Characterization of Female US Marine Recruits: Workload, Caloric Expenditure, Fitness, Injury Rates, and Menstrual Cycle Disruption during Bootcamp
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Participants
3.2. Fitness Test Data
3.2.1. IST
3.2.2. PFT
3.2.3. CFT
3.3. Estimated Caloric Expenditure
3.4. Sleep
3.5. Workload
3.6. Menstrual Cycle Function
3.7. Injuries
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Disclaimer
References
- O’Leary, T.J.; Wardle, S.L.; Greeves, J.P. Energy Deficiency in Soldiers: The Risk of the Athlete Triad and Relative Energy Deficiency in Sport Syndromes in the Military. Front. Nutr. 2020, 7, 142. [Google Scholar] [CrossRef]
- O’Leary, T.J.; Saunders, S.C.; McGuire, S.J.; Venables, M.C.; Izard, R.M. Sex Differences in Training Loads during British Army Basic Training. Med. Sci. Sport. Exerc. 2018, 50, 2565–2574. [Google Scholar] [CrossRef]
- Richmond, V.L.; Carter, J.M.; Wilkinson, D.M.; Homer, F.E.; Rayson, M.P.; Wright, A.; Bilzon, J.L. Comparison of the physical demands of single-sex training for male and female recruits in the British Army. Mil. Med. 2012, 177, 709–715. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gordon, C.M.; Ackerman, K.E.; Berga, S.L.; Kaplan, J.R.; Mastorakos, G.; Misra, M.; Murad, M.H.; Santoro, N.F.; Warren, M.P. Functional Hypothalamic Amenorrhea: An Endocrine Society Clinical Practice Guideline. J. Clin. Endocrinol. Metab. 2017, 102, 1413–1439. [Google Scholar] [CrossRef]
- De Souza, M.J.; Toombs, R.J.; Scheid, J.L.; O’Donnell, E.; West, S.L.; Williams, N.I. High prevalence of subtle and severe menstrual disturbances in exercising women: Confirmation using daily hormone measures. Hum. Reprod. 2010, 25, 491–503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Grier, T.L.; Canham-Chervak, M.; Anderson, M.K.; Bushman, T.T.; Jones, B.H. Effects of Physical Training and Fitness on Running Injuries in Physically Active Young Men. J. Strength Cond. Res. 2017, 31, 207–216. [Google Scholar] [CrossRef] [PubMed]
- American College of Sports Medicine. Health-Related Physical Fitness Testing and Interpretation. In ACSM’s Guidelines for Exercise Testing and Prescription, 10th ed.; Riebe, D., Ed.; Wolters Kluwer: Philadelphia, PA, USA, 2018; p. 86. [Google Scholar]
- Melin, A.; Tornberg, Å.; Skouby, S.; Møller, S.S.; Sundgot-Borgen, J.; Faber, J.; Sidelmann, J.J.; Aziz, M.; Sjödin, A. Energy availability and the female athlete triad in elite endurance athletes. Scand. J. Med. Sci. Sport. 2015, 25, 610–622. [Google Scholar] [CrossRef]
- Schneider, M.B.; Bijur, P.E.; Fisher, M.; Friedman, S.B.; Toffler, C.P. Menstrual irregularity in female military cadets: Comparison of data utilizing short-term and long-term recall. J. Pediatr. Adolesc. Gynecol. 2003, 16, 89–93. [Google Scholar] [CrossRef]
- Cho, G.J.; Han, S.W.; Shin, J.H.; Kim, T. Effects of intensive training on menstrual function and certain serum hormones and peptides related to the female reproductive system. Medicine 2017, 96, e6876. [Google Scholar] [CrossRef]
- Trego, L.L.; Jordan, P.J. Military women’s attitudes toward menstruation and menstrual suppression in relation to the deployed environment: Development and testing of the MWATMS-9 (short form). Womens Health Issues 2010, 20, 287–293. [Google Scholar] [CrossRef]
- Gifford, R.M.; O’Leary, T.; Cobb, R.; Blackadder-Weinstein, J.; Double, R.; Wardle, S.L.; Anderson, R.A.; Thake, C.D.; Hattersley, J.; Imray, C.H.E.; et al. Female Reproductive, Adrenal, and Metabolic Changes during an Antarctic Traverse. Med. Sci. Sport. Exerc. 2019, 51, 556–567. [Google Scholar] [CrossRef] [Green Version]
- Barbeau, P.; Michaud, A.; Hamel, C.; Rice, D.; Skidmore, B.; Hutton, B.; Garritty, C.; da Silva, D.F.; Semeniuk, K.; Adamo, K.B. Musculoskeletal Injuries Among Females in the Military: A Scoping Review. Mil. Med. 2021, 186, e903–e931. [Google Scholar] [CrossRef] [PubMed]
- Bell, N.S.; Mangione, T.W.; Hemenway, D.; Amoroso, P.J.; Jones, B.H. High injury rates among female army trainees: A function of gender? Am. J. Prev. Med. 2000, 18, 141–146. [Google Scholar] [CrossRef]
- Thacker, S.B.; Branche, C.; Gilchrist, J.; Jones, B.H.; Sleet, D.A.; Kimsey, C.D. Exercise-related injuries among women: Strategies for prevention from civilian and military studies. MMWR Recomm. Rep 2000, 49, 15–33. [Google Scholar]
- Jurvelin, H.; Tanskanen-Tervo, M.; Kinnunen, H.; Santtila, M.; Kyröläinen, H. Training Load and Energy Expenditure during Military Basic Training Period. Med. Sci. Sport. Exerc. 2020, 52, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Bulmer, S.; Drain, J.R.; Tait, J.L.; Corrigan, S.L.; Gastin, P.B.; Aisbett, B.; Rantalainen, T.; Main, L.C. Quantification of Recruit Training Demands and Subjective Wellbeing during Basic Military Training. Int. J. Environ. Res. Public Health 2022, 19, 7360. [Google Scholar] [CrossRef] [PubMed]
- McAdam, J.; McGinnis, K.; Ory, R.; Young, K.; Frugé, A.D.; Roberts, M.; Sefton, J. Estimation of energy balance and training volume during Army Initial Entry Training. J. Int. Soc. Sport. Nutr. 2018, 15, 55. [Google Scholar] [CrossRef] [Green Version]
- Blacker, S.D.; Wilkinson, D.M.; Rayson, M.P. Gender differences in the physical demands of British Army recruit training. Mil. Med. 2009, 174, 811–816. [Google Scholar] [CrossRef] [Green Version]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Carter, S.; Constantini, N.; Lebrun, C.; Meyer, N.; Sherman, R.; Steffen, K.; Budgett, R.; et al. The IOC consensus statement: Beyond the Female Athlete Triad--Relative Energy Deficiency in Sport (RED-S). Br. J. Sport. Med. 2014, 48, 491–497. [Google Scholar] [CrossRef]
- Mountjoy, M.; Sundgot-Borgen, J.; Burke, L.; Ackerman, K.E.; Blauwet, C.; Constantini, N.; Lebrun, C.; Lundy, B.; Melin, A.; Meyer, N.; et al. International Olympic Committee (IOC) Consensus Statement on Relative Energy Deficiency in Sport (RED-S): 2018 Update. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 316–331. [Google Scholar] [CrossRef] [Green Version]
- Constantini, N.W.; Alves, E.; Mountjoy, M.L.; Ackerman, K.E. Relative energy deficiency in military (RED-M). BMJ Mil. Health 2023. [Google Scholar] [CrossRef] [PubMed]
- Wentz, L.; Liu, P.Y.; Haymes, E.; Ilich, J.Z. Females have a greater incidence of stress fractures than males in both military and athletic populations: A systemic review. Mil. Med. 2011, 176, 420–430. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- O’Leary, T.J.; Wardle, S.L.; Rawcliffe, A.J.; Chapman, S.; Mole, J.; Greeves, J.P. Understanding the musculoskeletal injury risk of women in combat: The effect of infantry training and sex on musculoskeletal injury incidence during British Army basic training. BMJ Mil. Health 2020, 169, 57–61. [Google Scholar] [CrossRef] [PubMed]
- Jensen, A.; Bernards Johnson, D.; Kelly, K.R. Feasibility of the Polar Grit X for Physiological Monitoring During Field Operations. In Proceedings of the Military Health Science Research Symposium, Kissamee, FL, USA, 12–15 September 2022. [Google Scholar]
- Mifflin, M.D.; St Jeor, S.T.; Hill, L.A.; Scott, B.J.; Daugherty, S.A.; Koh, Y.O. A new predictive equation for resting energy expenditure in healthy individuals. Am. J. Clin. Nutr. 1990, 51, 241–247. [Google Scholar] [CrossRef] [Green Version]
- Watson, N.F.; Badr, M.S.; Belenky, G.; Bliwise, D.L.; Buxton, O.M.; Buysse, D.; Dinges, D.F.; Gangwisch, J.; Grandner, M.A.; Kushida, C.; et al. Recommended Amount of Sleep for a Healthy Adult: A Joint Consensus Statement of the American Academy of Sleep Medicine and Sleep Research Society. Sleep 2015, 38, 843–844. [Google Scholar] [CrossRef]
- Orr, R.; Knapik, J.J.; Pope, R. Avoiding Program-Induced Cumulative Overload (PICO). J. Spec. Oper. Med. 2016, 16, 91–95. [Google Scholar] [CrossRef]
- Mahoney, M. Program of Instruction Run Mileage-MCRD San Diego; Kelly, K.R., Ed.; 2021. [Google Scholar]
- Jensen, A.E.; Laird, M.; Jameson, J.T.; Kelly, K.R. Prevalence of Musculoskeletal Injuries Sustained During Marine Corps Recruit Training. Mil. Med. 2019, 184, 511–520. [Google Scholar] [CrossRef] [Green Version]
- Schwartz, O.; Malka, I.; Olsen, C.H.; Dudkiewicz, I.; Bader, T. Overuse Injuries in the IDF’s Combat Training Units: Rates, Types, and Mechanisms of Injury. Mil. Med. 2018, 183, e196–e200. [Google Scholar] [CrossRef] [Green Version]
- Pierce, J.R.; DeGroot, D.W.; Grier, T.L.; Hauret, K.G.; Nindl, B.C.; East, W.B.; McGurk, M.S.; Jones, B.H. Body mass index predicts selected physical fitness attributes but is not associated with performance on military relevant tasks in U.S. Army Soldiers. J. Sci. Med. Sport 2017, 20 (Suppl. 4), S79–S84. [Google Scholar] [CrossRef]
- Knapik, J.J.; Sharp, M.A.; Darakjy, S.; Jones, S.B.; Hauret, K.G.; Jones, B.H. Temporal changes in the physical fitness of US Army recruits. Sport. Med. 2006, 36, 613–634. [Google Scholar] [CrossRef]
- Jones, B.H.; Bovee, M.W.; Harris, J.M., 3rd; Cowan, D.N. Intrinsic risk factors for exercise-related injuries among male and female army trainees. Am. J. Sport. Med. 1993, 21, 705–710. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.H.; Knapik, J.J. Physical training and exercise-related injuries. Surveillance, research and injury prevention in military populations. Sport. Med. 1999, 27, 111–125. [Google Scholar] [CrossRef] [PubMed]
- Jones, B.H.; Perrotta, D.M.; Canham-Chervak, M.L.; Nee, M.A.; Brundage, J.F. Injuries in the military: A review and commentary focused on prevention. Am. J. Prev. Med. 2000, 18, 71–84. [Google Scholar] [CrossRef]
- de la Motte, S.J.; Gribbin, T.C.; Lisman, P.; Murphy, K.; Deuster, P.A. Systematic Review of the Association Between Physical Fitness and Musculoskeletal Injury Risk: Part 2-Muscular Endurance and Muscular Strength. J. Strength Cond. Res. 2017, 31, 3218–3234. [Google Scholar] [CrossRef]
- Legg, S.J.; Duggan, A. The effects of basic training on aerobic fitness and muscular strength and endurance of British Army recruits. Ergonomics 1996, 39, 1403–1418. [Google Scholar] [CrossRef] [PubMed]
- Defense, D.O. Nutrition and Menu Standards for Human Performance Optimization; Secrataries of the Army, Navy, and Air Force, Ed.; Secrataries of the Army, Navy, and Air Force, and Commadant of Marine Corps: Washington, DC, USA, 2017. [Google Scholar]
- Jackson, T.K.; Cable, S.J.; Jin, W.K.; Robinson, A.; Dennis, S.D.; Vo, L.T.; Prosser, T.J.; Rawlings, J.A. The importance of leadership in Soldiers’ nutritional behaviors: Results from the Soldier Fueling Initiative program evaluation. US Army Med. Dep. J. 2013, 79–90. Available online: http://www.cs.amedd.army.mil/amedd_journal.aspx (accessed on 3 March 2023).
- Shumate, T.; Link, M.; Furness, J.; Kemp-Smith, K.; Simas, V.; Climstein, M. Validity of the Polar Vantage M watch when measuring heart rate at different exercise intensities. PeerJ 2021, 9, e10893. [Google Scholar] [CrossRef] [PubMed]
- Muller, A.M.; Wang, N.X.; Yao, J.; Tan, C.S.; Low, I.C.C.; Lim, N.; Tan, J.; Tan, A.; Muller-Riemenschneider, F. Heart Rate Measures From Wrist-Worn Activity Trackers in a Laboratory and Free-Living Setting: Validation Study. JMIR Mhealth Uhealth 2019, 7, e14120. [Google Scholar] [CrossRef] [PubMed]
- Düking, P.; Fuss, F.K.; Holmberg, H.C.; Sperlich, B. Recommendations for Assessment of the Reliability, Sensitivity, and Validity of Data Provided by Wearable Sensors Designed for Monitoring Physical Activity. JMIR Mhealth Uhealth 2018, 6, e102. [Google Scholar] [CrossRef]
- Friedl, K.E. Military applications of soldier physiological monitoring. J. Sci. Med. Sport 2018, 21, 1147–1153. [Google Scholar] [CrossRef] [Green Version]
- Chowdhury, E.A.; Western, M.J.; Nightingale, T.E.; Peacock, O.J.; Thompson, D. Assessment of laboratory and daily energy expenditure estimates from consumer multi-sensor physical activity monitors. PLoS ONE 2017, 12, e0171720. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boudreaux, B.D.; Hebert, E.P.; Hollander, D.B.; Williams, B.M.; Cormier, C.L.; Naquin, M.R.; Gillan, W.W.; Gusew, E.E.; Kraemer, R.R. Validity of Wearable Activity Monitors during Cycling and Resistance Exercise. Med. Sci. Sport. Exerc. 2018, 50, 624–633. [Google Scholar] [CrossRef] [PubMed]
- Dooley, E.E.; Golaszewski, N.M.; Bartholomew, J.B. Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices. JMIR Mhealth Uhealth 2017, 5, e34. [Google Scholar] [CrossRef] [PubMed]
Age (years) | Height (cm) | Weight (kg) | BMI (kg/m2) | BMR (kcal) | VO2max (mL/kg/min) |
---|---|---|---|---|---|
19.1 ± 0.2 | 161.6 ± 0.7 | 59.6 ± 0.8 | 22.8 ± 0.2 | 1349 ± 11 | 42.7 ± 0.4 |
IST | Initial PFT | Final PFT | |
---|---|---|---|
Week 0 | Week 4 | Week 6 | |
Pull-ups (reps) | 5 ± 1 | 6 ± 1 | 6 ± 1 |
Performed pull-ups * | 77% | 63% | 67% |
Push-ups (reps) | 34 ± 2 | 44 ± 2 | 50 ± 2 |
Crunches(reps) | 86 ± 2 | 88 ± 2 | 101 ± 3 |
Performed crunches * | 100% | 95% | 86% |
1.5 mile run (min:s) | 12:24 ± 0:11 | n/a | n/a |
1.5 mile run (pace) | 8:16 | n/a | n/a |
3 mile run (min:s) | n/a | 25:14 ± 0:15 | 24:51 ± 0:15 |
3 mile run (pace) | n/a | 8:25 | 8:17 |
Initial CFT | Final CFT | |
---|---|---|
Week 5 | Week 9 | |
Movement to contact (min:s) | 3:31 ± 0:02 | 3:27 ± 0:02 |
Ammo can lift (reps) | 66 ± 2 | 79 ± 2 |
Maneuver under fire (min:s) | 3:04 ± 0:02 | 2:56 ± 0:02 |
Caloric Expenditure (kcal/day) | Workload (miles/day) | Data Yield | |||
---|---|---|---|---|---|
Training Week | Mean ± SE | Range | Mean ± SE | Range | |
1 | 3324 ± 30 | 1503–4916 | 11.6 ± 0.1 | 4.7–20.4 | 98% |
2 | 3201 ± 30 | 1727–5245 | 10.3 ± 0.1 | 2.6–23.4 | 93% |
3 | 2789 ± 36 | 1437–4870 | 8.4 ± 0.2 | 2.3–16.4 | 73% |
4 | 3044 ± 31 | 1688–5070 | 9.9 ± 0.1 | 2.7–19.8 | 93% |
5 | 3178 ± 28 | 1699–5449 | 11.3 ± 0.1 | 2.5–24.7 | 96% |
6 | 3137 ± 20 | 1855–4690 | 11.7 ± 0.1 | 3.8–19.8 | 98% |
7 | 2927 ± 20 | 1147–4578 | 10.3 ± 0.1 | 3.3–18.9 | 99% |
8 | 2895 ± 21 | 1750–4960 | 9.7 ± 0.1 | 3.3–19.7 | 93% |
9 | 3165 ± 24 | 1678–5387 | 12.4 ± 0.1 | 3.7–21.4 | 92% |
10 | 3377 ± 41 | 1165–5790 | 14.8 ± 0.3 | 3.5–29.5 | 89% |
Injury Frequencies | Count | % |
---|---|---|
Total number of injuries | 57 | n/a |
Number of recruits injured | 28 | 35% |
Number of recruits with multiple injuries | 13 | 16% |
Injury Category | Count | % |
---|---|---|
New Overuse | 32 | 56% |
Acute/Traumatic | 18 | 32% |
Preexisting Overuse | 6 | 11% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Givens, A.C.; Bernards, J.R.; Kelly, K.R. Characterization of Female US Marine Recruits: Workload, Caloric Expenditure, Fitness, Injury Rates, and Menstrual Cycle Disruption during Bootcamp. Nutrients 2023, 15, 1639. https://doi.org/10.3390/nu15071639
Givens AC, Bernards JR, Kelly KR. Characterization of Female US Marine Recruits: Workload, Caloric Expenditure, Fitness, Injury Rates, and Menstrual Cycle Disruption during Bootcamp. Nutrients. 2023; 15(7):1639. https://doi.org/10.3390/nu15071639
Chicago/Turabian StyleGivens, Andrea C., Jake R. Bernards, and Karen R. Kelly. 2023. "Characterization of Female US Marine Recruits: Workload, Caloric Expenditure, Fitness, Injury Rates, and Menstrual Cycle Disruption during Bootcamp" Nutrients 15, no. 7: 1639. https://doi.org/10.3390/nu15071639
APA StyleGivens, A. C., Bernards, J. R., & Kelly, K. R. (2023). Characterization of Female US Marine Recruits: Workload, Caloric Expenditure, Fitness, Injury Rates, and Menstrual Cycle Disruption during Bootcamp. Nutrients, 15(7), 1639. https://doi.org/10.3390/nu15071639