Nutritional State and COPD: Effects on Dyspnoea and Exercise Tolerance
Abstract
:1. Introduction
2. Nutritional State and COPD
3. Leading Causes of Malnutrition in COPD Patients
4. Nutritional Assessment
5. Effects of Poor Nutritional State on Exercise Tolerance and Dyspnoea
6. Strategies to Improve Nutritional State and Exercise Tolerance
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Initiative for Chronic Obstructive Lung Disease Report 2023. Available online: https://goldcopd.org/2023-gold-report-2/ (accessed on 1 March 2023).
- Global, Regional, and National Age–Sex Specific All-Cause and Cause-Specific Mortality for 240 Causes of Death, 1990–2013: A Systematic Analysis for the Global Burden of Disease Study 2013—The Lancet. Available online: https://www.thelancet.com/journals/lancet/article/PIIS0140-6736(14)61682-2/fulltext (accessed on 1 April 2023).
- Lopez, A.D.; Shibuya, K.; Rao, C.; Mathers, C.D.; Hansell, A.L.; Held, L.S.; Schmid, V.; Buist, S. Chronic Obstructive Pulmonary Disease: Current Burden and Future Projections. Eur. Respir. J. 2006, 27, 397–412. [Google Scholar] [CrossRef] [Green Version]
- Global Health Estimates: Life Expectancy and Leading Causes of Death and Disability. Available online: https://www.who.int/data/gho/data/themes/mortality-and-global-health-estimates (accessed on 1 April 2023).
- van ’t Hul, A.J.; Koolen, E.H.; Antons, J.C.; de Man, M.; Djamin, R.S.; In ’t Veen, J.C.C.M.; Simons, S.O.; van den Heuvel, M.; van den Borst, B.; Spruit, M.A. Treatable Traits Qualifying for Nonpharmacological Interventions in COPD Patients upon First Referral to a Pulmonologist: The COPD STRAITosphere. ERJ Open Res. 2020, 6, 00438–02020. [Google Scholar] [CrossRef]
- Itoh, M.; Tsuji, T.; Nemoto, K.; Nakamura, H.; Aoshiba, K. Undernutrition in Patients with COPD and Its Treatment. Nutrients 2013, 5, 1316–1335. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Collins, P.F.; Pavey, T.G.; Nguyen, N.V.; Pham, T.D.; Gallegos, D.L. Nutritional Status, Dietary Intake, and Health-Related Quality of Life in Outpatients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2019, 14, 215–226. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ter Beek, L.; van der Vaart, H.; Wempe, J.B.; Dzialendzik, A.O.; Roodenburg, J.L.; van der Schans, C.P.; Keller, H.H.; Jager-Wittenaar, H. Dietary Resilience in Patients with Severe COPD at the Start of a Pulmonary Rehabilitation Program. Int. J. Chronic Obstr. Pulm. Dis. 2018, 13, 1317–1324. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.F.; Elia, M.; Stratton, R.J. Nutritional Support and Functional Capacity in Chronic Obstructive Pulmonary Disease: A Systematic Review and Meta-Analysis. Respirology 2013, 18, 616–629. [Google Scholar] [CrossRef]
- Munhoz da Rocha Lemos Costa, T.; Costa, F.M.; Jonasson, T.H.; Moreira, C.A.; Boguszewski, C.L.; Borba, V.Z.C. Body Composition and Sarcopenia in Patients with Chronic Obstructive Pulmonary Disease. Endocrine 2018, 60, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Matkovic, Z.; Cvetko, D.; Rahelic, D.; Esquinas, C.; Zarak, M.; Miravitlles, M.; Tudoric, N. Nutritional Status of Patients with Chronic Obstructive Pulmonary Disease in Relation to Their Physical Performance. COPD J. Chronic Obstr. Pulm. Dis. 2017, 14, 626–634. [Google Scholar] [CrossRef] [PubMed]
- Raad, S.; Smith, C.; Allen, K. Nutrition Status and Chronic Obstructive Pulmonary Disease: Can We Move Beyond the Body Mass Index? Nutr. Clin. Pract. 2019, 34, 330–339. [Google Scholar] [CrossRef] [Green Version]
- Collins, P.F.; Yang, I.A.; Chang, Y.-C.; Vaughan, A. Nutritional Support in Chronic Obstructive Pulmonary Disease (COPD): An Evidence Update. J. Thorac. Dis. 2019, 11 (Suppl. 17), S2230–S2237. [Google Scholar] [CrossRef] [Green Version]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Criteria for the Diagnosis of Malnutrition—A Consensus Report from the Global Clinical Nutrition Community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Schols, A.M.W.J. Pulmonary Cachexia. Int. J. Cardiol. 2002, 85, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Kwan, H.Y.; Maddocks, M.; Nolan, C.M.; Jones, S.E.; Patel, S.; Barker, R.E.; Kon, S.S.C.; Polkey, M.I.; Cullinan, P.; Man, W.D.-C. The Prognostic Significance of Weight Loss in Chronic Obstructive Pulmonary Disease-Related Cachexia: A Prospective Cohort Study. J. Cachexia Sarcopenia Muscle 2019, 10, 1330–1338. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sepúlveda-Loyola, W.; Osadnik, C.; Phu, S.; Morita, A.A.; Duque, G.; Probst, V.S. Diagnosis, Prevalence, and Clinical Impact of Sarcopenia in COPD: A Systematic Review and Meta-Analysis. J. Cachexia Sarcopenia Muscle 2020, 11, 1164–1176. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, L.; Wang, H.; Hao, Q.; Dong, B.; Yang, M. Malnutrition-Sarcopenia Syndrome Predicts Mortality in Hospitalized Older Patients. Sci. Rep. 2017, 7, 3171. [Google Scholar] [CrossRef] [Green Version]
- Lehouck, A.; Boonen, S.; Decramer, M.; Janssens, W. COPD, Bone Metabolism, and Osteoporosis. Chest 2011, 139, 648–657. [Google Scholar] [CrossRef]
- Graat-Verboom, L.; Smeenk, F.W.J.M.; van den Borne, B.E.E.M.; Spruit, M.A.; Donkers-van Rossum, A.B.; Aarts, R.P.M.; Wouters, E.F.M. Risk Factors for Osteoporosis in Caucasian Patients with Moderate Chronic Obstructive Pulmonary Disease: A Case Control Study. Bone 2012, 50, 1234–1239. [Google Scholar] [CrossRef]
- Franco, C.B.; Paz-Filho, G.; Gomes, P.E.; Nascimento, V.B.; Kulak, C.A.M.; Boguszewski, C.L.; Borba, V.Z.C. Chronic Obstructive Pulmonary Disease Is Associated with Osteoporosis and Low Levels of Vitamin D. Osteoporos. Int. 2009, 20, 1881–1887. [Google Scholar] [CrossRef]
- Awano, N.; Inomata, M.; Kuse, N.; Tone, M.; Yoshimura, H.; Jo, T.; Takada, K.; Sugimoto, C.; Tanaka, T.; Sumikawa, H.; et al. Quantitative Computed Tomography Measures of Skeletal Muscle Mass in Patients with Idiopathic Pulmonary Fibrosis According to a Multidisciplinary Discussion Diagnosis: A Retrospective Nationwide Study in Japan. Respir. Investig. 2020, 58, 91–101. [Google Scholar] [CrossRef]
- Moon, S.W.; Choi, J.S.; Lee, S.H.; Jung, K.S.; Jung, J.Y.; Kang, Y.A.; Park, M.S.; Kim, Y.S.; Chang, J.; Kim, S.Y. Thoracic Skeletal Muscle Quantification: Low Muscle Mass Is Related with Worse Prognosis in Idiopathic Pulmonary Fibrosis Patients. Respir. Res. 2019, 20, 35. [Google Scholar] [CrossRef] [Green Version]
- Speeckaert, M.; Huang, G.; Delanghe, J.R.; Taes, Y.E.C. Biological and Clinical Aspects of the Vitamin D Binding Protein (Gc-Globulin) and Its Polymorphism. Clin. Chim. Acta 2006, 372, 33–42. [Google Scholar] [CrossRef]
- Wood, A.M.; Bassford, C.; Webster, D.; Newby, P.; Rajesh, P.; Stockley, R.A.; Thickett, D.R. Vitamin D-Binding Protein Contributes to COPD by Activation of Alveolar Macrophages. Thorax 2011, 66, 205–210. [Google Scholar] [CrossRef] [Green Version]
- Park, Y.; Kim, Y.S.; Kang, Y.A.; Shin, J.H.; Oh, Y.M.; Seo, J.B.; Jung, J.Y.; Lee, S.D. Relationship between Vitamin D-Binding Protein Polymorphisms and Blood Vitamin D Level in Korean Patients with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2016, 11, 731–738. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Törölä, T.; Li, C.-X.; Ohlmeier, S.; Toljamo, T.; Nieminen, P.; Hattori, N.; Pulkkinen, V.; Iwamoto, H.; Mazur, W. Sputum Vitamin D Binding Protein (VDBP) GC1S/1S Genotype Predicts Airway Obstruction: A Prospective Study in mokers with COPD. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 1049–1059. [Google Scholar] [CrossRef] [PubMed]
- Osteoporosis Exercise for Strong Bones. Bone Health & Osteoporosis Foundation. Available online: https://www.bonehealthandosteoporosis.org/patients/treatment/exercisesafe-movement/osteoporosis-exercise-for-strong-bones/ (accessed on 1 April 2023).
- Congleton, J. The Pulmonary Cachexia Syndrome: Aspects of Energy Balance. Proc. Nutr. Soc. 1999, 58, 321–328. [Google Scholar] [CrossRef] [PubMed]
- Schols, A.M.; Soeters, P.B.; Mostert, R.; Saris, W.H.; Wouters, E.F. Energy Balance in Chronic Obstructive Pulmonary Disease. Am. Rev. Respir. Dis. 1991, 143, 1248–1252. [Google Scholar] [CrossRef]
- Schols, A.M.; Wouters, E.F. Nutritional Abnormalities and Supplementation in Chronic Obstructive Pulmonary Disease. Clin. Chest Med. 2000, 21, 753–762. [Google Scholar] [CrossRef]
- Schols, A.; Mostert, R.; Cobben, N.; Soeters, P.; Wouters, E. Transcutaneous Oxygen Saturation and Carbon Dioxide Tension during Meals in Patients with Chronic Obstructive Pulmonary Disease. Chest 1991, 100, 1287–1292. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kao, C.C.; Hsu, J.W.-C.; Bandi, V.; Hanania, N.A.; Kheradmand, F.; Jahoor, F. Resting Energy Expenditure and Protein Turnover Are Increased in Patients with Severe Chronic Obstructive Pulmonary Disease. Metabolism 2011, 60, 1449–1455. [Google Scholar] [CrossRef] [Green Version]
- Whittom, F.; Jobin, J.; Simard, P.M.; Leblanc, P.; Simard, C.; Bernard, S.; Belleau, R.; Maltais, F. Histochemical and Morphological Characteristics of the Vastus Lateralis Muscle in Patients with Chronic Obstructive Pulmonary Disease. Med. Sci. Sports Exerc. 1998, 30, 1467–1474. [Google Scholar] [CrossRef]
- Satta, A.; Migliori, G.B.; Spanevello, A.; Neri, M.; Bottinelli, R.; Canepari, M.; Pellegrino, M.A.; Reggiani, C. Fibre Types in Skeletal Muscles of Chronic Obstructive Pulmonary Disease Patients Related to Respiratory Function and Exercise Tolerance. Eur. Respir. J. 1997, 10, 2853–2860. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jobin, J.; Maltais, F.; Doyon, J.F.; LeBlanc, P.; Simard, P.M.; Simard, A.A.; Simard, C. Chronic Obstructive Pulmonary Disease: Capillarity and Fiber-Type Characteristics of Skeletal Muscle. J. Cardiopulm. Rehabil. 1998, 18, 432–437. [Google Scholar] [CrossRef] [PubMed]
- Jakobsson, P.; Jorfeldt, L.; Brundin, A. Skeletal Muscle Metabolites and Fibre Types in Patients with Advanced Chronic Obstructive Pulmonary Disease (COPD), with and without Chronic Respiratory Failure. Eur. Respir. J. 1990, 3, 192–196. [Google Scholar] [CrossRef]
- Byun, M.K.; Cho, E.N.; Chang, J.; Ahn, C.M.; Kim, H.J. Sarcopenia Correlates with Systemic Inflammation in COPD. Int. J. Chronic Obstr. Pulm. Dis. 2017, 12, 669–675. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koehler, F.; Doehner, W.; Hoernig, S.; Witt, C.; Anker, S.D.; John, M. Anorexia in Chronic Obstructive Pulmonary Disease—Association to Cachexia and Hormonal Derangement. Int. J. Cardiol. 2007, 119, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Payen, J.F.; Wuyam, B.; Levy, P.; Reutenauer, H.; Stieglitz, P.; Paramelle, B.; Le Bas, J.F. Muscular Metabolism during Oxygen Supplementation in Patients with Chronic Hypoxemia. Am. Rev. Respir. Dis. 1993, 147, 592–598. [Google Scholar] [CrossRef]
- Seymour, J.M.; Spruit, M.A.; Hopkinson, N.S.; Natanek, S.A.; Man, W.D.-C.; Jackson, A.; Gosker, H.R.; Schols, A.M.W.J.; Moxham, J.; Polkey, M.I.; et al. The Prevalence of Quadriceps Weakness in COPD and the Relationship with Disease Severity. Eur. Respir. J. 2010, 36, 81–88. [Google Scholar] [CrossRef] [Green Version]
- Marquis, K.; Debigaré, R.; Lacasse, Y.; LeBlanc, P.; Jobin, J.; Carrier, G.; Maltais, F. Midthigh Muscle Cross-Sectional Area Is a Better Predictor of Mortality than Body Mass Index in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 2002, 166, 809–813. [Google Scholar] [CrossRef]
- Jones, S.E.; Maddocks, M.; Kon, S.S.C.; Canavan, J.L.; Nolan, C.M.; Clark, A.L.; Polkey, M.I.; Man, W.D.-C. Sarcopenia in COPD: Prevalence, Clinical Correlates and Response to Pulmonary Rehabilitation. Thorax 2015, 70, 213–218. [Google Scholar] [CrossRef] [Green Version]
- Barreiro, E.; Gea, J. Respiratory and Limb Muscle Dysfunction in COPD. COPD J. Chronic Obstr. Pulm. Dis. 2015, 12, 413–426. [Google Scholar] [CrossRef]
- Gea, J.; Agustí, A.; Roca, J. Pathophysiology of Muscle Dysfunction in COPD. J. Appl. Physiol. (1985) 2013, 114, 1222–1234. [Google Scholar] [CrossRef] [Green Version]
- Kent, B.D.; Mitchell, P.D.; McNicholas, W.T. Hypoxemia in Patients with COPD: Cause, Effects, and Disease Progression. Int. J. Chronic Obstr. Pulm. Dis. 2011, 6, 199–208. [Google Scholar] [CrossRef] [Green Version]
- Pitsiou, G.; Kyriazis, G.; Hatzizisi, O.; Argyropoulou, P.; Mavrofridis, E.; Patakas, D. Tumor Necrosis Factor-Alpha Serum Levels, Weight Loss and Tissue Oxygenation in Chronic Obstructive Pulmonary Disease. Respir. Med. 2002, 96, 594–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yohannes, A.M.; Ershler, W.B. Anemia in COPD: A Systematic Review of the Prevalence, Quality of Life, and Mortality. Respir. Care 2011, 56, 644–652. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brunelle, J.K.; Chandel, N.S. Oxygen Deprivation Induced Cell Death: An Update. Apoptosis 2002, 7, 475–482. [Google Scholar] [CrossRef]
- Gonzalez, N.C.; Wood, J.G. Alveolar Hypoxia-Induced Systemic Inflammation: What Low PO(2) Does and Does Not Do. Adv. Exp. Med. Biol. 2010, 662, 27–32. [Google Scholar] [CrossRef] [Green Version]
- Yun, Z.; Lin, Q.; Giaccia, A.J. Adaptive Myogenesis under Hypoxia. Mol. Cell. Biol. 2005, 25, 3040–3055. [Google Scholar] [CrossRef] [Green Version]
- Jagoe, R.T.; Engelen, M.P.K.J. Muscle Wasting and Changes in Muscle Protein Metabolism in Chronic Obstructive Pulmonary Disease. Eur. Respir. J. Suppl. 2003, 46, 52s–63s. [Google Scholar] [CrossRef] [PubMed]
- Rafferty, G.F.; Lou Harris, M.; Polkey, M.I.; Greenough, A.; Moxham, J. Effect of Hypercapnia on Maximal Voluntary Ventilation and Diaphragm Fatigue in Normal Humans. Am. J. Respir. Crit. Care Med. 1999, 160 Pt 1, 1567–1571. [Google Scholar] [CrossRef]
- England, B.K.; Chastain, J.L.; Mitch, W.E. Abnormalities in Protein Synthesis and Degradation Induced by Extracellular PH in BC3H1 Myocytes. Am. J. Physiol. 1991, 260 Pt 1, C277–C282. [Google Scholar] [CrossRef]
- Csoma, B.; Vulpi, M.R.; Dragonieri, S.; Bentley, A.; Felton, T.; Lázár, Z.; Bikov, A. Hypercapnia in COPD: Causes, Consequences, and Therapy. J. Clin. Med. 2022, 11, 3180. [Google Scholar] [CrossRef] [PubMed]
- Dubé, B.-P.; Laveneziana, P. Effects of Aging and Comorbidities on Nutritional Status and Muscle Dysfunction in Patients with COPD. J. Thorac. Dis. 2018, 10 (Suppl. 12), S1355–S1366. [Google Scholar] [CrossRef]
- Reid, M.B.; Lännergren, J.; Westerblad, H. Respiratory and Limb Muscle Weakness Induced by Tumor Necrosis Factor-Alpha: Involvement of Muscle Myofilaments. Am. J. Respir. Crit. Care Med. 2002, 166, 479–484. [Google Scholar] [CrossRef]
- Sinden, N.J.; Stockley, R.A. Systemic Inflammation and Comorbidity in COPD: A Result of “overspill” of Inflammatory Mediators from the Lungs? Review of the Evidence. Thorax 2010, 65, 930–936. [Google Scholar] [CrossRef] [Green Version]
- Di Francia, M.; Barbier, D.; Mege, J.L.; Orehek, J. Tumor Necrosis Factor-Alpha Levels and Weight Loss in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1994, 150 Pt 1, 1453–1455. [Google Scholar] [CrossRef] [PubMed]
- Gan, W.Q.; Man, S.F.P.; Senthilselvan, A.; Sin, D.D. Association between Chronic Obstructive Pulmonary Disease and Systemic Inflammation: A Systematic Review and a Meta-Analysis. Thorax 2004, 59, 574–580. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Decramer, M.; de Bock, V.; Dom, R. Functional and Histologic Picture of Steroid-Induced Myopathy in Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1996, 153 Pt 1, 1958–1964. [Google Scholar] [CrossRef]
- Karataş, G.K.; Günendi, Z. Do Anticholinergics Affect Reaction Time? A Possible Impact on the Course of Rehabilitation. NeuroRehabilitation 2010, 27, 141–145. [Google Scholar] [CrossRef]
- Kaiser, P.; Hylander, B.; Eliasson, K.; Kaijser, L. Effect of Beta 1-Selective and Nonselective Beta Blockade on Blood Pressure Relative to Physical Performance in Men with Systemic Hypertension. Am. J. Cardiol. 1985, 55, 79D–84D. [Google Scholar] [CrossRef]
- Porter, G.A.; Makuck, R.F.; Rivkees, S.A. Reduction in Intracellular Calcium Levels Inhibits Myoblast Differentiation. J. Biol. Chem. 2002, 277, 28942–28947. [Google Scholar] [CrossRef] [Green Version]
- Camerino, G.M.; Tarantino, N.; Canfora, I.; De Bellis, M.; Musumeci, O.; Pierno, S. Statin-Induced Myopathy: Translational Studies from Preclinical to Clinical Evidence. Int. J. Mol. Sci. 2021, 22, 2070. [Google Scholar] [CrossRef]
- McParland, C.; Resch, E.F.; Krishnan, B.; Wang, Y.; Cujec, B.; Gallagher, C.G. Inspiratory Muscle Weakness in Chronic Heart Failure: Role of Nutrition and Electrolyte Status and Systemic Myopathy. Am. J. Respir. Crit. Care Med. 1995, 151, 1101–1107. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Zhou, L.; Li, Y.; Guo, S.; Li, X.; Zheng, J.; Zhu, Z.; Chen, Y.; Huang, Y.; Chen, R.; et al. Fat-Free Mass Index for Evaluating the Nutritional Status and Disease Severity in COPD. Respir. Care 2016, 61, 680–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vestbo, J.; Prescott, E.; Almdal, T.; Dahl, M.; Nordestgaard, B.G.; Andersen, T.; Sørensen, T.I.A.; Lange, P. Body Mass, Fat-Free Body Mass, and Prognosis in Patients with Chronic Obstructive Pulmonary Disease from a Random Population Sample: Findings from the Copenhagen City Heart Study. Am. J. Respir. Crit. Care Med. 2006, 173, 79–83. [Google Scholar] [CrossRef]
- Ischaki, E.; Papatheodorou, G.; Gaki, E.; Papa, I.; Koulouris, N.; Loukides, S. Body Mass and Fat-Free Mass Indices in COPD: Relation with Variables Expressing Disease Severity. Chest 2007, 132, 164–169. [Google Scholar] [CrossRef]
- Guglielmi, G.; Ponti, F.; Agostini, M.; Amadori, M.; Battista, G.; Bazzocchi, A. The Role of DXA in Sarcopenia. Aging Clin. Exp. Res. 2016, 28, 1047–1060. [Google Scholar] [CrossRef]
- Teigen, L.M.; Kuchnia, A.J.; Mourtzakis, M.; Earthman, C.P. The Use of Technology for Estimating Body CompositionStrengths and Weaknesses of Common Modalities in a Clinical Setting [Formula: See Text]. Nutr. Clin. Pract. 2017, 32, 20–29. [Google Scholar] [CrossRef]
- Okura, K.; Iwakura, M.; Shibata, K.; Kawagoshi, A.; Sugawara, K.; Takahashi, H.; Satake, M.; Shioya, T. Diaphragm Thickening Assessed by Ultrasonography Is Lower than Healthy Adults in Patients with Chronic Obstructive Pulmonary Disease. Clin. Respir. J. 2020, 14, 521–526. [Google Scholar] [CrossRef] [PubMed]
- Deng, M.; Zhou, X.; Li, Y.; Yin, Y.; Liang, C.; Zhang, Q.; Lu, J.; Wang, M.; Wang, Y.; Sun, Y.; et al. Ultrasonic Elastography of the Rectus Femoris, a Potential Tool to Predict Sarcopenia in Patients With Chronic Obstructive Pulmonary Disease. Front. Physiol. 2021, 12, 783421. [Google Scholar] [CrossRef]
- Alea, C.; Mateo, M.; Guia, T. Correlation of Nutritional Status Using Subjective Global Assessment (SGA) on Pulmonary Function Parameters in Patients With Chronic Obstructive Pulmonary Disease (COPD). Chest 2013, 144, 698A. [Google Scholar] [CrossRef]
- Hsu, M.-F.; Ho, S.-C.; Kuo, H.-P.; Wang, J.-Y.; Tsai, A.C. Mini-Nutritional Assessment (MNA) Is Useful for Assessing the Nutritional Status of Patients with Chronic Obstructive Pulmonary Disease: A Cross-Sectional Study. COPD J. Chronic Obstr. Pulm. Dis. 2014, 11, 325–332. [Google Scholar] [CrossRef]
- Yoshikawa, M.; Fujita, Y.; Yamamoto, Y.; Yamauchi, M.; Tomoda, K.; Koyama, N.; Kimura, H. Mini Nutritional Assessment Short-Form Predicts Exacerbation Frequency in Patients with Chronic Obstructive Pulmonary Disease. Respirology 2014, 19, 1198–1203. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Wan, Q.; Wu, X.; Zeng, Y.; Jiang, L.; Ao, D.; Wang, F.; Chen, T.; Li, Y. Nutritional Risk Screening 2002 as a Predictor of Outcome During General Ward-Based Noninvasive Ventilation in Chronic Obstructive Pulmonary Disease with Respiratory Failure. Med. Sci. Monit. 2015, 21, 2786–2793. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, R.; Xing, L.; You, C.; Ou, X. Prediction of Prognosis in Chronic Obstructive Pulmonary Disease Patients with Respiratory Failure: A Comparison of Three Nutritional Assessment Methods. Eur. J. Intern. Med. 2018, 57, 70–75. [Google Scholar] [CrossRef]
- Kaluźniak-Szymanowska, A.; Krzymińska-Siemaszko, R.; Deskur-Śmielecka, E.; Lewandowicz, M.; Kaczmarek, B.; Wieczorowska-Tobis, K. Malnutrition, Sarcopenia, and Malnutrition-Sarcopenia Syndrome in Older Adults with COPD. Nutrients 2021, 14, 44. [Google Scholar] [CrossRef] [PubMed]
- Weatherald, J.; Sattler, C.; Garcia, G.; Laveneziana, P. Ventilatory Response to Exercise in Cardiopulmonary Disease: The Role of Chemosensitivity and Dead Space. Eur. Respir. J. 2018, 51, 1700860. [Google Scholar] [CrossRef] [Green Version]
- Laviolette, L.; Laveneziana, P.; ERS Research Seminar Faculty. Dyspnoea: A Multidimensional and Multidisciplinary Approach. Eur. Respir. J. 2014, 43, 1750–1762. [Google Scholar] [CrossRef] [Green Version]
- Palange, P.; Forte, S.; Onorati, P.; Manfredi, F.; Serra, P.; Carlone, S. Ventilatory and Metabolic Adaptations to Walking and Cycling in Patients with COPD. J. Appl. Physiol. (1985) 2000, 88, 1715–1720. [Google Scholar] [CrossRef] [Green Version]
- Principles of Exercise Testing and Interpretation: Including Pathophysi-Ology and Clinical Applications, 5th Revised ed.; Wasserman, K.; Hansen, J.E.; Sue, D.Y.; Stringer, W.W.; Sietsema, K.E.; Sun, X.G.; Whipp, B.J. (Eds.) Wolters Kluwer Health: Philadelphia, PA, USA, 2011. [Google Scholar]
- Casaburi, R. Limitation to Exercise Tolerance in Chronic Obstructive Pulmonary Disease: Look to the Muscles of Ambulation. Am. J. Respir. Crit. Care Med. 2003, 168, 409–410. [Google Scholar] [CrossRef]
- Palange, P.; Forte, S.; Felli, A.; Galassetti, P.; Serra, P.; Carlone, S. Nutritional State and Exercise Tolerance in Patients with COPD. Chest 1995, 107, 1206–1212. [Google Scholar] [CrossRef] [Green Version]
- Teopompi, E.; Tzani, P.; Aiello, M.; Ramponi, S.; Andrani, F.; Marangio, E.; Clini, E.; Chetta, A. Fat-Free Mass Depletion Is Associated with Poor Exercise Capacity Irrespective of Dynamic Hyperinflation in COPD Patients. Respir. Care 2014, 59, 718–725. [Google Scholar] [CrossRef] [Green Version]
- Shan, X.; Liu, J.; Luo, Y.; Xu, X.; Han, Z.; Li, H. Relationship between Nutritional Risk and Exercise Capacity in Severe Chronic Obstructive Pulmonary Disease in Male Patients. Int. J. Chronic Obstr. Pulm. Dis. 2015, 10, 1207–1212. [Google Scholar] [CrossRef] [Green Version]
- Holloszy, J.O.; Booth, F.W. Biochemical Adaptations to Endurance Exercise in Muscle. Annu. Rev. Physiol. 1976, 38, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Schols, A.M.; Ferreira, I.M.; Franssen, F.M.; Gosker, H.R.; Janssens, W.; Muscaritoli, M.; Pison, C.; Rutten-van Mölken, M.; Slinde, F.; Steiner, M.C.; et al. Nutritional Assessment and Therapy in COPD: A European Respiratory Society Statement. Eur. Respir. J. 2014, 44, 1504–1520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lacasse, Y.; Goldstein, R.; Lasserson, T.J.; Martin, S. Pulmonary Rehabilitation for Chronic Obstructive Pulmonary Disease. Cochrane Database Syst. Rev. 2006, 4, CD003793. [Google Scholar] [CrossRef]
- Fiuza-Luces, C.; Garatachea, N.; Berger, N.A.; Lucia, A. Exercise Is the Real Polypill. Physiology 2013, 28, 330–358. [Google Scholar] [CrossRef] [Green Version]
- Man, W.D.-C.; Kemp, P.; Moxham, J.; Polkey, M.I. Exercise and Muscle Dysfunction in COPD: Implications for Pulmonary Rehabilitation. Clin. Sci. 2009, 117, 281–291. [Google Scholar] [CrossRef] [Green Version]
- Maltais, F.; LeBlanc, P.; Jobin, J.; Bérubé, C.; Bruneau, J.; Carrier, L.; Breton, M.J.; Falardeau, G.; Belleau, R. Intensity of Training and Physiologic Adaptation in Patients with Chronic Obstructive Pulmonary Disease. Am. J. Respir. Crit. Care Med. 1997, 155, 555–561. [Google Scholar] [CrossRef]
- Somfay, A.; Pórszász, J.; Lee, S.-M.; Casaburi, R. Effect of Hyperoxia on Gas Exchange and Lactate Kinetics Following Exercise Onset in Nonhypoxemic COPD Patients. Chest 2002, 121, 393–400. [Google Scholar] [CrossRef] [Green Version]
- Palange, P.; Valli, G.; Onorati, P.; Antonucci, R.; Paoletti, P.; Rosato, A.; Manfredi, F.; Serra, P. Effect of Heliox on Lung Dynamic Hyperinflation, Dyspnea, and Exercise Endurance Capacity in COPD Patients. J. Appl. Physiol. (1985) 2004, 97, 1637–1642. [Google Scholar] [CrossRef] [Green Version]
- Langer, D.; Ciavaglia, C.; Faisal, A.; Webb, K.A.; Neder, J.A.; Gosselink, R.; Dacha, S.; Topalovic, M.; Ivanova, A.; O’Donnell, D.E. Inspiratory Muscle Training Reduces Diaphragm Activation and Dyspnea during Exercise in COPD. J. Appl. Physiol. (1985) 2018, 125, 381–392. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, B.; Li, P.; Li, J.; Liu, X.; Wu, W. Effect of Oxidative Stress on Diaphragm Dysfunction and Exercise Intervention in Chronic Obstructive Pulmonary Disease. Front. Physiol. 2021, 12, 684453. [Google Scholar] [CrossRef]
- Koechlin, C.; Couillard, A.; Simar, D.; Cristol, J.P.; Bellet, H.; Hayot, M.; Prefaut, C. Does Oxidative Stress Alter Quadriceps Endurance in Chronic Obstructive Pulmonary Disease? Am. J. Respir. Crit. Care Med. 2004, 169, 1022–1027. [Google Scholar] [CrossRef] [PubMed]
- Pirabbasi, E.; Shahar, S.; Manaf, Z.A.; Rajab, N.F.; Manap, R.A. Efficacy of Ascorbic Acid (Vitamin C) and/N-Acetylcysteine (NAC) Supplementation on Nutritional and Antioxidant Status of Male Chronic Obstructive Pulmonary Disease (COPD) Patients. J. Nutr. Sci. Vitaminol. 2016, 62, 54–61. [Google Scholar] [CrossRef] [Green Version]
- Hureau, T.J.; Weavil, J.C.; Sidhu, S.K.; Thurston, T.S.; Reese, V.R.; Zhao, J.; Nelson, A.D.; Birgenheier, N.M.; Richardson, R.S.; Amann, M. Ascorbate Attenuates Cycling Exercise-Induced Neuromuscular Fatigue but Fails to Improve Exertional Dyspnea and Exercise Tolerance in COPD. J. Appl. Physiol. (1985) 2021, 130, 69–79. [Google Scholar] [CrossRef]
- Ji, X.; Yao, H.; Meister, M.; Gardenhire, D.S.; Mo, H. Tocotrienols: Dietary Supplements for Chronic Obstructive Pulmonary Disease. Antioxidants 2021, 10, 883. [Google Scholar] [CrossRef] [PubMed]
- Broekhuizen, R.; Wouters, E.F.M.; Creutzberg, E.C.; Weling-Scheepers, C.A.P.M.; Schols, A.M.W.J. Polyunsaturated Fatty Acids Improve Exercise Capacity in Chronic Obstructive Pulmonary Disease. Thorax 2005, 60, 376–382. [Google Scholar] [CrossRef] [Green Version]
- Bird, J.K.; Troesch, B.; Warnke, I.; Calder, P.C. The Effect of Long Chain Omega-3 Polyunsaturated Fatty Acids on Muscle Mass and Function in Sarcopenia: A Scoping Systematic Review and Meta-Analysis. Clin. Nutr. ESPEN 2021, 46, 73–86. [Google Scholar] [CrossRef]
- Fekete, M.; Szarvas, Z.; Fazekas-Pongor, V.; Lehoczki, A.; Tarantini, S.; Varga, J.T. Effects of Omega-3 Supplementation on Quality of Life, Nutritional Status, Inflammatory Parameters, Lipid Profile, Exercise Tolerance and Inhaled Medications in Chronic Obstructive Pulmonary Disease. Ann. Palliat. Med. 2022, 11, 2819–2829. [Google Scholar] [CrossRef]
- Ahmad, S.; Arora, S.; Khan, S.; Mohsin, M.; Mohan, A.; Manda, K.; Syed, M.A. Vitamin D and Its Therapeutic Relevance in Pulmonary Diseases. J. Nutr. Biochem. 2021, 90, 108571. [Google Scholar] [CrossRef]
- Sundar, I.K.; Hwang, J.-W.; Wu, S.; Sun, J.; Rahman, I. Deletion of Vitamin D Receptor Leads to Premature Emphysema/COPD by Increased Matrix Metalloproteinases and Lymphoid Aggregates Formation. Biochem. Biophys. Res. Commun. 2011, 406, 127–133. [Google Scholar] [CrossRef] [Green Version]
- Zendedel, A.; Gholami, M.; Anbari, K.; Ghanadi, K.; Bachari, E.C.; Azargon, A. Effects of Vitamin D Intake on FEV1 and COPD Exacerbation: A Randomized Clinical Trial Study. Glob. J. Health Sci. 2015, 7, 243–248. [Google Scholar] [CrossRef] [Green Version]
- Sluyter, J.D.; Camargo, C.A.; Waayer, D.; Lawes, C.M.M.; Toop, L.; Khaw, K.-T.; Scragg, R. Effect of Monthly, High-Dose, Long-Term Vitamin D on Lung Function: A Randomized Controlled Trial. Nutrients 2017, 9, 1353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calder, P.C.; Laviano, A.; Lonnqvist, F.; Muscaritoli, M.; Öhlander, M.; Schols, A. Targeted Medical Nutrition for Cachexia in Chronic Obstructive Pulmonary Disease: A Randomized, Controlled Trial. J. Cachexia Sarcopenia Muscle 2018, 9, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Shuval, H.I.; Gruener, N. Epidemiological and Toxicological Aspects of Nitrates and Nitrites in the Environment. Am. J. Public Health 1972, 62, 1045–1052. [Google Scholar] [CrossRef] [Green Version]
- Tashiro, H.; Takahashi, K.; Sadamatsu, H.; Kato, G.; Kurata, K.; Kimura, S.; Sueoka-Aragane, N. Saturated Fatty Acid Increases Lung Macrophages and Augments House Dust Mite-Induced Airway Inflammation in Mice Fed with High-Fat Diet. Inflammation 2017, 40, 1072–1086. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jiang, R.; Jacobs, D.R.; He, K.; Hoffman, E.; Hankinson, J.; Nettleton, J.A.; Barr, R.G. Associations of Dairy Intake with CT Lung Density and Lung Function. J. Am. Coll. Nutr. 2010, 29, 494–502. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cornell, K.; Alam, M.; Lyden, E.; Wood, L.; LeVan, T.D.; Nordgren, T.M.; Bailey, K.; Hanson, C. Saturated Fat Intake Is Associated with Lung Function in Individuals with Airflow Obstruction: Results from NHANES 2007–2012. Nutrients 2019, 11, 317. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esposito, K.; Nappo, F.; Marfella, R.; Giugliano, G.; Giugliano, F.; Ciotola, M.; Quagliaro, L.; Ceriello, A.; Giugliano, D. Inflammatory Cytokine Concentrations Are Acutely Increased by Hyperglycemia in Humans: Role of Oxidative Stress. Circulation 2002, 106, 2067–2072. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Ma, L.; Nicholson, L.F.B.; Black, P.N. Advanced Glycation End Products and Its Receptor (RAGE) Are Increased in Patients with COPD. Respir. Med. 2011, 105, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Walter, R.E.; Beiser, A.; Givelber, R.J.; O’Connor, G.T.; Gottlieb, D.J. Association between Glycemic State and Lung Function: The Framingham Heart Study. Am. J. Respir. Crit. Care Med. 2003, 167, 911–916. [Google Scholar] [CrossRef] [PubMed]
- Kuo, C.D.; Shiao, G.M.; Lee, J.D. The Effects of High-Fat and High-Carbohydrate Diet Loads on Gas Exchange and Ventilation in COPD Patients and Normal Subjects. Chest 1993, 104, 189–196. [Google Scholar] [CrossRef] [PubMed]
- Malone, A.M. Specialized Enteral Formulas in Acute and Chronic Pulmonary Disease. Nutr. Clin. Pract. 2009, 24, 666–674. [Google Scholar] [CrossRef] [PubMed]
- Akrabawi, S.S.; Mobarhan, S.; Stoltz, R.R.; Ferguson, P.W. Gastric Emptying, Pulmonary Function, Gas Exchange, and Respiratory Quotient after Feeding a Moderate versus High Fat Enteral Formula Meal in Chronic Obstructive Pulmonary Disease Patients. Nutrition 1996, 12, 260–265. [Google Scholar] [CrossRef] [PubMed]
- DeBellis, H.F.; Fetterman, J.W. Enteral Nutrition in the Chronic Obstructive Pulmonary Disease (COPD) Patient. J. Pharm. Pract. 2012, 25, 583–585. [Google Scholar] [CrossRef] [PubMed]
- Fekete, M.; Fazekas-Pongor, V.; Balazs, P.; Tarantini, S.; Szollosi, G.; Pako, J.; Nemeth, A.N.; Varga, J.T. Effect of Malnutrition and Body Composition on the Quality of Life of COPD Patients. Physiol. Int. 2021, 108, 238–250. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tramontano, A.; Palange, P. Nutritional State and COPD: Effects on Dyspnoea and Exercise Tolerance. Nutrients 2023, 15, 1786. https://doi.org/10.3390/nu15071786
Tramontano A, Palange P. Nutritional State and COPD: Effects on Dyspnoea and Exercise Tolerance. Nutrients. 2023; 15(7):1786. https://doi.org/10.3390/nu15071786
Chicago/Turabian StyleTramontano, Angela, and Paolo Palange. 2023. "Nutritional State and COPD: Effects on Dyspnoea and Exercise Tolerance" Nutrients 15, no. 7: 1786. https://doi.org/10.3390/nu15071786
APA StyleTramontano, A., & Palange, P. (2023). Nutritional State and COPD: Effects on Dyspnoea and Exercise Tolerance. Nutrients, 15(7), 1786. https://doi.org/10.3390/nu15071786