mclellan, K.C.; Burini, R.C.; de Oliveira, E.P. Higher dietary quality and muscle mass decrease the odds of low phase angle in bioelectrical impedance analysis in Brazilian individuals. Nutr. Diet. 2016, 73, 474–481. [Google Scholar] [CrossRef]
- Barrea, L.; Muscogiuri, G.; Aprano, S.; Vetrani, C.; de Alteriis, G.; Varcamonti, L.; Verde, L.; Colao, A.; Savastano, S. Phase angle as an easy diagnostic tool for the nutritionist in the evaluation of inflammatory changes during the active stage of a very low-calorie ketogenic diet. Int. J. Obes. 2022, 46, 1591–1597. [Google Scholar] [CrossRef] [PubMed]
- Tagawa, R.; Watanabe, D.; Ito, K.; Ueda, K.; Nakayama, K.; Sanbongi, C.; Miyachi, M. Dose–response relationship between protein intake and muscle mass increase: A systematic review and meta-analysis of randomized controlled trials. Nutr. Rev. 2020, 79, 66–75. [Google Scholar] [CrossRef] [PubMed]
- Oesen, S.; Halper, B.; Hofmann, M.; Jandrasits, W.; Franzke, B.; Strasser, E.-M.; Graf, A.; Tschan, H.; Bachl, N.; Quittan, M.; et al. Effects of elastic band resistance training and nutritional supplementation on physical performance of institutionalised elderly—A randomized controlled trial. Exp. Gerontol. 2015, 72, 99–108. [Google Scholar] [CrossRef]
- Unterberger, S.; Aschauer, R.; Zöhrer, P.A.; Draxler, A.; Franzke, B.; Strasser, E.-M.; Wagner, K.-H.; Wessner, B. Effects of an increased habitual dietary protein intake followed by resistance training on fitness, muscle quality and body composition of seniors: A randomised controlled trial. Clin. Nutr. 2022, 41, 1034–1045. [Google Scholar] [CrossRef] [PubMed]
- Aschauer, R.; Unterberger, S.; Zöhrer, P.A.; Draxler, A.; Franzke, B.; Strasser, E.-M.; Wagner, K.-H.; Wessner, B. Effects of Vitamin D3 Supplementation and Resistance Training on 25-Hydroxyvitamin D Status and Functional Performance of Older Adults: A Randomized Placebo-Controlled Trial. Nutrients 2021, 14, 86. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Baumgartner, R.N.; Ross, R. Estimation of skeletal muscle mass by bioelectrical impedance analysis. J. Appl. Physiol. 2000, 89, 465–471. [Google Scholar] [CrossRef] [Green Version]
- Strasser, E.-M.; Hofmann, M.; Franzke, B.; Schober-Halper, B.; Oesen, S.; Jandrasits, W.; Graf, A.; Praschak, M.; Horvath-Mechtler, B.; Krammer, C.; et al. Strength training increases skeletal muscle quality but not muscle mass in old institutionalized adults: A randomized, multi-arm parallel and controlled intervention study. Eur. J. Phys. Rehabilitation Med. 2018, 54, 921–933. [Google Scholar] [CrossRef]
- Tessier, A.; Wing, S.S.; Rahme, E.; Morais, J.A.; Chevalier, S. Physical function-derived cut-points for the diagnosis of sarcopenia and dynapenia from the Canadian longitudinal study on aging. J. Cachex-Sarcopenia Muscle 2019, 10, 985–999. [Google Scholar] [CrossRef] [Green Version]
- Slimani, N.; Casagrande, C.; Nicolas, G.; Freisling, H.; Huybrechts, I.; Ocké, M.C.; Niekerk, E.M.; Van Rossum, C.; Bellemans, M.; De Maeyer, M.; et al. The standardized computerized 24-h dietary recall method EPIC-Soft adapted for pan-European dietary monitoring. Eur. J. Clin. Nutr. 2011, 65 (Suppl. 1), S5–S15. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. Obesity: Preventing and Managing the Global Epidemic; World Health Organization: Geneva, Switzerland, 2000. [Google Scholar]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998; Volume 1998. [Google Scholar]
- Bosy-Westphal, A.; Danielzik, S.; Dörhöfer, R.-P.; Later, W.; Wiese, S.; Müller, M.J. Phase Angle from Bioelectrical Impedance Analysis: Population Reference Values by Age, Sex, and Body Mass Index. J. Parenter. Enter. Nutr. 2006, 30, 309–316. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm-Leen, E.R.; Hall, Y.N.; Horwitz, R.I.; Chertow, G.M. Phase Angle, Frailty and Mortality in Older Adults. J. Gen. Intern. Med. 2013, 29, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Barbosa-Silva, M.C.G.; Barros, A. Bioelectrical impedance analysis in clinical practice: A new perspective on its use beyond body composition equations. Curr. Opin. Clin. Nutr. Metab. Care 2005, 8, 311–317. [Google Scholar] [CrossRef] [PubMed]
- Ling, C.H.; de Craen, A.J.; Slagboom, P.E.; Gunn, D.A.; Stokkel, M.P.; Westendorp, R.G.; Maier, A.B. Accuracy of direct segmental multi-frequency bioimpedance analysis in the assessment of total body and segmental body composition in middle-aged adult population. Clin. Nutr. 2011, 30, 610–615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bosy-Westphal, A.; Later, W.; Hitze, B.; Sato, T.; Kossel, E.; Glüer, C.-C.; Heller, M.; Müller, M.J. Accuracy of Bioelectrical Impedance Consumer Devices for Measurement of Body Composition in Comparison to Whole Body Magnetic Resonance Imaging and Dual X-ray Absorptiometry. Obes. Facts 2008, 1, 319–324. [Google Scholar] [CrossRef]
- Fonseca, F.R.; Karloh, M.; De Araujo, C.L.P.; Dos Reis, C.M.; Mayer, A.F. Validation of a bioelectrical impedance analysis system for body composition assessment in patients with COPD. J. Bras. Pneumol. 2018, 44, 315–320. [Google Scholar] [CrossRef] [Green Version]
- Norman, K.; Stobäus, N.; Pirlich, M.; Bosy-Westphal, A. Bioelectrical phase angle and impedance vector analysis—Clinical relevance and applicability of impedance parameters. Clin. Nutr. 2012, 31, 854–861. [Google Scholar] [CrossRef]
- Walowski, C.O.; Braun, W.; Maisch, M.J.; Jensen, B.; Peine, S.; Norman, K.; Müller, M.J.; Bosy-Westphal, A. Reference Values for Skeletal Muscle Mass—Current Concepts and Methodological Considerations. Nutrients 2020, 12, 755. [Google Scholar] [CrossRef] [Green Version]
- Gonzalez, M.C.; Barbosa-Silva, T.G.; Bielemann, R.M.; Gallagher, D.; Heymsfield, S.B. Phase angle and its determinants in healthy subjects: Influence of body composition. Am. J. Clin. Nutr. 2016, 103, 712–716. [Google Scholar] [CrossRef] [Green Version]
- Stapel, S.N.; Looijaard, W.G.P.M.; Dekker, I.M.; Girbes, A.R.J.; Weijs, P.J.M.; Straaten, H.M.O.-V. Bioelectrical impedance analysis-derived phase angle at admission as a predictor of 90-day mortality in intensive care patients. Eur. J. Clin. Nutr. 2018, 72, 1019–1025. [Google Scholar] [CrossRef]
- Uemura, K.; Doi, T.; Tsutsumimoto, K.; Nakakubo, S.; Kim, M.; Kurita, S.; Ishii, H.; Shimada, H. Predictivity of bioimpedance phase angle for incident disability in older adults. J. Cachex-Sarcopenia Muscle 2019, 11, 46–54. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Germano, M.L.; Gomes, C.D.S.; Azevedo, I.G.; Fernandes, J.; Freitas, R.V.D.M.; Guerra, R.O. Relationship between phase angle and physical performance measures in community-dwelling older adults. Exp. Gerontol. 2021, 152, 111466. [Google Scholar] [CrossRef] [PubMed]
- Lukaski, H.C.; Kyle, U.G.; Kondrup, J. Assessment of adult malnutrition and prognosis with bioelectrical impedance analysis: Phase Angle and Impedance Ratio. Curr. Opin. Clin. Nutr. Metab. Care 2017, 20, 330–339. [Google Scholar] [CrossRef]
- dos Reis, A.S.; Santos, H.O.; Limirio, L.S.; de Oliveira, E.P. Phase Angle Is Associated with Handgrip Strength but not with Sarcopenia in Kidney Transplantation Patients. J. Ren. Nutr. 2019, 29, 196–204. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, Y.; Kusakabe, T.; Arai, H.; Yamamoto, Y.; Nakao, K.; Ikeue, K.; Ishihara, Y.; Tagami, T.; Yasoda, A.; Ishii, K.; et al. Phase angle from bioelectrical impedance analysis is a useful indicator of muscle quality. J. Cachex-Sarcopenia Muscle 2021, 13, 180–189. [Google Scholar] [CrossRef]
- Brito, C.P.; Moraes, I.G.; Luders, C.; de Brito, C.M.M.; Yamaguti, W.P. Relationship of phase angle and peak torque of knee extensors with the performance in six-minute step test in haemodialysis patients. BMC Nephrol. 2021, 22, 1–9. [Google Scholar] [CrossRef]
- Montgomery, G.; McPhee, J.; Pääsuke, M.; Sipilä, S.; Maier, A.B.; Hogrel, J.-Y.; Degens, H. Determinants of Performance in the Timed up-and-go and Six-Minute Walk Tests in Young and Old Healthy Adults. J. Clin. Med. 2020, 9, 1561. [Google Scholar] [CrossRef]
- Uemura, K.; Yamada, M.; Okamoto, H. Association of bioimpedance phase angle and prospective falls in older adults. Geriatr. Gerontol. Int. 2019, 19, 503–507. [Google Scholar] [CrossRef]
- Janssen, I.; Heymsfield, S.B.; Wang, Z.; Ross, R.; Casamento-Moran, A.; Chen, Y.-T.; Lodha, N.; Yacoubi, B.; Christou, E.A.; Deane, C.S.; et al. Skeletal muscle mass and distribution in 468 men and women aged 18–88 yr. J. Appl. Physiol. 2000, 89, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.-W.; Park, H.-Y.; Jung, H.; Lim, K. Development of Functional Fitness Prediction Equation in Korean Older Adults: The National Fitness Award 2015–2019. Front. Physiol. 2022, 13, 896093. [Google Scholar] [CrossRef] [PubMed]
- Lomaglio, M.J.; Eng, J.J. Muscle strength and weight-bearing symmetry relate to sit-to-stand performance in individuals with stroke. Gait Posture 2005, 22, 126–131. [Google Scholar] [CrossRef] [Green Version]
- Boukadida, A.; Piotte, F.; Dehail, P.; Nadeau, S. Determinants of sit-to-stand tasks in individuals with hemiparesis post stroke: A review. Ann. Phys. Rehabil. Med. 2015, 58, 167–172. [Google Scholar] [CrossRef] [Green Version]
- Manor, B.; Topp, R.; Page, P. Validity and Reliability of Measurements of Elbow Flexion Strength Obtained from Older Adults using Elastic Bands. J. Geriatr. Phys. Ther. 2006, 29, 16–19. [Google Scholar] [CrossRef]
- Cederholm, T.; Bosaeus, I.; Barazzoni, R.; Bauer, J.; Van Gossum, A.; Klek, S.; Muscaritoli, M.; Nyulasi, I.; Ockenga, J.; Schneider, S.; et al. Diagnostic criteria for malnutrition—An ESPEN Consensus Statement. Clin. Nutr. 2015, 34, 335–340. [Google Scholar] [CrossRef] [PubMed]
- Meireles, M.S.; Wazlawik, E.; Bastos, J.; Garcia, M.F. Comparison between Nutritional Risk Tools and Parameters Derived from Bioelectrical Impedance Analysis with Subjective Global Assessment. J. Acad. Nutr. Diet. 2012, 112, 1543–1549. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.; Lis, C.G.; Dahlk, S.L.; King, J.; Vashi, P.G.; Grutsch, J.F.; Lammersfeld, C.A. The relationship between bioelectrical impedance phase angle and subjective global assessment in advanced colorectal cancer. Nutr. J. 2008, 7, 19. [Google Scholar] [CrossRef] [Green Version]
- Hui, D.; Dev, R.; Pimental, L.; Park, M.; Cerana, M.A.; Liu, D.; Bruera, E. Association Between Multi-frequency Phase Angle and Survival in Patients With Advanced Cancer. J. Pain Symptom Manag. 2017, 53, 571–577. [Google Scholar] [CrossRef] [Green Version]
Total | Female | Male | |
---|---|---|---|
Sex (f/m), (%) | 326 (100%) | 193 (59.2%) | 133 (40.8%) |
Study origin (Study 1/Study 2/Study 3), (%) | 99 (30.4%)/ 119 (39.6%)/ 98 (30.1%) | 88 (45.6%)/ 72 (37.3%)/ 33 (17.1%) | 11 (8.3%)/ 57 (42.9%)/ 65 (48.9%) |
Age (years) | 75.2 ± 7.2 | 77.0 ± 7.2 | 72.7 ± 6.4 |
Body mass (kg) | 76.2 ± 14.8 | 70.7 ±13.0 | 84.3 ± 13.4 |
Height (m) | 1.7 ± 0.1 | 1.6 ± 0.1 | 1.8 ± 0.1 |
Body mass index (kg/m²) | 27.5 ± 4.7 | 27.8 ± 5.0 | 27.1 ± 4.2 |
BMI categories (<25.0 kg/m², 25.0–29.9 kg/m², ≥ 30.0 kg/m²) (n, %) | 89 (27.3%)/ 155 (47.5%)/ 82 (25.2%) | 54 (28.0%)/ 80 (41.4%)/ 59 (30.6%) | 35 (26.3%)/ 75 (56.4%)/ 23 (17.3%) |
Waist circumference (cm), n = 315 | 94.7 ± 12.2 | 90.6 ± 11.3 | 100.4 ± 11.1 |
Hip circumference (cm), n = 315 | 105.1 ± 9.6 | 106.0 ± 10.5 | 104.0 ± 8.1 |
Waist to hip ratio (-), n = 315 | 0.9 ± 0.1 | 0.9 ± 0.1 | 1.0 ± 0.1 |
Arm circumference right (cm), n = 310 | 30.3 ± 3.4 | 29.8 ± 3.5 | 31.0 ± 3.2 |
Calf circumference right (cm), n = 310 | 37.1 ± 3.2 | 36.5 ± 3.2 | 37.9 ± 3.0 |
Energy intake (kcal), n = 306 | 1748.9 ± 647.4 | 1552.7 ± 503.1 | 2032.9 ± 725.2 |
Energy intake (kcal/kg BW), n = 306 | 23.4 ± 8.8 | 22.0 ± 8.6 | 24.5 ± 9.0 |
Protein intake (g/day), n = 306 | 61.9 ± 25.8 | 55.6 ± 22.6 | 71.0 ± 27.4 |
Protein intake (g/kg BW/day), n = 306 | 0.83 ± 0.36 | 0.81 ± 0.38 | 0.85 ± 0.33 |
Carbohydrate intake (g/day), n = 306 | 183.6 ± 75.2 | 168.5 ± 63.8 | 205.5 ± 84.7 |
Carbohydrate intake (g/kg BW/day), n = 306 | 2.48 ± 1.09 | 2.47 ± 1.08 | 2.49 ± 1.11 |
Fat intake (g/day), n = 306 | 72.2 ± 36.1 | 62.5 ± 27.1 | 86.4 ± 42.5 |
Fat intake (g/kg BW/day), n = 306 | 0.96 ± 0.46 | 0.91 ± 0.43 | 1.04 ± 0.51 |
Comorbidities, n = 326 | |||
Hypertension (number (% of total)) | 178 (54.6%) | 109 (56.5%) | 69 (51.9%) |
Hyperlipidemia (number (% of total)) | 55 (16.9%) | 42 (21.8%) | 12 (9.0%) |
Diabetes mellitus type 2 (number (% of total)) | 33 (10.1%) | 21 (10.9%) | 12 (9.0%) |
History of cardiac diseases (number (% of total)) | 38 (11.7%) | 24 (12.4%) | 14 (10.5%) |
Osteoporosis (number (% of total)) | 48 (14.7%) | 46 (23.8%) | 2 (1.5%) |
History of cancer (number (% of total)) | 34 (10.4%) | 15 (7.8%) | 19 (14.3%) |
Total (n = 326) | Female (n = 193) | Male (n = 133) | p-Value | Effect Size | |
---|---|---|---|---|---|
Bioelectrical impedance parameters | |||||
Phase angle (°) | 5.0 ± 0.7 | 4.7 ± 0.7 | 5.3 ± 0.7 | <0.001 | −0.813 |
Resistance (ohm) | 495 ± 79 | 534 ± 68 | 438 ± 57 | <0.001 | 1.512 |
Reactance (ohm) | 43 ± 8 | 44 ± 7 | 40 ± 7 | <0.001 | 0.525 |
Total body water (l) | 40.6 ± 8.9 | 34.6 ± 4.0 | 49.5 ± 6.3 | <0.001 | −2.956 |
Lean body mass (kg) | 55.6 ± 12.2 | 47.2 ± 5.5 | 67.7 ± 8.6 | <0.001 | −2.955 |
Extracellular mass (kg) | 29.7 ± 6.2 | 26.0 ± 3.3 | 35.2 ± 5.4 | <0.001 | −2.156 |
Body cell mass (kg) | 25.8 ± 6.8 | 21.2 ± 3.4 | 32.5 ± 4.8 | <0.001 | −2.829 |
Body fat mass (kg) | 20.6 ± 8.9 | 23.3 ± 9.1 | 16.6 ± 6.7 | <0.001 | 0.803 |
Body fat percentage (%) | 26.8 ± 9.2 | 32.0 ± 7.4 | 19.2 ± 5.4 | <0.001 | 1.904 |
Skeletal muscle mass (kg) | 24.6 ± 7.6 | 19.1 ± 3.3 | 32.7 ± 4.2 | <0.001 | −3.665 |
Physical performance parameters | |||||
Physical performance score (-), n = 315 | 0.06 ± 2.44 | 0.08 ± 2.52 | 0.04 ± 2.33 | 0.859 | 0.020 |
30 s chair stand (reps), n = 322 | 12.4 ± 3.6 | 11.9 ± 3.6 | 13.0 ± 3.5 | 0.009 | −0.297 |
Handgrip strength (kg), n = 315 | 30.7 ± 11.2 | 23.2 ± 6.3 | 41.2 ± 7.4 | <0.001 | −2.655 |
30 s arm curl (reps), n = 226 | 17.1 ± 4.0 | 15.9 ± 3.5 | 18.1 ± 4.2 | <0.001 | −0.591 |
Timed up and go (s), n = 227 | 5.4 ± 1.1 | 5.8 ± 1.1 | 5.1 ± 1.1 | <0.001 | 0.632 |
Gait speed (m/s), n = 321 | 2.0 ± 0.6 | 1.8 ± 0.5 | 2.4 ± 0.5 | <0.001 | −1.216 |
6 min walk test (m), n = 322 | 529.6 ± 141.4 | 471.2 ± 127.4 | 612.6 ± 117.0 | <0.001 | −1.147 |
Fat Free Mass | |||||||
---|---|---|---|---|---|---|---|
Arm Left | Arm Right | Trunk | Leg Left | Leg Right | Head | Total | |
Phase angle (°) | 0.408 ** | 0.415 ** | 0.453 ** | 0.345 * | 0.350 * | 0.198 | 0.425 ** |
Resistance (ohm) | −0.613 *** | −0.671 *** | −0.680 *** | −0.617 *** | −0.610 *** | −0.132 | −0.665 ** |
Reactance (ohm) | −0.182 | −0.213 | −0.188 | −0.226 | −0.219 | 0.041 | −0.201 |
Total body water (l) | 0.871 *** | 0.898 *** | 0.875 *** | 0.877 *** | 0.905 *** | 0.393 ** | 0.917 ** |
Lean body mass (kg) | 0.871 *** | 0.898 *** | 0.875 *** | 0.877 *** | 0.905 *** | 0.392 ** | 0.917 ** |
Extracellular mass (kg) | 0.715 *** | 0.742 *** | 0.690 *** | 0.745 *** | 0.778 ** | 0.316 * | 0.750 ** |
Body cell mass (kg) | 0.844 ** | 0.869 *** | 0.869 *** | 0.824 *** | 0.849 *** | 0.387 ** | 0.890 ** |
Body fat mass (kg) | 0.214 | 0.276 * | 0.344* | 0.422 ** | 0.383 ** | 0.198 | 0.353 * |
Body fat percentage (%) | −0.134 | −0.090 | −0.012 | 0.059 | 0.006 | 0.001 | −0.024 |
Skeletal muscle mass (kg) | 0.852 *** | 0.877 *** | 0.842 *** | 0.802 *** | 0.845 *** | 0.388 ** | 0.877 ** |
Fat mass | |||||||
Arm Left | Arm Right | Trunk | Leg Left | Leg Right | Head | Total | |
Phase angle (°) | 0.246 | 0.177 | 0.372 ** | 0.087 | 0.077 | 0.248 | 0.280 * |
Resistance (ohm) | −0.223 | −0.199 | −0.367 ** | −0.004 | 0.001 | −0.078 | −0.238 |
Reactance (ohm) | 0.032 | −0.002 | 0.017 | 0.088 | 0.083 | 0.126 | 0.052 |
Total body water (l) | 0.237 | 0.198 | 0.423 ** | −0.011 | −0.001 | 0.296* | 0.272 |
Lean body mass (kg) | 0.236 | 0.197 | 0.422 ** | −0.012 | −0.003 | 0.295 * | 0.271 |
Extracellular mass (kg) | 0.113 | 0.099 | 0.234 | −0.072 | −0.062 | 0.188 | 0.121 |
Body cell mass (kg) | 0.295 * | 0.236 | 0.493 *** | 0.033 | 0.036 | 0.334 * | 0.336 * |
Body fat mass (kg) | 0.780 *** | 0.756 *** | 0.818 *** | 0.741 *** | 0.756 *** | 0.252 | 0.907 *** |
Body fat percentage (%) | 0.691 *** | 0.676 *** | 0.684 *** | 0.741 *** | 0.755 *** | 0.106 | 0.816 *** |
Skeletal muscle mass (kg) | 0.086 | 0.052 | 0.255 | −0.187 | −0.179 | 0.279* | 0.078 |
Phase Angle (°) | Resistance 50 kHz (ohm) | Reactance 50 kHz (Ohm) | 30 s Chair Stand (WH) | Handgrip Strength Maximal (kg) | Arm Curl Test Maximal (WH) | Timed Up and Go (s) | Gait Speed (m/s) | 6 min Walk Test (m) | Physical Performance Score | Age (Years) | Body Mass Index (kg/m²) | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Resistance 50 kHz (ohm) | total | −0.293 *** | |||||||||||
female | −0.106 | ||||||||||||
male | −0.078 | ||||||||||||
Reactance 50 kHz (ohm) | total | 0.524 *** | 0.635 *** | ||||||||||
female | 0.678 *** | 0.618 *** | |||||||||||
male | 0.700 *** | 0.641 *** | |||||||||||
30 s chair stand (WH) | total | 0.302 *** | 0.022 | 0.251 *** | |||||||||
female | 0.217 ** | 0.157 * | 0.280 *** | ||||||||||
male | 0.344 *** | 0.102 | 0.333 *** | ||||||||||
Handgrip strength maximal (kg) | total | 0.488 *** | −0.542 *** | −0.114 * | 0.175 ** | ||||||||
female | 0.453 *** | −0.120 | 0.251 ** | 0.089 | |||||||||
male | 0.241 ** | −0.128 | 0.107 | 0.139 | |||||||||
Arm curl test maximal (WH) | total | 0.170 * | −0.222 ** | −0.079 | 0.333 *** | 0.401 *** | |||||||
female | 0.154 | −0.094 | 0.039 | 0.342 *** | 0.266 ** | ||||||||
male | 0.060 | −0.061 | −0.008 | 0.305 ** | 0.318 *** | ||||||||
Timed up and go (s) | total | −0.312 *** | 0.053 | −0.170 * | −0.433 *** | −0.387 *** | −0.501 *** | ||||||
female | −0.148 | −0.082 | −0.176 | −0.328 ** | −0.363 *** | −0.603 *** | |||||||
male | −0.324 *** | −0.234 *** | −0.392 *** | −0.488 *** | −0.197 * | −0.355 *** | |||||||
Gait speed (m/s) | total | 0.470 *** | −0.218 *** | 0.160 ** | 0.448 *** | 0.656 *** | 0.591 *** | −0.736 *** | |||||
female | 0.379 *** | 0.107 | 0.350 *** | 0.426 *** | 0.608 *** | 0.496 *** | −0.717 *** | ||||||
male | 0.317 *** | 0.169 | 0.361 *** | 0.463 *** | 0.314 *** | 0.567 *** | −0.702 *** | ||||||
6 min walk test (m) | total | 0.554 *** | −0.224 *** | 0.231 *** | 0.432 *** | 0.679 *** | 0.431 *** | −0.689 *** | 0.870 *** | ||||
female | 0.449 *** | 0.034 | 0.357 *** | 0.393 *** | 0.654 *** | 0.377 *** | −0.618 *** | 0.841 *** | |||||
male | 0.482 *** | 0.222 * | 0.533 *** | 0.460 *** | 0.405 *** | 0.349 ** | −0.676 *** | 0.806 *** | |||||
Physical performance score | total | 0.408 *** | 0.056 | 0.374 *** | 0.558 *** | 0.398 *** | 0.372 *** | −0.539 *** | 0.771 *** | 0.796 *** | |||
female | 0.443 *** | 0.018 | 0.346 *** | 0.497 *** | 0.777 *** | 0.516 *** | −0.721 *** | 0.923 *** | 0.930 *** | ||||
male | 0.443 *** | 0.142 | 0.447 *** | 0.670 *** | 0.547 *** | 0.526 *** | −0.726 *** | 0.886 *** | 0.908 *** | ||||
Age (years) | total | −0.537 *** | 0.214 *** | −0.248 *** | −0.168 ** | −0.548 *** | −0.275 *** | 0.378 *** | −0.565 *** | −0.668 *** | −0.577 *** | ||
female | −0.507 *** | 0.054 | −0.353 *** | −0.103 | −0.655 *** | −0.283 ** | 0.356 *** | −0.550 *** | −0.671 *** | −0.643 *** | |||
male | −0.450 *** | 0.054 | −0.336 *** | −0.184 * | −0.468 *** | −0.247 ** | 0.377 *** | −0.452 *** | −0.571 *** | −0.535 *** | |||
Body mass index (kg/m²) | total | −0.122 * | −0.461 *** | −0.498 *** | −0.236 *** | −0.076 | −0.005 | 0.235 *** | −0.337 *** | −0.391 *** | −0.332 *** | 0.095 | |
female | −0.107 | −0.592 *** | −0.515 *** | −0.239 ** | −0.145 | 0.019 | 0.179 | −0.391 *** | −0.386 *** | −0.342 *** | 0.139 | ||
male | −0.101 | −0.703 *** | −0.570 *** | −0.213 * | 0.061 | −0.061 | 0.353 *** | −0.297 ** | −0.461 *** | −0.319 *** | −0.039 | ||
Protein (g/kg BW/day) | total | 0.050 | 0.163 ** | 0.197 ** | 0.060 | −0.006 | −0.053 | −0.097 | 0.107 | 0.109 | 0.042 | −0.048 | −0.314 *** |
female | 0.003 | 0.273 *** | 0.228 ** | 0.065 | −0.116 | −0.079 | −0.190 | 0.155 * | 0.097 | 0.065 | −0.035 | −0.321 *** | |
male | 0.060 | 0.216 * | 0.209 * | 0.030 | −0.085 | −0.089 | 0.052 | −0.037 | 0.067 | 0.000 | −0.012 | −0.291 ** |
PP Tests | Multiple Regression Models | |||||||
---|---|---|---|---|---|---|---|---|
Model | R2 | F | ∆R2 | ∆F | Ind. Variables | B | β | |
CST | Model 1 | 0.108 | 12.313 *** | 0.099 | 12.313 ** | Constant Age Sex BMI | 20.294 *** −0.055 * 0.675 * −0.141 *** | −0.138 0.118 −0.235 |
Model 2 | 0.142 | 12.607 *** | 0.131 | 12.145 ** | Constant Age Sex BMI PhA | 12.827 *** −0.016 0.351 −0.132 *** 0.885 ** | −0.040 0.061 −0.221 0.226 | |
HG | Model 1 | 0.774 | 351.328 *** | 0.772 | 351.328 *** | Constant Age Sex BMI | 67.182 *** −0.571 *** 15.534 *** −0.013 | −0.369 0.704 −0.005 |
Model 2 | 0.781 | 272.191 *** | 0.778 | 8.619 ** | Constant Age Sex BMI Resistance | 79.156 *** −0.554 *** 13.849 *** −0.160 −0.017 ** | −0.358 0.628 −0.066 −0.125 | |
Model 3 | 0.784 | 220.890 *** | 0.780 | 4.222 * | Constant Age Sex BMI Resistance PhA | 69.060 *** −0.508 *** 13.702 *** −0.138 −0.015 * 1.031 * | −0.328 0.621 −0.057 −0.110 0.067 | |
AC | Model 1 | 0.136 | 11.549 *** | 0.124 | 11.549 *** | Constant Age Sex BMI | 30.298 *** −0.188 *** 1.977 *** −0.030 | −0.240 0.261 −0.034 |
Model 2 | 0.155 | 10.110 *** | 0.140 | 5.146 * | Constant Age Sex BMI Resistance | 40.573 *** −0.200 *** 0.993 −0.151 * −0.012 * | −0.255 0.131 −0.174 −0.241 | |
TUG | Model 1 | 0.307 | 32.605 *** | 0.297 | 32.605 *** | Constant Age Sex BMI | −1.647 0.078 *** −0.668 *** 0.067 *** | 0.361 −0.319 0.276 |
Model 2 | 0.320 | 25.868 *** | 0.308 | 4.228 * | Constant Age Sex BMI PhA | −0.122 0.071 *** −0.597 *** 0.065 *** −0.196 * | 0.328 −0.285 0.272 −0.124 | |
GS | Model 1 | 0.575 | 141.297 *** | 0.571 | 141.297 *** | Constant Age Sex BMI | 5.625 *** −0.040 *** 0.390 *** −0.029 *** | −0.500 0.347 −0.244 |
Model 2 | 0.585 | 109.820 *** | 0.579 | 7.110 ** | Constant Age Sex BMI PhA | 44.851 *** −0.036 *** 0.358 *** −0.028 *** 0.091 ** | −0.449 0.318 −0.237 0.118 | |
6MWT | Model 1 | 0.682 | 224.011 *** | 0.679 | 224.011 *** | Constant Age Sex BMI | 1597.978 *** −11.329 *** 81.936 *** −8.965 *** | −0.592 0.296 −0.309 |
Model 2 | 0.701 | 183.220 *** | 0.698 | 20.016 *** | Constant Age Sex BMI PhA | 1322.378 *** −9.826 *** 71.023 *** −8.684 *** 32.042 *** | −0.513 0.257 −0.299 0.170 | |
Model 3 | 0.714 | 155.229 *** | 0.709 | 13.621 *** | Constant Age Sex BMI PhA Resistance | 1443.476 *** −9.849 *** 40.679 ** −11.397 *** 57.426 *** −3.704 *** | −0.514 0.147 −0.392 0.305 −0.206 | |
PP score | Model 1 | 0.471 | 92.123 *** | 0.466 | 92.123 *** | Constant Age Sex BMI | 21.221 *** −0.219 *** −1.003 *** −0.159 *** | −0.630 −0.204 −0.295 |
Model 2 | 0.500 | 77.334 *** | 0.494 | 17.901 *** | Constant Age Sex BMI PhA | 15.362 *** −0.187 *** −1.245 *** −0.156 *** 0.702 *** | −0.539 −0.254 −0.290 0.206 | |
Model 3 | 0.509 | 63.850 *** | 0.501 | 5.453 * | Constant Age Sex BMI PhA Reactance | 17.116 *** −0.187 *** −1.687 *** −0.196 *** 1.076 *** −0.054 * | −0.539 −0.344 −0.363 0.316 −0.166 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Unterberger, S.; Aschauer, R.; Zöhrer, P.A.; Draxler, A.; Aschauer, M.; Kager, B.; Franzke, B.; Strasser, E.-M.; Wagner, K.-H.; Wessner, B. Association of Bioelectrical Impedance Phase Angle with Physical Performance and Nutrient Intake of Older Adults. Nutrients 2023, 15, 1458. https://doi.org/10.3390/nu15061458
Unterberger S, Aschauer R, Zöhrer PA, Draxler A, Aschauer M, Kager B, Franzke B, Strasser E-M, Wagner K-H, Wessner B. Association of Bioelectrical Impedance Phase Angle with Physical Performance and Nutrient Intake of Older Adults. Nutrients. 2023; 15(6):1458. https://doi.org/10.3390/nu15061458
Chicago/Turabian StyleUnterberger, Sandra, Rudolf Aschauer, Patrick A. Zöhrer, Agnes Draxler, Mirjam Aschauer, Benno Kager, Bernhard Franzke, Eva-Maria Strasser, Karl-Heinz Wagner, and Barbara Wessner. 2023. "Association of Bioelectrical Impedance Phase Angle with Physical Performance and Nutrient Intake of Older Adults" Nutrients 15, no. 6: 1458. https://doi.org/10.3390/nu15061458
APA StyleUnterberger, S., Aschauer, R., Zöhrer, P. A., Draxler, A., Aschauer, M., Kager, B., Franzke, B., Strasser, E. -M., Wagner, K. -H., & Wessner, B. (2023). Association of Bioelectrical Impedance Phase Angle with Physical Performance and Nutrient Intake of Older Adults. Nutrients, 15(6), 1458. https://doi.org/10.3390/nu15061458