Infants’ Folate Markers and Postnatal Growth in the First 4 Months of Life in Relation to Breastmilk and Maternal Plasma Folate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Blood and Breastmilk Analyses
2.3. Statistical Analyses
3. Results
3.1. Concentrations of Folate Markers in Mothers and Their Breastfed Infants
3.2. The Association between Breastmilk 5-MTHF and Folate Markers in the Mothers and Infants
3.3. Maternal Plasma Folate, Breastmilk Folate, and Infant’s Folate Markers at Age of 4 Months
3.4. Infants’ Longitudinal Anthropometrics in Relation to Breastmilk and Maternal Plasma Folate
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Han, Y.H.; Yon, M.; Han, H.S.; Kim, K.Y.; Tamura, T.; Hyun, T.H. Folate contents in human milk and casein-based and soya-based formulas, and folate status in Korean infants. Br. J. Nutr. 2009, 101, 1769–1774. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Houghton, L.A.; Yang, J.; O’Connor, D.L. Unmetabolized folic acid and total folate concentrations in breast milk are unaffected by low-dose folate supplements. Am. J. Clin. Nutr. 2009, 89, 216–220. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keizer, S.E.; Gibson, R.S.; O’Connor, D.L. Postpartum folic acid supplementation of adolescents: Impact on maternal folate and zinc status and milk composition. Am. J. Clin. Nutr. 1995, 62, 377–384. [Google Scholar] [CrossRef] [PubMed]
- Mackey, A.D.; Picciano, M.F. Maternal folate status during extended lactation and the effect of supplemental folic acid. Am. J. Clin. Nutr. 1999, 69, 285–292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Connor, D.L.; Green, T.; Picciano, M.F. Maternal folate status and lactation. J. Mammary Gland. Biol. Neoplasia 1997, 2, 279–289. [Google Scholar] [CrossRef]
- Hay, G.; Clausen, T.; Whitelaw, A.; Trygg, K.; Johnston, C.; Henriksen, T.; Refsum, H. Maternal folate and cobalamin status predicts vitamin status in newborns and 6-month-old infants. J. Nutr. 2010, 140, 557–564. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Yoshimura, Y.; Arakawa, T. Human milk folate and folate status in lactating mothers and their infants. Am. J. Clin. Nutr. 1980, 33, 193–197. [Google Scholar] [CrossRef] [Green Version]
- Brown, C.M.; Smith, A.M.; Picciano, M.F. Forms of human milk folacin and variation patterns. J. Pediatr. Gastroenterol. Nutr. 1986, 5, 278–282. [Google Scholar] [CrossRef]
- O’Connor, D.L.; Tamura, T.; Picciano, M.F. Pteroylpolyglutamates in human milk. Am. J. Clin. Nutr. 1991, 53, 930–934. [Google Scholar] [CrossRef]
- Institute of Medicine (US) Standing Committee on the Scientific Evaluation of Dietary Reference Intakes and its Panel on Folate, Other B Vitamins, and Choline. Chapter 8 Folate, Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academy of Sciences: Washington, DC, USA, 1998; pp. 196–305. [Google Scholar]
- Ek, J.; Magnus, E. Plasma and red cell folate values and folate requirements in formula-fed term infants. J. Pediatr. 1982, 100, 738–744. [Google Scholar] [CrossRef]
- Smith, A.M.; Picciano, M.F.; Deering, R.H. Folate supplementation during lactation: Maternal folate status, human milk folate content, and their relationship to infant folate status. J. Pediatr. Gastroenterol. Nutr. 1983, 2, 622–628. [Google Scholar] [CrossRef]
- Metz, J. Folate deficiency conditioned by lactation. Am. J. Clin. Nutr. 1970, 23, 843–847. [Google Scholar] [CrossRef] [Green Version]
- Suh, J.R.; Oppenheim, E.W.; Girgis, S.; Stover, P.J. Purification and properties of a folate-catabolizing enzyme. J. Biol. Chem. 2000, 275, 35646–35655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Geoghegan, F.L.; McPartlin, J.M.; Weir, D.G.; Scott, J.M. para-Acetamidobenzoylglutamate is a suitable indicator of folate catabolism in rats. J. Nutr. 1995, 125, 2563–2570. [Google Scholar] [PubMed]
- Niesser, M.; Harder, U.; Koletzko, B.; Peissner, W. Quantification of urinary folate catabolites using liquid chromatography-tandem mass spectrometry. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2013, 929, 116–124. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.F., III; Williamson, J.; Liao, J.F.; Bailey, L.B.; Toth, J.P. Kinetic model of folate metabolism in nonpregnant women consuming [2H2]folic acid: Isotopic labeling of urinary folate and the catabolite para-acetamidobenzoylglutamate indicates slow, intake-dependent, turnover of folate pools. J. Nutr. 1998, 128, 1896–1906. [Google Scholar] [CrossRef] [Green Version]
- Kubo, Y.; Fukuoka, H.; Kawabata, T.; Shoji, K.; Mori, C.; Sakurai, K.; Nishikawa, M.; Ohkubo, T.; Oshida, K.; Yanagisawa, N.; et al. Distribution of 5-Methyltetrahydrofolate and Folic Acid Levels in Maternal and Cord Blood Serum: Longitudinal Evaluation of Japanese Pregnant Women. Nutrients 2020, 12, 1633. [Google Scholar] [CrossRef]
- Obeid, R.; Kasoha, M.; Kirsch, S.H.; Munz, W.; Herrmann, W. Concentrations of unmetabolized folic acid and primary folate forms in pregnant women at delivery and in umbilical cord blood. Am. J. Clin. Nutr. 2010, 92, 1416–1422. [Google Scholar] [CrossRef] [Green Version]
- Hampel, D.; Allen, L.H. Analyzing B-vitamins in Human Milk: Methodological Approaches. Crit. Rev. Food Sci. Nutr. 2016, 56, 494–511. [Google Scholar] [CrossRef]
- Page, R.; Wong, A.; Arbuckle, T.E.; MacFarlane, A.J. The MTHFR 677C>T polymorphism is associated with unmetabolized folic acid in breast milk in a cohort of Canadian women. Am. J. Clin. Nutr. 2019, 110, 401–409. [Google Scholar] [CrossRef] [Green Version]
- Timmermans, S.; Jaddoe, V.W.; Hofman, A.; Steegers-Theunissen, R.P.; Steegers, E.A. Periconception folic acid supplementation, fetal growth and the risks of low birth weight and preterm birth: The Generation R Study. Br. J. Nutr. 2009, 102, 777–785. [Google Scholar] [CrossRef] [Green Version]
- Czeizel, A.E.; Puho, E.H.; Langmar, Z.; Acs, N.; Banhidy, F. Possible association of folic acid supplementation during pregnancy with reduction of preterm birth: A population-based study. Eur. J. Obstet. Gynecol. Reprod. Biol. 2010, 148, 135–140. [Google Scholar] [CrossRef]
- Hodgetts, V.A.; Morris, R.K.; Francis, A.; Gardosi, J.; Ismail, K.M. Effectiveness of folic acid supplementation in pregnancy on reducing the risk of small-for-gestational age neonates: A population study, systematic review and meta-analysis. BJOG Int. J. Obstet. Gynaecol. 2015, 122, 478–490. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Wang, Y.; Xin, X.; Zhang, Y.; Liu, D.; Peng, Z.; He, Y.; Xu, J.; Ma, X. Effect of folic acid supplementation on preterm delivery and small for gestational age births: A systematic review and meta-analysis. Reprod. Toxicol. 2017, 67, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Troesch, B.; Demmelmair, J.; Gimpfl, M.; Hecht, C.; Lakovic, G.; Roehle, R.; Sipka, L.; Trisic, B.; Vusurovic, M.; Schoop, R.; et al. Suitability and safety of L-5-methyltetrahydrofolate as a folate source in infant formula: A randomized-controlled trial. PLoS ONE 2019, 14, e0216790. [Google Scholar] [CrossRef] [Green Version]
- Hannisdal, R.; Ueland, P.M.; Svardal, A. Liquid chromatography-tandem mass spectrometry analysis of folate and folate catabolites in human serum. Clin. Chem. 2009, 55, 1147–1154. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Page, R.; Robichaud, A.; Arbuckle, T.E.; Fraser, W.D.; MacFarlane, A.J. Total folate and unmetabolized folic acid in the breast milk of a cross-section of Canadian women. Am. J. Clin. Nutr. 2017, 105, 1101–1109. [Google Scholar] [CrossRef] [Green Version]
- Molloy, A.M.; Scott, J.M. Microbiological assay for serum, plasma, and red cell folate using cryopreserved, microtiter plate method. Methods Enzymol. 1997, 281, 43–53. [Google Scholar]
- Pfeiffer, C.M.; Hughes, J.P.; Lacher, D.A.; Bailey, R.L.; Berry, R.J.; Zhang, M.; Yetley, E.A.; Rader, J.I.; Sempos, C.T.; Johnson, C.L. Estimation of trends in serum and RBC folate in the U.S. population from pre- to postfortification using assay-adjusted data from the NHANES 1988–2010. J. Nutr. 2012, 142, 886–893. [Google Scholar] [CrossRef] [Green Version]
- Myatt, M.; Guevarra, E. Child Anthropometry z-Score Calculator; R Package Version 0.3.1; R Foundation for Statistical Computing: Vienna, Austria, 2019. [Google Scholar]
- Su, Y.; Mao, Y.; Tian, F.; Cai, X.; Chen, R.; Li, N.; Qian, C.; Li, X.; Zhao, Y.; Wang, Y. Profile of Folate in Breast Milk from Chinese Women over 1-400 Days Postpartum. Nutrients 2022, 14, 2962. [Google Scholar] [CrossRef]
- Xue, Y.; Redeuil, K.M.; Gimenez, E.C.; Vinyes-Pares, G.; Zhao, A.; He, T.; Yang, X.; Zheng, Y.; Zhang, Y.; Wang, P.; et al. Regional, socioeconomic, and dietary factors influencing B-vitamins in human milk of urban Chinese lactating women at different lactation stages. BMC Nutr. 2017, 3, 22. [Google Scholar] [CrossRef] [Green Version]
- EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA). Scientific opinion on dietary reference values for folate. EFSA J. 2014, 12, 3893. [Google Scholar]
- Colman, N.; Hettiarachchy, N.; Herbert, V. Detection of a milk factor that facilitates folate uptake by intestinal cells. Science 1981, 211, 1427–1429. [Google Scholar] [CrossRef] [PubMed]
- Mason, J.B.; Selhub, J. Folate-binding protein and the absorption of folic acid in the small intestine of the suckling rat. Am. J. Clin. Nutr. 1988, 48, 620–625. [Google Scholar] [CrossRef]
- Said, H.M.; Horne, D.W.; Wagner, C. Effect of human milk folate binding protein on folate intestinal transport. Arch. Biochem. Biophys. 1986, 251, 114–120. [Google Scholar] [CrossRef]
- Jones, M.L.; Treloar, T.; Nixon, P.F. Dietary interactions influence the effects of bovine folate-binding protein on the bioavailability of tetrahydrofolates in rats. J. Nutr. 2003, 133, 489–495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colson, N.J.; Naug, H.L.; Nikbakht, E.; Zhang, P.; McCormack, J. The impact of MTHFR 677 C/T genotypes on folate status markers: A meta-analysis of folic acid intervention studies. Eur. J. Nutr. 2017, 56, 247–260. [Google Scholar] [CrossRef] [Green Version]
- Metz, J.; Zalusky, R.; Herbert, V. Folic acid binding by serum and milk. Am. J. Clin. Nutr. 1968, 21, 289–297. [Google Scholar] [CrossRef]
- Steenweg-de, G.J.; Roza, S.J.; Walstra, A.N.; El, M.H.; Steegers, E.A.P.; Jaddoe, V.W.V.; Hofman, A.; Verhulst, F.C.; Tiemeier, H.; White, T. Associations of maternal folic acid supplementation and folate concentrations during pregnancy with foetal and child head growth: The Generation R Study. Eur. J. Nutr. 2017, 56, 65–75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rubini, E.; Baijens, I.M.M.; Horanszky, A.; Schoenmakers, S.; Sinclair, K.D.; Zana, M.; Dinnyes, A.; Steegers-Theunissen, R.P.M.; Rousian, M. Maternal One-Carbon Metabolism during the Periconceptional Period and Human Foetal Brain Growth: A Systematic Review. Genes 2021, 12, 1634. [Google Scholar] [CrossRef]
- Moen, G.H.; Beaumont, R.N.; Grarup, N.; Sommer, C.; Shields, B.M.; Lawlor, D.A.; Freathy, R.M.; Evans, D.M.; Warrington, N.M. Investigating the causal effect of maternal vitamin B12 and folate levels on offspring birthweight. Int. J. Epidemiol. 2021, 50, 179–189. [Google Scholar] [CrossRef] [PubMed]
- Van Uitert, E.M.; Steegers-Theunissen, R.P. Influence of maternal folate status on human fetal growth parameters. Mol. Nutr. Food Res. 2013, 57, 582–595. [Google Scholar] [CrossRef] [PubMed]
Mean (SD) | Mean (SD) of Z-Scores | |
---|---|---|
Birth weight, g, n = 120 | 3446 (383) | |
Gestational age at birth, weeks, n = 120 | 39.6 (1.0) | |
Male sex, n (%), n = 120 | 58 (48.3%) | |
Baseline visit, n = 120 | ||
Age, days | 20 (3) | |
Weight, g | 3905 (425) | 0.004 (0.702) |
Length, cm | 54.0 (1.9) | 0.681 (0.963) |
Head circumference, cm | 36.2 (1.1) | 0.116 (0.862) |
Visit 1, n = 115 | ||
Age, days | 29 (1) | |
Weight, g | 4299 (441) | 0.045 (0.705) |
Length, cm | 55.2 (1.9) | 0.628 (0.924) |
Head circumference, cm | 37.0 (1.1) | 0.191 (0.868) |
Visit 2, n = 114 | ||
Age, days | 56 (2) | |
Weight, g | 5267 (530) | 0.073 (0.702) |
Length, cm | 58.4 (2.0) | 0.600 (0.906) |
Head circumference, cm | 38.8 (1.2) | 0.309 (0.892) |
Visit 3, n = 112 | ||
Age, days | 80 (2) | |
Weight, g | 6034 (625) | 0.077 (0.761) |
Length, cm | 61.7 (2.1) | 0.803 (0.966) |
Head circumference, cm | 40.2 (1.2) | 0.364 (0.856) |
Visit 4, n = 112 | ||
Age, days | 113 (3) | |
Weight, g | 6647 (681) | 0.095 (0.794) |
Length, cm | 64.2 (2.1) | 0.884 (0.932) |
Head circumference, cm | 41.4 (1.2) | 0.488 (0.883) |
MTHFR C677T genotype 2 | n = 110 (100%) | |
CC, n | 40 | |
CT, n | 48 | |
TT, n | 22 | |
MTHFR A1298C genotype 2 | n = 110 (100%) | |
AA, n | 70 | |
AC, n | 30 | |
CC, n | 10 |
Maternal Folate Markers (8 Weeks Postpartum) | Low Suppliers of 5-MTHF in Breastmilk Mean (SD) = 29.1 (7.6) Range 13.2–39.6 nmol/L 1 | High Suppliers of 5-MTHF in Breastmilk Mean (SD) = 62.9 (21.5) Range 40.2–126.1 nmol/L 1 | p 2 (Low vs. High Breastmilk Folate) | ||||
Plasma 5-MTHF, nmol/L | 23.3 (16.5) | 16.6 (11.9) | 0.015 | ||||
Plasma pABG, nmol/L | 8.5 (5.9) | 6.2 (4.8) | 0.032 | ||||
Plasma N-acetyl-pABG, nmol/L | 0.7 (0.3) | 0.7 (0.3) | 0.684 | ||||
pABG + N-acetyl-pABG, nmol/L | 9.2 (6.0) | 7.0 (5.0) | 0.034 | ||||
Plasma hmTHF, nmol/L | 6.6 (3.5) | 5.3 (2.4) | 0.015 | ||||
Sum of 5-MTHF and hmTHF in plasma, nmol/L | 30.0 (19.4) | 21.9 (13.5) | 0.007 | ||||
Infant’s Folate Markers | Baseline | V4 | Baseline | V4 | Baseline p 3 | Visit 4 p 4 | Visit 4 p 5 |
Plasma 5-MTHF, nmol/L | 26.1 (15.4) | 33.5 (19.9) | 25.9 (16.2) | 34.8 (14.9) | 0.983 | 0.175 | 0.065 |
Plasma pABG, nmol/L | 8.7 (5.4) | 13.4 (8.9) | 7.9 (6.5) | 16.1 (11.5) | 0.141 | 0.025 | 0.114 |
Plasma N-acetyl-pABG, nmol/L | 1.1 (0.3) | 0.6 (0.1) | 1.1 (0.4) | 0.7 (0.3) | 0.371 | 0.165 | 0.076 |
Plasma pABG + N-acetyl-pABG, nmol/L | 9.8 (5.3) | 14.0 (8.9) | 9.0 (6.5) | 16.8 (11.5) | 0.180 | 0.026 | 0.110 |
pABG + N-acetyl-pABG nmol/L/kg body weight | 2.5 (1.4) | 2.3 (1.4) | 2.3 (1.8) | 2.8 (1.9) | 0.150 | 0.027 | 0.113 |
Plasma hmTHF, nmol/L | 9.1 (6.4) | 3.9 (3.4) | 9.2 (5.9) | 4.3 (2.4) | 0.819 | 0.026 | 0.025 |
Sum of 5-MTHF and hmTHF in plasma, nmol/L | 35.2 (21.0) | 37.4 (22.4) | 35.1 (21.4) | 39.2 (16.1) | 0.931 | 0.132 | 0.049 |
Plasma tHcy, µmol/L | 6.7 (1.9) | 8.7 (2.8) | 7.0 (2.3) | 8.6 (2.9) | 0.394 | 0.088 | 0.091 |
RBC-folate, nmol/L | 1365 (486) | 1292 (673) | 1427 (631) | 1391 (528) | 0.985 | 0.095 | 0.103 |
Exposure Variable | Z-Scores of Weight 2 | Z-Scores of Length 2 | Z-Scores of Head Circumference 2 |
---|---|---|---|
Log-breastmilk 5-MTHF | |||
Unadjusted β (95% CI), n = 566 observations | 0.096 (−0.535, 0.728) | 0.160 (−0.571, 0.891) | 0.564 (−0.165, 1.292) |
Adjusted β (95% CI) 1 | 0.097 (−0.522, 0.717) | 0.160 (−0.574, 0.894) | 0.573 (−0.159, 1.305) |
Log−5-MTHF in plasma of the mother | |||
Unadjusted β (95% CI), n = 566 observations | −0.096 (−0.508, 0.316) | −0.020 (−0.443, 0.397) | −0.259 (−0.754, 0.237) |
Adjusted β (95% CI) 1 | −0.099 (−0.502, 0.304) | −0.023 (−0.444, 0.397) | −0.258 (−0.754, 0.237) |
Log-sum of 5-MTHF and hmTHF in plasma of the mother | |||
Unadjusted β (95% CI), n = 561 observations | −0.170 (−0.645, 0.304) | −0.053 (−0.550, 0.445) | −0.403 (−0.992, 0.187) |
Adjusted β (95% CI) 1 | −0.171 (−0.630, 0.288) | −0.053 (−0.551, 0.445) | −0.404 (−0.993, 0.185) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Obeid, R.; Warnke, I.; Bendik, I.; Troesch, B.; Schoop, R.; Chenal, E.; Koletzko, B., on behalf of the MEFOLIN Study Group. Infants’ Folate Markers and Postnatal Growth in the First 4 Months of Life in Relation to Breastmilk and Maternal Plasma Folate. Nutrients 2023, 15, 1495. https://doi.org/10.3390/nu15061495
Obeid R, Warnke I, Bendik I, Troesch B, Schoop R, Chenal E, Koletzko B on behalf of the MEFOLIN Study Group. Infants’ Folate Markers and Postnatal Growth in the First 4 Months of Life in Relation to Breastmilk and Maternal Plasma Folate. Nutrients. 2023; 15(6):1495. https://doi.org/10.3390/nu15061495
Chicago/Turabian StyleObeid, Rima, Ines Warnke, Igor Bendik, Barbara Troesch, Rotraut Schoop, Elodie Chenal, and Berthold Koletzko on behalf of the MEFOLIN Study Group. 2023. "Infants’ Folate Markers and Postnatal Growth in the First 4 Months of Life in Relation to Breastmilk and Maternal Plasma Folate" Nutrients 15, no. 6: 1495. https://doi.org/10.3390/nu15061495
APA StyleObeid, R., Warnke, I., Bendik, I., Troesch, B., Schoop, R., Chenal, E., & Koletzko, B., on behalf of the MEFOLIN Study Group. (2023). Infants’ Folate Markers and Postnatal Growth in the First 4 Months of Life in Relation to Breastmilk and Maternal Plasma Folate. Nutrients, 15(6), 1495. https://doi.org/10.3390/nu15061495