Comparison of 30 Cytokines in Human Breast Milk between 1989 and 2013 in Japan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Collection of Human Milk Samples
2.3. Multiplex Analysis
2.4. Measurement of OPN, TGF-β1, and sCD14
2.5. Data Analyses
3. Results
3.1. Participant Characteristics
3.2. C Samples
3.3. MM Samples
3.4. Lactational Change Ratios of Cytokines
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Srivastava, M.D.; Srivastava, A.; Brouhard, B.; Saneto, R.; Groh-Wargo, S.; Kubit, J. Cytokines in Human Milk. Res. Commun. Mol. Pathol. Pharmacol. 1996, 93, 263–287. [Google Scholar]
- Lönnerdal, B.; Kvistgaard, A.S.; Peerson, J.M.; Donovan, S.M.; Peng, Y.M. Growth, Nutrition, and Cytokine Response of Breast-Fed Infants and Infants Fed Formula with Added Bovine Osteopontin. J. Pediatr. Gastroenterol. Nutr. 2016, 62, 650–657. [Google Scholar] [CrossRef]
- Oddy, W.H.; Rosales, F. A Systematic Review of the Importance of Milk TGF-β on Immunological Outcomes in the Infant and Young Child. Pediatr. Allergy Immunol. 2010, 21, 47–59. [Google Scholar] [CrossRef]
- Jepsen, A.A.; Chawes, B.L.; Carson, C.G.; Schoos, A.M.; Thysen, A.H.; Waage, J.; Brix, S.; Bisgaard, H. High Breast Milk IL-1β Level Is Associated with Reduced Risk of Childhood Eczema. Clin. Exp. Allergy 2016, 46, 1344–1354. [Google Scholar] [CrossRef]
- Ochiai, S.; Shimojo, N.; Morita, Y.; Tomiita, M.; Arima, T.; Inoue, Y.; Nakaya, M.; Uehara, N.; Sato, Y.; Mori, C.; et al. Cytokine Biomarker Candidates in Breast Milk Associated with the Development of Atopic Dermatitis in 6-Month-Old Infants. Int. Arch. Allergy Immunol. 2013, 160, 401–408. [Google Scholar] [CrossRef]
- Schack, L.; Lange, A.; Kelsen, J.; Agnholt, J.; Christensen, B.; Petersen, T.E.; Sørensen, E.S. Considerable Variation in the Concentration of Osteopontin in Human Milk, Bovine Milk, and Infant Formulas. J. Dairy Sci. 2009, 92, 5378–5385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kolbach, A.M.; Afzal, O.; Halligan, B.; Sorokina, E.; Kleinman, J.G.; Wesson, J.A. Relative Deficiency of Acidic Isoforms of Osteopontin from Stone Former Urine. Urol. Res. 2012, 40, 447–454. [Google Scholar] [CrossRef] [PubMed]
- Christensen, B.; Karlsen, N.J.; Jørgensen, S.D.S.; Jacobsen, L.N.; Ostenfeld, M.S.; Petersen, S.V.; Müllertz, A.; Sørensen, E.S. Milk Osteopontin Retains Integrin-Binding Activity After In Vitro Gastrointestinal Transit. J. Dairy Sci. 2020, 103, 42–51. [Google Scholar] [CrossRef] [Green Version]
- West, C.E.; Kvistgaard, A.S.; Peerson, J.M.; Donovan, S.M.; Peng, Y.M.; Lönnerdal, B. Effects of Osteopontin-Enriched Formula on Lymphocyte Subsets in the First 6 Months of Life: A Randomized Controlled Trial. Pediatr. Res. 2017, 82, 63–71. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, L.; Espinosa-Martos, I.; García-Carral, C.; Manzano, S.; McGuire, M.K.; Meehan, C.L.; McGuire, M.A.; Williams, J.E.; Foster, J.; Sellen, D.W.; et al. What’s Normal? Immune Profiling of Human Milk from Healthy Women Living in Different Geographical and Socioeconomic Settings. Front. Immunol. 2017, 8, 696. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murphy, J.; Pfeiffer, R.M.; Lynn, B.C.D.; Caballero, A.I.; Browne, E.P.; Punska, E.C.; Yang, H.P.; Falk, R.T.; Anderton, D.L.; Gierach, G.L.; et al. Pro-inflammatory Cytokines and Growth Factors in Human Milk: An Exploratory Analysis of Racial Differences to Inform Breast Cancer Etiology. Breast Cancer Res. Treat. 2018, 172, 209–219. [Google Scholar] [CrossRef]
- Tomicić, S.; Johansson, G.; Voor, T.; Björkstén, B.; Böttcher, M.F.; Jenmalm, M.C. Breast Milk Cytokine and IgA Composition Differ in Estonian and Swedish Mothers-Relationship to Microbial Pressure and Infant Allergy. Pediatr. Res. 2010, 68, 330–334. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boyle, R.J.; Ismail, I.H.; Kivivuori, S.; Licciardi, P.V.; Robins-Browne, R.M.; Mah, L.J.; Axelrad, C.; Moore, S.; Donath, S.; Carlin, J.B.; et al. Lactobacillus GG Treatment During Pregnancy for the Prevention of Eczema: A Randomized Controlled Trial. Allergy 2011, 66, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Böttcher, M.F.; Abrahamsson, T.R.; Fredriksson, M.; Jakobsson, T.; Björkstén, B. Low Breast Milk TGF-β2 Is Induced by Lactobacillus reuteri Supplementation and Associates with Reduced Risk of Sensitization During Infancy. Pediatr. Allergy Immunol. 2008, 19, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Tsugawa, N.; Nishino, M.; Kuwabara, A.; Ogasawara, H.; Kamao, M.; Kobayashi, S.; Yamamura, J.; Higurashi, S. Comparison of Vitamin D and 25-Hydroxyvitamin D Concentrations in Human Breast Milk between 1989 and 2016-2017. Nutrients 2021, 13, 573. [Google Scholar] [CrossRef] [PubMed]
- Kanatani, K.T.; Nakayama, T.; Adachi, Y.; Hamazaki, K.; Onishi, K.; Konishi, Y.; Kawanishi, Y.; Go, T.; Sato, K.; Kurozawa, Y.; et al. High Frequency of Vitamin D Deficiency in Current Pregnant Japanese Women Associated with UV Avoidance and Hypo-Vitamin D Diet. PLoS ONE 2019, 14, e0213264. [Google Scholar] [CrossRef]
- Aranow, C. Vitamin D and the Immune System. J. Investig. Med. 2011, 59, 881–886. [Google Scholar] [CrossRef] [Green Version]
- Matsuoka, Y.; Idota, T. The Concentration of Epidermal Growth Factor in Japanese Mother’s Milk. J. Nutr. Sci. Vitaminol. 1995, 41, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Dissanayake, E.; Tani, Y.; Nagai, K.; Sahara, M.; Mitsuishi, C.; Togawa, Y.; Suzuki, Y.; Nakano, T.; Yamaide, F.; Ohno, H.; et al. Skin Care and Synbiotics for Prevention of Atopic Dermatitis or Food Allergy in Newborn Infants: A 2 × 2 Factorial, Randomized, Non-Treatment Controlled Trial. Int. Arch. Allergy Immunol. 2019, 180, 202–211. [Google Scholar] [CrossRef]
- Morita, Y.; Campos-Alberto, E.; Yamaide, F.; Nakano, T.; Ohnisi, H.; Kawamoto, M.; Kawamoto, N.; Matsui, E.; Kondo, N.; Kohno, Y.; et al. TGF-β Concentration in Breast Milk Is Associated with the Development of Eczema in Infants. Front. Pediatr. 2018, 6, 162. [Google Scholar] [CrossRef] [Green Version]
- Fikri, B.; Tani, Y.; Nagai, K.; Sahara, M.; Mitsuishi, C.; Togawa, Y.; Nakano, T.; Yamaide, F.; Ohno, H.; Shimojo, N. Soluble CD14 in Breast Milk and Its Relation to Atopic Manifestations in Early Infancy. Nutrients 2019, 11, 2118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Takahashi, T.; Fukudome, H.; Ueno, H.M.; Watanabe-Matsuhashi, S.; Nakano, T.; Kobayashi, T.; Ishimaru, K.; Nakao, A. Probiotic Supplementation and Human Milk Cytokine Profiles in Japanese Women: A Retrospective Study from an Open-Label Pilot Study. Nutrients 2021, 13, 2285. [Google Scholar] [CrossRef] [PubMed]
- Bruun, S.; Jacobsen, L.N.; Ze, X.; Husby, S.; Ueno, H.M.; Nojiri, K.; Kobayashi, S.; Kwon, J.; Liu, X.; Yan, S.; et al. Osteopontin Levels in Human Milk Vary Across Countries and within Lactation Period: Data from a Multicenter Study. J. Pediatr. Gastroenterol. Nutr. 2018, 67, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Aksan, A.; Erdal, I.; Yalcin, S.S.; Stein, J.; Samur, G. Osteopontin Levels in Human Milk Are Related to Maternal Nutrition and Infant Health and Growth. Nutrients 2021, 13, 2670. [Google Scholar] [CrossRef]
- Yuda, M. Public and Social Environment Changes and Caesarean Section Delivery Choice in Japan. BMC Res. Notes 2018, 11, 633. [Google Scholar] [CrossRef]
- Ge, B.; Liu, H.; Liang, Q.; Shang, L.; Wang, T.; Ge, S. Oxytocin Facilitates the Proliferation, Migration and Osteogenic Differentiation of Human Periodontal Stem Cells In Vitro. Arch. Oral Biol. 2019, 99, 126–133. [Google Scholar] [CrossRef]
- Nissen, E.; Uvnäs-Moberg, K.; Svensson, K.; Stock, S.; Widström, A.M.; Winberg, J. Different Patterns of Oxytocin, Prolactin but Not Cortisol Release During Breastfeeding in Women Delivered by Caesarean Section or by the Vaginal Route. Early Hum. Dev. 1996, 45, 103–118. [Google Scholar] [CrossRef]
- Ramírez-Santana, C.; Pérez-Cano, F.J.; Audí, C.; Castell, M.; Moretones, M.G.; López-Sabater, M.C.; Castellote, C.; Franch, A. Effects of Cooling and Freezing Storage on the Stability of Bioactive Factors in Human Colostrum. J. Dairy Sci. 2012, 95, 2319–2325. [Google Scholar] [CrossRef] [Green Version]
- Kurzbach, D.; Platzer, G.; Schwarz, T.C.; Henen, M.A.; Konrat, R.; Hinderberger, D. Cooperative Unfolding of Compact Conformations of the Intrinsically Disordered Protein Osteopontin. Biochemistry 2013, 52, 5167–5175. [Google Scholar] [CrossRef]
- Lönnerdal, B.; Erdmann, P.; Thakkar, S.K.; Sauser, J.; Destaillats, F. Longitudinal Evolution of True Protein, Amino Acids and Bioactive Proteins in Breast Milk: A Developmental Perspective. J. Nutr. Biochem. 2017, 41, 1–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gidrewicz, D.A.; Fenton, T.R. A Systematic Review and Meta-analysis of the Nutrient Content of Preterm and Term Breast Milk. BMC. Pediatr. 2014, 14, 216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.; Lönnerdal, B. Osteopontin in Human Milk and Infant Formula Affects Infant Plasma Osteopontin Concentrations. Pediatr. Res. 2019, 85, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Kubota, T.; Ochiai, S.; Morita, Y.; Inoue, Y.; Arima, T.; Tomiita, M.; Shimojo, N.; Kohno, Y. Association between Breast Milk OPN Levels and Prevalence of Atopic Dermatiris in Infant at First 6 Months. Jpn. J. Pediatr. Allergy Clin. Immunol. 2010, 24, 584. [Google Scholar]
- Donovan, S.M.; Monaco, M.H.; Drnevich, J.; Kvistgaard, A.S.; Hernell, O.; Lönnerdal, B. Bovine Osteopontin Modifies the Intestinal Transcriptome of Formula-Fed Infant Rhesus Monkeys to Be More Similar to Those That Were Breastfed. J. Nutr. 2014, 144, 1910–1919. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.; Prell, C.; Lönnerdal, B. Milk Osteopontin Promotes Brain Development by Up-Regulating Osteopontin in the Brain in Early Life. FASEB. J. 2019, 33, 1681–1694. [Google Scholar] [CrossRef]
- Munblit, D.; Treneva, M.; Peroni, D.G.; Colicino, S.; Chow, L.; Dissanayeke, S.; Abrol, P.; Sheth, S.; Pampura, A.; Boner, A.L.; et al. Colostrum and Mature Human Milk of Women from London, Moscow, and Verona: Determinants of Immune Composition. Nutrients 2016, 8, 695. [Google Scholar] [CrossRef] [Green Version]
C Samples | MM Samples | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
1989 (n = 48) | 2013 (n = 49) | p Value | 1989 (n = 48) | 2013 (n = 49) | p Value | |||||
Mothers | ||||||||||
Maternal age (years), median (IQR) | 27 | (25.0–29.0) | 36 | (29.4–40.0) | <0.001 * | 28 | (25.0–30.0) | 37 | (31.3–38.3) | <0.001 * |
BMI (kg/m2), median (IQR) | NA | 20.8 | (19.3–22.3) | - | NA | 20.5 | (19.4–21.3) | - | ||
Primiparity, n/total (%) | NA | 27/49 | (55%) | - | NA | 20/49 | (41%) | - | ||
Allergy, n/total (%) | NA | 31/49 | (63%) | - | NA | 34/49 | (69%) | - | ||
smoking, n/total (%) | NA | 1/49 | (2%) | - | NA | 0/49 | (0%) | - | ||
Infants | ||||||||||
Infant age (days), median (IQR) | 5 | (4–5) | 4 | (3–5) | 0.004 * | 31 | (30–31) | 25 | (22–28) | <0.001 * |
Gestational age (weeks), median (IQR) | NA | 39 | (38–40) | - | NA | 39 | (38–40) | - | ||
Birth weight (g), median (IQR) | 3150 | (2852–3400) | 3044 | (2913–3296) | 0.395 | 3159 | (2963–3400) | 2974 | (2777–3224) | 0.009 * |
C-section, n/total (%) | NA | 16/49 | (33%) | - | NA | 16/49 | (33%) | - | ||
Sex, male, n/total (%) | NA | 28/49 | (57%) | - | MA | 24/49 | (49%) | - | ||
Allergy, n/total (%) | NA | 30/49 | (61%) | - | NA | 34/49 | (69%) | - |
1989 (n = 48) | 2013 (n = 49) | p Value | ||||||
---|---|---|---|---|---|---|---|---|
Positive Results (%) | Median (IQR) | Positive Results (%) | Median (IQR) | Fisher’s Exact Test | Logistic Regression | Mann–Whitney U Test | Multiple Regression | |
Anti-inflammatory cytokines | ||||||||
IL-1ra | 100 | 363.8 (114.0–897.7) | 100 | 573.2 (195.8–1307.9) | - | - | 0.086 | 0.845 |
Proinflammatory cytokines | ||||||||
IL-1β | 64.6 | 0.3 (0.1–1.0) | 83.7 | 1.3 (0.3–5.2) | 0.038 * | 0.117 | 0.002 * | 0.038 * |
IL-6 | 77.1 | 7.6 (1.4–21.6) | 87.8 | 9.5 (4.4–19.0) | 0.191 | 0.891 | 0.230 | 0.891 |
IL-17 | 10.4 | 1.7 (1.7–1.8) | 34.7 | 1.7 (1.7–19.7) | 0.007 * | 0.305 | 0.035 * | 0.133 |
TNF-α | 83.3 | 24.6 (8.7–49.4) | 81.6 | 35.8 (13.9–109.4) | 1.000 | 0.606 | 0.070 | 0.805 |
Th1-related cytokines | ||||||||
IL-12 (p70) | 0 | 1.2 (1.2–1.2) | 0 | 1.2 (1.2–1.2) | - | - | 0.886 | 0.498 |
IFN-γ | 56.3 | 2.7 (0.5–31.3) | 77.6 | 16.9 (2.4–41.7) | 0.032 * | 0.868 | 0.067 | 0.995 |
OPN | 97.9 | 318.1 (204.4–439.8) | 93.8 | 137.5 (81.9–263.5) | 0.617 | 0.503 | 0.00002 * | 0.0016 * |
Th2-related cytokines | ||||||||
IL-4 | 50.0 | 0.4 (0.4–1.7) | 55.1 | 0.8 (0.4–4.7) | 0.686 | 0.357 | 0.316 | 0.454 |
IL-5 | 2.1 | 3.7 (3.7–3.9) | 18.4 | 3.9 (3.7–3.9) | 0.016 * | 0.172 | 0.103 | 0.886 |
IL-9 | 25.0 | 2.5 (2.4–6.3) | 42.9 | 2.5 (2.4–18.4) | 0.087 | 0.251 | 0.214 | 0.166 |
IL-13 | 0 | 0.3 (0.3–0.3) | 0 | 0.3 (0.3–0.3) | - | - | 0.970 | 0.865 |
GM-CSF | 8.3 | 0.4 (0.4–0.9) | 14.3 | 0.4 (0.4–0.9) | 0.524 | 0.576 | 0.466 | 0.856 |
Regulatory cytokines | ||||||||
IL-10 | 2.1 | 1.7 (1.7–1.7) | 4.1 | 1.7 (1.7–1.7) | 1.000 | 0.485 | 0.718 | 0.724 |
TGF-β1 | 100 | 1781.7 (1331.7–2469.1) | 100 | 1956.3 (1302.6–2497.6) | - | - | 0.748 | 0.937 |
Chemokines | ||||||||
IL-8 | 100 | 139.4 (39.2–532.1) | 100 | 303.7 (118.3–1562.8) | - | - | 0.009 * | 0.838 |
Eotaxin | 89.6 | 25.1 (1.9–76.2) | 91.8 | 29.2 (2.7–55.9) | 0.740 | 0.427 | 0.549 | 0.251 |
IP-10 | 100 | 7022.3 (2053.6–22,281.6) | 100 | 10,884.9 (3134.3–20,592.8) | - | - | 0.395 | 0.740 |
MCP-1 | 100 | 182.5 (77.7–715.0) | 100 | 330.7 (165.4–798.1) | - | - | 0.133 | 0.664 |
MIP-1α | 95.8 | 2.5 (1.4–8.6) | 100 | 9.8 (3.7–146.0) | 0.242 | 0.683 | 0.0002 * | 0.120 |
MIP-1β | 97.9 | 32.6 (11.3–93.6) | 100 | 52.6 (13.5–143.1) | 0.495 | 1.000 | 0.113 | 0.788 |
RANTES | 47.9 | 3.2 (3.2–29.6) | 51.0 | 3.6 (3.2–45.2) | 0.840 | 0.844 | 0.724 | 0.998 |
Growth factors | ||||||||
IL-2 | 8.3 | 1.1 (1.0–1.1) | 26.5 | 1.1 (1.0–1.3) | 0.031 * | 0.510 | 0.060 | 0.522 |
IL-7 | 50.0 | 10.2 (2.4–47.5) | 55.1 | 12.9 (7.9–33.0) | 0.686 | 0.574 | 0.775 | 0.561 |
IL-15 | 4.2 | 8.6 (8.4–8.8) | 20.4 | 8.8 (8.4–9.2) | 0.028 * | 0.258 | 0.067 | 0.743 |
FGF-basic | 8.3 | 3.7 (3.1–3.9) | 32.7 | 3.7 (3.1–28.8) | 0.005 * | 0.492 | 0.024 * | 0.086 |
G-CSF | 91.7 | 87.3 (41.1–337.0) | 91.8 | 314.8 (105.9–1909.4) | 1.000 | 0.521 | 0.0003 * | 0.167 |
PDGF-BB | 10.4 | 10.5 (4.2–17.2) | 24.5 | 15.9 (4.2–17.2) | 0.108 | 0.779 | 0.246 | 0.765 |
VEGF | 97.9 | 12,092.6 (6932.8–18,474.8) | 100 | 16,621.5 (10,038.3–25,498.4) | 0.495 | 1.000 | 0.078 | 0.661 |
Other | ||||||||
sCD14 | 100 | 17.9 (12.4–22.8) | 97.9 | 16.1 (12.8–20.6) | 1.000 | - | 0.436 | 0.372 |
1989 (n = 48) | 2013 (n = 49) | p Value | ||||||
---|---|---|---|---|---|---|---|---|
Positive Results (%) | Median (IQR) | Positive Results (%) | Median (IQR) | Fisher’s Exact Test | Logistic Regression | Mann–Whitney U Test | Multiple Regression | |
Anti-inflammatory cytokines | ||||||||
IL-1ra | 79.2 | 78.1 (25.4–206.9) | 89.8 | 123.7 (44.1–242.8) | 0.171 | 0.850 | 0.140 | 0.301 |
Proinflammatory cytokines | ||||||||
IL-1β | 31.3 | 0.1 (0.1–0.3) | 36.7 | 0.1 (0.1–0.4) | 0.669 | 0.256 | 0.344 | 0.270 |
IL-6 | 33.3 | 0.5 (0.5–4.9) | 40.8 | 0.5 (0.4–4.3) | 0.530 | 0.682 | 0.752 | 0.981 |
IL-17 | 2.1 | 1.7 (1.7–1.7) | 4.1 | 1.7 (1.7–1.7) | 1.000 | 0.226 | 0.863 | 0.668 |
TNF-α | 52.1 | 3.5 (2.4–20.0) | 38.8 | 3.1 (2.4–17.3) | 0.224 | 0.214 | 0.429 | 0.247 |
Th1-related cytokines | ||||||||
IL-12 (p70) | 0 | 1.2 (1.2–1.2) | 0 | 1.2 (1.2–1.2) | - | - | 0.941 | 0.515 |
IFN-γ | 16.7 | 0.5 (0.4–1.7) | 30.6 | 0.5 (0.4–3.0) | 0.152 | 0.227 | 0.118 | 0.071 |
OPN | 100 | 300.8 (208.4–344.6) | 98.0 | 280.9 (220.6–337.9) | 1.000 | 1.000 | 0.697 | 0.391 |
Th2-related cytokines | ||||||||
IL-4 | 8.3 | 0.1 (0.1–0.4) | 10.2 | 0.4 (0.1–0.4) | 1.000 | 0.508 | 0.545 | 0.437 |
IL-5 | 0 | 3.7 (3.7–3.9) | 2.0 | 3.7 (3.7–3.9) | 1.000 | 1.000 | 0.856 | 0.263 |
IL-9 | 6.3 | 2.5 (2.4–2.5) | 10.2 | 2.5 (2.4–2.5) | 0.715 | 0.538 | 0.652 | 0.553 |
IL-13 | 0 | 0.3 (0.3–0.3) | 0 | 0.3 (0.3–0.3) | - | - | 0.943 | 0.477 |
GM-CSF | 12.5 | 0.4 (0.4–0.9) | 2.0 | 0.4 (0.4–0.4) | 0.059 | 0.709 | 0.204 | 0.794 |
Regulatory cytokines | ||||||||
IL-10 | 0 | 1.7 (1.7–1.7) | 0 | 1.7 (1.7–1.7) | - | - | 0.916 | 0.907 |
TGF-β1 | 100 | 1056.2 (813.9–1720.5) | 100 | 1330.8 (988.5–1809.9) | - | - | 0.274 | 0.008 * |
Chemokines | ||||||||
IL-8 | 100 | 36.8 (14.2–82.8) | 100 | 42.1 (20.7–91.4) | - | - | 0.421 | 0.183 |
Eotaxin | 58.3 | 0.7 (0.1–8.2) | 42.9 | 0.1 (0.1–2.1) | 0.157 | 0.089 | 0.079 | 0.111 |
IP-10 | 93.8 | 1717.0 (185.9–7154.8) | 89.8 | 432.4 (154.9–2779.2) | 0.715 | 0.235 | 0.023 * | 0.124 |
MCP-1 | 93.8 | 44.3 (9.0–105.5) | 93.9 | 58.7 (18.2–180.0) | 1.000 | 0.941 | 0.256 | 0.628 |
MIP-1α | 68.8 | 1.1 (0.1–3.2) | 65.3 | 1.6 (0.1–5.7) | 0.830 | 0.272 | 0.595 | 0.832 |
MIP-1β | 77.1 | 7.1 (0.5–17.8) | 67.3 | 5.4 (0.5–21.1) | 0.366 | 0.184 | 0.699 | 0.735 |
RANTES | 12.5 | 3.2 (2.9–3.2) | 8.2 | 3.2 (2.9–3.2) | 0.524 | 0.643 | 0.991 | 0.867 |
Growth factors | ||||||||
IL-2 | 2.1 | 1.1 (1.0–1.1) | 2.0 | 1.1 (1.0–1.1) | 1.000 | 0.089 | 0.668 | 0.913 |
IL-7 | 25.0 | 7.9 (2.4–11.4) | 14.3 | 7.9 (2.3–9.1) | 0.210 | 0.017 * | 0.285 | 0.279 |
IL-15 | 2.1 | 8.6 (8.4–8.8) | 2.0 | 8.6 (8.4–8.8) | 1.000 | 0.089 | 0.837 | 0.355 |
FGF-basic | 2.1 | 3.7 (3.1–3.7) | 4.1 | 3.7 (3.1–3.7) | 1.000 | 0.226 | 0.805 | 0.679 |
G-CSF | 47.9 | 7.2 (6.8–109.9) | 53.1 | 50.9 (7.0–174.1) | 0.686 | 0.870 | 0.485 | 0.333 |
PDGF-BB | 0 | 5.0 (4.2–15.9) | 6.1 | 5.0 (4.2–17.2) | 0.242 | 0.060 | 0.347 | 0.340 |
VEGF | 97.9 | 3003.3 (1613.9–4707.2) | 100 | 2470.7 (2131.6–3507.7) | 0.495 | 1.000 | 0.660 | 0.759 |
Other | ||||||||
sCD14 | 97.9 | 9.8 (5.9–14.5) | 100 | 8.0 (6.4–11.5) | 0.495 | 1.000 | 0.614 | 0.269 |
Cytokine Ratios (MM/C) | |||
---|---|---|---|
1989 (n = 48) | 2013 (n = 49) | p Value | |
Proinflammatory cytokines | |||
IL-1β | 0.57 | 0.14 | 0.021 * |
TNF-α | 0.35 | 0.15 | 0.039 * |
Th1-related cytokines | |||
IFN-γ | 0.53 | 0.07 | 0.269 |
OPN | 0.87 | 1.92 | 0.0009 * |
Th2-related cytokines | |||
IL-4 | 0.90 | 0.21 | 0.363 |
Chemokines | |||
IL-8 | 0.26 | 0.11 | 0.111 |
Eotaxin | 0.08 | 0.02 | 0.180 |
IP-10 | 0.31 | 0.04 | 0.007 * |
MIP-1α | 0.22 | 0.04 | 0.012 * |
Growth factors | |||
G-CSF | 0.16 | 0.07 | 0.120 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, T.; Ueno, H.M.; Yamaide, F.; Nakano, T.; Shiko, Y.; Kawasaki, Y.; Mitsuishi, C.; Shimojo, N. Comparison of 30 Cytokines in Human Breast Milk between 1989 and 2013 in Japan. Nutrients 2023, 15, 1735. https://doi.org/10.3390/nu15071735
Takahashi T, Ueno HM, Yamaide F, Nakano T, Shiko Y, Kawasaki Y, Mitsuishi C, Shimojo N. Comparison of 30 Cytokines in Human Breast Milk between 1989 and 2013 in Japan. Nutrients. 2023; 15(7):1735. https://doi.org/10.3390/nu15071735
Chicago/Turabian StyleTakahashi, Tomoki, Hiroshi M. Ueno, Fumiya Yamaide, Taiji Nakano, Yuki Shiko, Yohei Kawasaki, Chisako Mitsuishi, and Naoki Shimojo. 2023. "Comparison of 30 Cytokines in Human Breast Milk between 1989 and 2013 in Japan" Nutrients 15, no. 7: 1735. https://doi.org/10.3390/nu15071735
APA StyleTakahashi, T., Ueno, H. M., Yamaide, F., Nakano, T., Shiko, Y., Kawasaki, Y., Mitsuishi, C., & Shimojo, N. (2023). Comparison of 30 Cytokines in Human Breast Milk between 1989 and 2013 in Japan. Nutrients, 15(7), 1735. https://doi.org/10.3390/nu15071735