Different Effects of Cyclical Ketogenic vs. Nutritionally Balanced Reduction Diet on Serum Concentrations of Myokines in Healthy Young Males Undergoing Combined Resistance/Aerobic Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Subjects
2.2. Baseline and Postinterventional Testing
2.2.1. Biochemical and Anthropometric Examination
2.2.2. Strength and Aerobic Performance Testing
2.3. Diet Protocol
2.3.1. Cyclical Ketogenic Reduction Diet
2.3.2. Nutritionally Balanced Reduction Diet
2.4. Training Protocol
2.5. Post-Intervention Testing
2.6. Statistical Analysis
3. Results
3.1. The Influence of CKD vs. RD on Anthropometric, Biochemical and Hormonal Characteristics
3.2. The Influence of CKD vs. RD on Serum Concentrations of Myokines
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mujika, I. Case Study: Long-Term Low-Carbohydrate, High-Fat Diet Impairs Performance and Subjective Well-Being in a World-Class Vegetarian Long-Distance Triathlete. Int. J. Sport Nutr. Exerc. Metab. 2019, 29, 339–344. [Google Scholar] [CrossRef]
- Hector, A.J.; Phillips, S.M. Protein Recommendations for Weight Loss in Elite Athletes: A Focus on Body Composition and Performance. Int. J. Sport Nutr. Exerc. Metab. 2018, 28, 170–177. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Freire, R. Scientific evidence of diets for weight loss: Different macronutrient composition, intermittent fasting, and popular diets. Nutrition 2020, 69, 110549. [Google Scholar] [CrossRef] [PubMed]
- Yi, D.Y.; Kim, S.C.; Lee, J.H.; Lee, E.H.; Kim, J.Y.; Kim, Y.J.; Kang, K.S.; Hong, J.; Shim, J.O.; Lee, Y.; et al. Clinical practice guideline for the diagnosis and treatment of pediatric obesity: Recommendations from the Committee on Pediatric Obesity of the Korean Society of Pediatric Gastroenterology Hepatology and Nutrition. Korean J. Pediatr. 2019, 62, 3–21. [Google Scholar] [CrossRef] [PubMed]
- Seo, M.H.; Lee, W.Y.; Kim, S.S.; Kang, J.H.; Kang, J.H.; Kim, K.K.; Kim, B.Y.; Kim, Y.H.; Kim, W.J.; Kim, E.M.; et al. 2018 Korean Society for the Study of Obesity Guideline for the Management of Obesity in Korea. J. Obes. Metab. Syndr. 2019, 28, 40–45. [Google Scholar] [CrossRef] [Green Version]
- Kim, J.Y. Optimal Diet Strategies for Weight Loss and Weight Loss Maintenance. J. Obes. Metab. Syndr. 2021, 30, 20–31. [Google Scholar] [CrossRef]
- Burke, L.M. Ketogenic low-CHO, high-fat diet: The future of elite endurance sport? J. Physiol. 2021, 599, 819–843. [Google Scholar] [CrossRef]
- Ruiz-Castellano, C.; Espinar, S.; Contreras, C.; Mata, F.; Aragon, A.A.; Martinez-Sanz, J.M. Achieving an Optimal Fat Loss Phase in Resistance-Trained Athletes: A Narrative Review. Nutrients 2021, 13, 3255. [Google Scholar] [CrossRef]
- Kirk, B.; Feehan, J.; Lombardi, G.; Duque, G. Muscle, Bone, and Fat Crosstalk: The Biological Role of Myokines, Osteokines, and Adipokines. Curr. Osteoporos. Rep. 2020, 18, 388–400. [Google Scholar] [CrossRef]
- Severinsen, M.C.K.; Pedersen, B.K. Muscle-Organ Crosstalk: The Emerging Roles of Myokines. Endocr. Rev. 2020, 41, 594–609. [Google Scholar] [CrossRef]
- Watanabe-Takano, H.; Ochi, H.; Chiba, A.; Matsuo, A.; Kanai, Y.; Fukuhara, S.; Ito, N.; Sako, K.; Miyazaki, T.; Tainaka, K.; et al. Mechanical load regulates bone growth via periosteal Osteocrin. Cell Rep. 2021, 36, 109380. [Google Scholar] [CrossRef] [PubMed]
- Kanai, Y.; Yasoda, A.; Mori, K.P.; Watanabe-Takano, H.; Nagai-Okatani, C.; Yamashita, Y.; Hirota, K.; Ueda, Y.; Yamauchi, I.; Kondo, E.; et al. Circulating osteocrin stimulates bone growth by limiting C-type natriuretic peptide clearance. J. Clin. Investig. 2017, 127, 4136–4147. [Google Scholar] [CrossRef] [PubMed]
- Bord, S.; Ireland, D.C.; Moffatt, P.; Thomas, G.P.; Compston, J.E. Characterization of osteocrin expression in human bone. J. Histochem. Cytochem. 2005, 53, 1181–1187. [Google Scholar] [CrossRef]
- Hu, C.; Zhang, X.; Zhang, N.; Wei, W.Y.; Li, L.L.; Ma, Z.G.; Tang, Q.Z. Osteocrin attenuates inflammation, oxidative stress, apoptosis, and cardiac dysfunction in doxorubicin-induced cardiotoxicity. Clin. Transl. Med. 2020, 10, e124. [Google Scholar] [CrossRef]
- Jorgensen, L.H.; Petersson, S.J.; Sellathurai, J.; Andersen, D.C.; Thayssen, S.; Sant, D.J.; Jensen, C.H.; Schroder, H.D. Secreted protein acidic and rich in cysteine (SPARC) in human skeletal muscle. J. Histochem. Cytochem. 2009, 57, 29–39. [Google Scholar] [CrossRef] [Green Version]
- Jorgensen, L.H.; Jepsen, P.L.; Boysen, A.; Dalgaard, L.B.; Hvid, L.G.; Ortenblad, N.; Ravn, D.; Sellathurai, J.; Moller-Jensen, J.; Lochmuller, H.; et al. SPARC Interacts with Actin in Skeletal Muscle in Vitro and in Vivo. Am. J. Pathol. 2017, 187, 457–474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morrissey, M.A.; Jayadev, R.; Miley, G.R.; Blebea, C.A.; Chi, Q.; Ihara, S.; Sherwood, D.R. SPARC Promotes Cell Invasion In Vivo by Decreasing Type IV Collagen Levels in the Basement Membrane. PLoS Genet. 2016, 12, e1005905. [Google Scholar] [CrossRef] [Green Version]
- Oost, L.J.; Kustermann, M.; Armani, A.; Blaauw, B.; Romanello, V. Fibroblast growth factor 21 controls mitophagy and muscle mass. J. Cachexia Sarcopenia Muscle 2019, 10, 630–642. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Uddin, M.S.; Kabir, M.T.; Tewari, D.; Al Mamun, A.; Barreto, G.E.; Bungau, S.G.; Bin-Jumah, M.N.; Abdel-Daim, M.M.; Ashraf, G.M. Emerging Therapeutic Promise of Ketogenic Diet to Attenuate Neuropathological Alterations in Alzheimer’s Disease. Mol. Neurobiol. 2020, 57, 4961–4977. [Google Scholar] [CrossRef]
- Tabaie, E.A.; Reddy, A.J.; Brahmbhatt, H. A narrative review on the effects of a ketogenic diet on patients with Alzheimer’s disease. AIMS Public Health 2022, 9, 185–193. [Google Scholar] [CrossRef]
- Abduljawad, A.A.; Elawad, M.A.; Elkhalifa, M.E.M.; Ahmed, A.; Hamdoon, A.A.E.; Salim, L.H.M.; Ashraf, M.; Ayaz, M.; Hassan, S.S.U.; Bungau, S. Alzheimer’s Disease as a Major Public Health Concern: Role of Dietary Saponins in Mitigating Neurodegenerative Disorders and Their Underlying Mechanisms. Molecules 2022, 27, 6804. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.P.; Reid, M.B. Effect of tumor necrosis factor-alpha on skeletal muscle metabolism. Curr. Opin. Rheumatol. 2001, 13, 483–487. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Behl, T.; Sachdeva, M.; Sehgal, A.; Kumari, S.; Kumar, A.; Kaur, G.; Yadav, H.N.; Bungau, S. Implicating the effect of ketogenic diet as a preventive measure to obesity and diabetes mellitus. Life Sci. 2021, 264, 118661. [Google Scholar] [CrossRef] [PubMed]
- Ghitea, T.C.; Aleya, L.; Tit, D.M.; Behl, T.; Stoicescu, M.; Sava, C.; Iovan, C.; El-Kharoubi, A.; Uivarosan, D.; Pallag, A.; et al. Influence of diet and sport on the risk of sleep apnea in patients with metabolic syndrome associated with hypothyroidism—A 4-year survey. Environ. Sci. Pollut. Res. Int. 2022, 29, 23158–23168. [Google Scholar] [CrossRef] [PubMed]
- Popescu-Spineni, D.M.; Guja, L.; Cristache, C.M.; Pop-Tudose, M.E.; Munteanu, A.M. The Influence of Endocannabinoid System on Women Reproduction. Acta Endocrinol. 2022, 18, 209–215. [Google Scholar] [CrossRef] [PubMed]
- Karasu, T.; Marczylo, T.H.; Maccarrone, M.; Konje, J.C. The role of sex steroid hormones, cytokines and the endocannabinoid system in female fertility. Hum. Reprod. Update 2011, 17, 347–361. [Google Scholar] [CrossRef]
- Leal, L.G.; Lopes, M.A.; Batista, M.L., Jr. Physical Exercise-Induced Myokines and Muscle-Adipose Tissue Crosstalk: A Review of Current Knowledge and the Implications for Health and Metabolic Diseases. Front. Physiol. 2018, 9, 1307. [Google Scholar] [CrossRef]
- Kysel, P.; Haluzikova, D.; Dolezalova, R.P.; Lankova, I.; Lacinova, Z.; Kasperova, B.J.; Trnovska, J.; Hradkova, V.; Mraz, M.; Vilikus, Z.; et al. The Influence of Cyclical Ketogenic Reduction Diet vs. Nutritionally Balanced Reduction Diet on Body Composition, Strength, and Endurance Performance in Healthy Young Males: A Randomized Controlled Trial. Nutrients 2020, 12, 2832. [Google Scholar] [CrossRef]
- World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects. Available online: https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ (accessed on 2 January 2023).
- FDA (U.S. Food and Drug Administration). Guidance for the Clinical Evaluation of Weight-Control Drugs; FDA: Rockville, MD, USA, 1996.
- Lee, J.H.; Jun, H.S. Role of Myokines in Regulating Skeletal Muscle Mass and Function. Front. Physiol. 2019, 10, 42. [Google Scholar] [CrossRef]
- Eckel, J. Myokines in metabolic homeostasis and diabetes. Diabetologia 2019, 62, 1523–1528. [Google Scholar] [CrossRef] [Green Version]
- Subbotina, E.; Sierra, A.; Zhu, Z.; Gao, Z.; Koganti, S.R.; Reyes, S.; Stepniak, E.; Walsh, S.A.; Acevedo, M.R.; Perez-Terzic, C.M.; et al. Musclin is an activity-stimulated myokine that enhances physical endurance. Proc. Natl. Acad. Sci. USA 2015, 112, 16042–16047. [Google Scholar] [CrossRef] [Green Version]
- Sierra, A.P.R.; Fontes-Junior, A.A.; Paz, I.A.; de Sousa, C.A.Z.; Manoel, L.; Menezes, D.C.; Rocha, V.A.; Barbeiro, H.V.; Souza, H.P.; Cury-Boaventura, M.F. Chronic Low or High Nutrient Intake and Myokine Levels. Nutrients 2022, 15, 153. [Google Scholar] [CrossRef]
- Yan, Q.; Sage, E.H. SPARC, a matricellular glycoprotein with important biological functions. J. Histochem. Cytochem. 1999, 47, 1495–1506. [Google Scholar] [CrossRef] [Green Version]
- Ghanemi, A.; Melouane, A.; Yoshioka, M.; St-Amand, J. Secreted Protein Acidic and Rich in Cysteine (Sparc) KO Leads to an Accelerated Ageing Phenotype Which Is Improved by Exercise Whereas SPARC Overexpression Mimics Exercise Effects in Mice. Metabolites 2022, 12, 125. [Google Scholar] [CrossRef] [PubMed]
- Aoi, W.; Naito, Y.; Takagi, T.; Tanimura, Y.; Takanami, Y.; Kawai, Y.; Sakuma, K.; Hang, L.P.; Mizushima, K.; Hirai, Y.; et al. A novel myokine, secreted protein acidic and rich in cysteine (SPARC), suppresses colon tumorigenesis via regular exercise. Gut 2013, 62, 882–889. [Google Scholar] [CrossRef]
- Velingkar, A.; Vuree, S.; Prabhakar, P.K.; Kalshikam, R.R.; Kondeti, S. Fibroblast Growth Factor 21 as a Potential Master Regulator in Metabolic Disorders. Am. J. Physiol. Endocrinol. Metab. 2023. [Google Scholar] [CrossRef] [PubMed]
- Potthoff, M.J.; Inagaki, T.; Satapati, S.; Ding, X.; He, T.; Goetz, R.; Mohammadi, M.; Finck, B.N.; Mangelsdorf, D.J.; Kliewer, S.A.; et al. FGF21 induces PGC-1alpha and regulates carbohydrate and fatty acid metabolism during the adaptive starvation response. Proc. Natl. Acad. Sci. USA 2009, 106, 10853–10858. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porflitt-Rodriguez, M.; Guzman-Arriagada, V.; Sandoval-Valderrama, R.; Tam, C.S.; Pavicic, F.; Ehrenfeld, P.; Martinez-Huenchullan, S. Effects of aerobic exercise on fibroblast growth factor 21 in overweight and obesity. A systematic review. Metabolism 2022, 129, 155137. [Google Scholar] [CrossRef]
- Matsui, M.; Kosaki, K.; Tanahashi, K.; Akazawa, N.; Osuka, Y.; Tanaka, K.; Kuro, O.M.; Maeda, S. Relationship between physical activity and circulating fibroblast growth factor 21 in middle-aged and older adults. Exp. Gerontol. 2020, 141, 111081. [Google Scholar] [CrossRef]
- Atakan, M.M.; Kosar, S.N.; Guzel, Y.; Tin, H.T.; Yan, X. The Role of Exercise, Diet, and Cytokines in Preventing Obesity and Improving Adipose Tissue. Nutrients 2021, 13, 1459. [Google Scholar] [CrossRef]
- Pedersen, B.K.; Febbraio, M.A. Muscles, exercise and obesity: Skeletal muscle as a secretory organ. Nat. Rev. Endocrinol. 2012, 8, 457–465. [Google Scholar] [CrossRef] [PubMed]
- Cipryan, L.; Dostal, T.; Plews, D.J.; Hofmann, P.; Laursen, P.B. Adiponectin/leptin ratio increases after a 12-week very low-carbohydrate, high-fat diet, and exercise training in healthy individuals: A non-randomized, parallel design study. Nutr. Res. 2021, 87, 22–30. [Google Scholar] [CrossRef] [PubMed]
- Hansen, N.W.; Hansen, A.J.; Sams, A. The endothelial border to health: Mechanistic evidence of the hyperglycemic culprit of inflammatory disease acceleration. IUBMB Life 2017, 69, 148–161. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Summer, S.S.; Brehm, B.J.; Benoit, S.C.; D’Alessio, D.A. Adiponectin changes in relation to the macronutrient composition of a weight-loss diet. Obesity 2011, 19, 2198–2204. [Google Scholar] [CrossRef] [PubMed]
- Ruth, M.R.; Port, A.M.; Shah, M.; Bourland, A.C.; Istfan, N.W.; Nelson, K.P.; Gokce, N.; Apovian, C.M. Consuming a hypocaloric high fat low carbohydrate diet for 12 weeks lowers C-reactive protein, and raises serum adiponectin and high density lipoprotein-cholesterol in obese subjects. Metabolism 2013, 62, 1779–1787. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sajoux, I.; Lorenzo, P.M.; Gomez-Arbelaez, D.; Zulet, M.A.; Abete, I.; Castro, A.I.; Baltar, J.; Portillo, M.P.; Tinahones, F.J.; Martinez, J.A.; et al. Effect of a Very-Low-Calorie Ketogenic Diet on Circulating Myokine Levels Compared with the Effect of Bariatric Surgery or a Low-Calorie Diet in Patients with Obesity. Nutrients 2019, 11, 2368. [Google Scholar] [CrossRef] [Green Version]
- Paoli, A.; Moro, T.; Bosco, G.; Bianco, A.; Grimaldi, K.A.; Camporesi, E.; Mangar, D. Effects of n-3 polyunsaturated fatty acids (omega-3) supplementation on some cardiovascular risk factors with a ketogenic Mediterranean diet. Mar. Drugs 2015, 13, 996–1009. [Google Scholar] [CrossRef] [Green Version]
- Paoli, A.; Cenci, L.; Pompei, P.; Sahin, N.; Bianco, A.; Neri, M.; Caprio, M.; Moro, T. Effects of Two Months of Very Low Carbohydrate Ketogenic Diet on Body Composition, Muscle Strength, Muscle Area, and Blood Parameters in Competitive Natural Body Builders. Nutrients 2021, 13, 374. [Google Scholar] [CrossRef]
Parameters | CKD | RD | ||
---|---|---|---|---|
V1 | V2 | V1 | V2 | |
Age (year) | 23 ± 5 | 24 ± 4 | ||
Height (cm) | 181 ± 6 | 186 ± 10 | ||
BMI (kg/m2) | 26.1 ± 3.7 | 24.6 ± 3.3 * | 26.9 ± 4.3 | 25.5 ± 4.2 * |
WEIGHT (kg) | 85.6 ± 13.4 | 81.0 ± 12.0 * | 93.0 ± 17.5 | 88.5 ± 17.4 * |
MUSCLES (kg) | 41.8 ± 4.5 | 40.0 ± 4.6 * | 43.5 ± 5.3 | 43.1 ± 5.3 |
FAT (kg) | 12.9 ± 6.9 | 11.0 ± 5.8 * | 17.6 ± 9.8 | 13.6 ± 9.0 * |
% FAT | 14.5 ± 5.5 | 13.0 ± 5.1 * | 17.9 ± 6.9 | 14.2 ± 6.9 * |
WATER (kg) | 53.2 ± 5.6 | 51.0 ± 5.6 * | 55.1 ± 6.4 | 54.8 ± 6.5 |
Parameters | CKD | RD | ||
---|---|---|---|---|
V1 | V2 | V1 | V1 | |
Total cholesterol (mmol/L) | 3.92 ± 0.52 | 4.92 ± 0.74 * | 4.47 ± 0.67 | 4.03 ± 0.80 *Δ |
Triglycerides (mmol/L) | 0.89 (0.65–1.11) | 0.8 (0.66–0.93) | 0.92 (0.71–1.03) | 0.81 (0.66–1.01) |
LDL cholesterol (mmol/L) | 2.37 ± 0.41 | 3.14 ± 0.64 * | 2.73 ± 0.52 | 2.43 ± 0.63 Δ |
HDL cholesterol (mmol/L) | 1.15 ± 0.24 | 1.39 ± 0.28 * | 1.30 ± 0.39 | 1.20 ± 0.30 |
Fasting glucose (mmol/L) | 5.28 ± 0.34 | 4.96 ± 0.47 * | 5.26 ± 0.36 | 5.22 ± 0.36 |
Insulin (µIU/mL) | 5.37 (3.99–8.29) | 5.86 (3.46–7.42) | 6.35 (3.13–13.34) | 8.44 (4.76–10.98) |
Uric acid (mmol/L) | 357 (312.5–430.5) | 350 (324.5–421.5) | 397 ± 63 | 368 ± 53 * |
CK (ukat/L) | 4.40 ± 2.81 | 2.81 ± 1.21 | 3.80 ± 2.03 | 3.03 ± 2.03 |
LDH (ukat/L) | 2.68 ± 0.60 | 2.47 ± 0.42 | 2.74 ± 0.44 | 2.55 ± 0.33 |
β-OH-butyrate (mmol/L) | 0.1 (0.1–0.2) | 0.2 (0.1–0.6) * | 0.1 (0.1–0.3) | 0.1 (0.1–0.2) |
Parameters | CKD | RD | ||
---|---|---|---|---|
V1 | V2 | V1 | V2 | |
Oncostatin M (pg/mL) | 8.26 (5.16–10.6) | 8.75 (5.75–11.2) | 10.5 (8.63–12.5) | 10.9 (9.35–17.9) |
Musclin (pg/mL) | 48.6 (26.8–80) | 55.8 (36.5–83.2) | 32.9 (12.2–85.8) | 74.5 (34.7–95.4) * |
Osteonectin (pg/mL) | 630 (489–701) | 596 (529–803) | 562 (490–665) | 511 (484–568) *∆ |
BDNF (ng/mL) | 11.9 (10.9–13.3) | 12.9 (10.5–13.5) | 11.6 (10.1–13.5) | 11.9 (11.2–13) |
FABP3 (ng/mL) | 1.01 (0.87–1.34) | 1.06 (0.87–1.55) | 1.27 (0.79–1.98) | 1.17 (0.88–1.97) |
FSTL1 (ng/mL) | 2.75 (1.1–4.89) | 2.95 (2.07–4.84) | 3.64 (1.58–7.09) | 3.79 (1.63–7.29) |
FGF19 (pg/mL) | 194 (134–327) | 207 (119–292) | 165 (120–210) | 133 (120–222) |
CRP (mg/L) | 1.02 (0.3–2.5) | 0.85 (0.19–2.34) | 0.69 (0.28–1.6) | 0.71 (0.16–1.29) |
FGF21 (pg/mL) | 181 (112–709) | 86.4 (45.1–571) * | 272 (176–1138) | 193 (144–1142) |
Fractalkin (pg/mL) | 241 (213–315) | 208 (183–316) | 211 (191–247) | 222 (202–300) |
IFNγ (pg/mL) | 17.6 ± 8.2 | 16.5 ± 8.0 | 16.3 ± 5.1 | 17.5 ± 5.1 |
IL10 (pg/mL) | 11.5 ± 6.1 | 10.5 ± 6.5 | 12.1 ± 8.4 | 11.6 ± 7.2 |
IL23 (pg/mL) | 265 ± 134 | 246 ± 126 | 272 ± 107 | 284 ± 122 |
IL6 (pg/mL) | 3.46 (1.16–5.82) | 2.72 (1.02–4.13) | 2.13 (1.01–4.24) | 2.68 (1.44–5.52) |
IL8 (pg/mL) | 9.8 (8–20.6) | 11.4 (7.5–18.4) | 9.7 (7.4–11.1) | 11.2 (8.3–22.3) |
TNFα (pg/mL) | 8.85 (6.93–12.19) | 9.14 (7.32–12.74) | 9.07 (7.46–10.41) | 11.38 (6.94–16.56) |
CKD | RD | ||
---|---|---|---|
Advantages | Disadvantages | Advantages | Disadvantages |
↓ fasting glucose | ↔ VO2max | sustainable weight loss | slow initial weight loss |
↓ weight | ↔ TTE | ↓ adipose tissue | feel hunger and cravings |
↓ adipose tissue | ↓ strength | ↑ strength | |
feel satiety | ↓ LBM | ↑ endurance | |
↑ cognitive function | ↑ keto flu | all nutrients | |
↑ LDL cholesterol | variation of food | ||
↓ fiber | ↑ adherence | ||
nutrient deficiencies | |||
↓ adherence | |||
↑ depression |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kysel, P.; Haluzíková, D.; Pleyerová, I.; Řezníčková, K.; Laňková, I.; Lacinová, Z.; Havrlantová, T.; Mráz, M.; Kasperová, B.J.; Kovářová, V.; et al. Different Effects of Cyclical Ketogenic vs. Nutritionally Balanced Reduction Diet on Serum Concentrations of Myokines in Healthy Young Males Undergoing Combined Resistance/Aerobic Training. Nutrients 2023, 15, 1720. https://doi.org/10.3390/nu15071720
Kysel P, Haluzíková D, Pleyerová I, Řezníčková K, Laňková I, Lacinová Z, Havrlantová T, Mráz M, Kasperová BJ, Kovářová V, et al. Different Effects of Cyclical Ketogenic vs. Nutritionally Balanced Reduction Diet on Serum Concentrations of Myokines in Healthy Young Males Undergoing Combined Resistance/Aerobic Training. Nutrients. 2023; 15(7):1720. https://doi.org/10.3390/nu15071720
Chicago/Turabian StyleKysel, Pavel, Denisa Haluzíková, Iveta Pleyerová, Kateřina Řezníčková, Ivana Laňková, Zdeňka Lacinová, Tereza Havrlantová, Miloš Mráz, Barbora Judita Kasperová, Viktorie Kovářová, and et al. 2023. "Different Effects of Cyclical Ketogenic vs. Nutritionally Balanced Reduction Diet on Serum Concentrations of Myokines in Healthy Young Males Undergoing Combined Resistance/Aerobic Training" Nutrients 15, no. 7: 1720. https://doi.org/10.3390/nu15071720
APA StyleKysel, P., Haluzíková, D., Pleyerová, I., Řezníčková, K., Laňková, I., Lacinová, Z., Havrlantová, T., Mráz, M., Kasperová, B. J., Kovářová, V., Thieme, L., Trnovská, J., Svoboda, P., Hubáčková, S. Š., Vilikus, Z., & Haluzík, M. (2023). Different Effects of Cyclical Ketogenic vs. Nutritionally Balanced Reduction Diet on Serum Concentrations of Myokines in Healthy Young Males Undergoing Combined Resistance/Aerobic Training. Nutrients, 15(7), 1720. https://doi.org/10.3390/nu15071720