Nutrient Therapy for the Improvement of Fatigue Symptoms
Abstract
:1. Introduction
2. Methods
3. Search Results
4. Oral Supplementation
4.1. Clinical Populations
4.1.1. Vitamins and Minerals
4.1.2. Co-Enzymes
4.1.3. Amino Acids
4.2. Non-Clinical Populations
4.2.1. Vitamins and Minerals
4.2.2. Co-Enzymes
4.2.3. Amino Acids
4.3. Nutrient Deficiencies
4.3.1. Vitamins and Minerals
4.3.2. Amino Acids
5. Parenteral Administration
5.1. Clinical Populations
5.2. Non-Clinical Populations
5.3. Nutrient Deficiencies
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wan, J.-J.; Qin, Z.; Wang, P.-Y.; Sun, Y.; Liu, X. Muscle fatigue: General understanding and treatment. Exp. Mol. Med. 2017, 49, e384. [Google Scholar] [CrossRef] [PubMed]
- Viner, R.; Christie, D. Fatigue and somatic symptoms. BMJ 2005, 330, 1012–1015. [Google Scholar] [CrossRef] [PubMed]
- Avellaneda Fernández, A.; Pérez Martín, A.; Izquierdo Martínez, M.; Arruti Bustillo, M.; Barbado Hernández, F.J.; de la Cruz Labrado, J.; Díaz-Delgado Peñas, R.; Gutiérrez Rivas, E.; Palacín Delgado, C.; Rivera Redondo, J.; et al. Chronic fatigue syndrome: Aetiology, diagnosis and treatment. BMC Psychiatry 2009, 9 (Suppl. S1), S1. [Google Scholar] [CrossRef]
- Rivera, M.C.; Mastronardi, C.; Silva-Aldana, C.T.; Arcos-Burgos, M.; Lidbury, B.A. Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Comprehensive Review. Diagnostics 2019, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Castro-Marrero, J.; Cordero, M.D.; Saez-Francas, N.; Jimenez-Gutierrez, C.; Aguilar-Montilla, F.J.; Aliste, L.; Alegre, J. Could Mitochondrial Dysfunction Be a Differentiating Marker Between Chronic Fatigue Syndrome and Fibromyalgia? Antioxid. Redox Signal. 2013, 19, 1855–1860. [Google Scholar] [CrossRef] [PubMed]
- Bower, J.E. Cancer-related fatigue—mechanisms, risk factors, and treatments. Nat. Rev. Clin. Oncol. 2014, 11, 597–609. [Google Scholar] [CrossRef] [PubMed]
- Weiland, T.J.; Jelinek, G.; Marck, C.; Hadgkiss, E.J.; Van Der Meer, D.M.; Pereira, N.G.; Taylor, K. Clinically Significant Fatigue: Prevalence and Associated Factors in an International Sample of Adults with Multiple Sclerosis Recruited via the Internet. PLoS ONE 2015, 10, e0115541. [Google Scholar] [CrossRef]
- Bellato, E.; Marini, E.; Castoldi, F.; Barbasetti, N.; Mattei, L.; Bonasia, D.E.; Blonna, D. Fibromyalgia Syndrome: Etiology, Pathogenesis, Diagnosis, and Treatment. Pain Res. Treat. 2012, 2012, 426130. [Google Scholar] [CrossRef]
- Mease, P. Fibromyalgia syndrome: Review of clinical presentation, pathogenesis, outcome measures, and treatment. J. Rheumatol. 2005, 32, 17. [Google Scholar]
- Tardy, A.-L.; Pouteau, E.; Marquez, D.; Yilmaz, C.; Scholey, A. Vitamins and Minerals for Energy, Fatigue and Cognition: A Narrative Review of the Biochemical and Clinical Evidence. Nutrients 2020, 12, 228. [Google Scholar] [CrossRef]
- Am, G.M. The safety of commonly used vitamins and minerals. Aust. Prescr. 2021, 44, 119–123. [Google Scholar] [CrossRef]
- Kamiński, M.; Kręgielska-Narożna, M.; Soczewka, M.; Wesołek, A.; Rosiejka, P.; Szuman, S.; Bogdański, P. Characteristics of Websites Presenting Parenteral Supplementation Services in Five European Countries: A Cross-Sectional Study. Nutrients 2020, 12, 3614. [Google Scholar] [CrossRef] [PubMed]
- Hershman, D.L.; Unger, J.M.; Crew, K.D.; Minasian, L.M.; Awad, D.; Moinpour, C.M.; Hansen, L.; Lew, D.L.; Greenlee, H.; Fehrenbacher, L.; et al. Randomized Double-Blind Placebo-Controlled Trial of Acetyl-L-Carnitine for the Prevention of Taxane-Induced Neuropathy in Women Undergoing Adjuvant Breast Cancer Therapy. J. Clin. Oncol. 2013, 31, 2627–2633. [Google Scholar] [CrossRef] [PubMed]
- Huck, C.J.; Johnston, C.S.; Beezhold, B.L.; Swan, P.D. Vitamin C status and perception of effort during exercise in obese adults adhering to a calorie-reduced diet. Nutrition 2012, 29, 42–45. [Google Scholar] [CrossRef] [PubMed]
- Fukuda, S.; Nojima, J.; Kajimoto, O.; Yamaguti, K.; Nakatomi, Y.; Kuratsune, H.; Watanabe, Y. Ubiquinol-10 supplementation improves autonomic nervous function and cognitive function in chronic fatigue syndrome. Biofactors 2016, 42, 431–440. [Google Scholar] [CrossRef]
- Cordero, M.D.; Alcocer-Gómez, E.; de Miguel, M.; Culic, O.; Carrión, A.M.; Alvarez-Suarez, J.M.; Bullón, P.; Battino, M.; Fernández-Rodríguez, A.; Sánchez-Alcazar, J.A. Can Coenzyme Q10 Improve Clinical and Molecular Parameters in Fibromyalgia? Antioxid. Redox Signal. 2013, 19, 1356–1361. [Google Scholar] [CrossRef]
- Costantini, A.; Pala, M.I.; Tundo, S.; Matteucci, P. High-dose thiamine improves the symptoms of fibromyalgia. BMJ Case Rep. 2013, 2013, bcr2013009019. [Google Scholar] [CrossRef]
- Zhang, J.-J.; Wu, Z.-B.; Cai, Y.-J.; Ke, B.; Huang, Y.-J.; Qiu, C.-P.; Yang, Y.-B.; Shi, L.-Y.; Qin, J. L-carnitine ameliorated fasting-induced fatigue, hunger, and metabolic abnormalities in patients with metabolic syndrome: A randomized controlled study. Nutr. J. 2014, 13, 110. [Google Scholar] [CrossRef]
- Berman, M.; Stamler, A. Coenzyme Q10 in patients with end-stage heart failure awaiting cardiac transplantation: A randomized, placebo-controlled study. Clin. Cardiol. 2004, 27, 295–299. [Google Scholar] [CrossRef]
- Han, B.; Wu, X.; Guo, Y. Improvement of fatigue after vitamin D supplementation in kidney transplant recipients. Medicine 2017, 96, e6918. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.-M.; Wang, F.-Y.; Wu, J.-C.; Wang, Y. Effect of Vitamin D Supplementation on the Prognosis of Post-stroke Fatigue: A Retrospective Cohort Study. Front. Neurol. 2021, 12, 690969. [Google Scholar] [CrossRef]
- Iwase, S.; Kawaguchi, T.; Yotsumoto, D.; Doi, T.; Miyara, K.; Odagiri, H.; Kitamura, K.; Ariyoshi, K.; Miyaji, T.; Ishiki, H.; et al. Efficacy and safety of an amino acid jelly containing coenzyme Q10 and l-carnitine in controlling fatigue in breast cancer patients receiving chemotherapy: A multi-institutional, randomized, exploratory trial (JORTC-CAM01). Support. Care Cancer 2015, 24, 637–646. [Google Scholar] [CrossRef] [PubMed]
- Mizuno, K.; Sasaki, A.T.; Watanabe, K.; Watanabe, Y. Ubiquinol-10 Intake Is Effective in Relieving Mild Fatigue in Healthy Individuals. Nutrients 2020, 12, 1640. [Google Scholar] [CrossRef] [PubMed]
- Sevim, S.; Kaleağası, H.; Taşdelen, B. Sulbutiamine shows promising results in reducing fatigue in patients with multiple sclerosis. Mult. Scler. Relat. Disord. 2017, 16, 40–43. [Google Scholar] [CrossRef] [PubMed]
- Achiron, A.; Givon, U.; Magalashvili, D.; Dolev, M.; Zaltzman, S.L.; Kalron, A.; Stern, Y.; Mazor, Z.; Ladkani, D.; Barak, Y. Effect of Alfacalcidol on multiple sclerosis-related fatigue: A randomized, double-blind placebo-controlled study. Mult. Scler. J. 2014, 21, 767–775. [Google Scholar] [CrossRef]
- Bager, P.; Hvas, C.L.; Rud, C.L.; Dahlerup, J.F. Randomised clinical trial: High-dose oral thiamine versus placebo for chronic fatigue in patients with quiescent inflammatory bowel disease. Aliment. Pharmacol. Ther. 2021, 53, 79–86. [Google Scholar]
- Castro-Marrero, J.; Cordero, M.D.; Segundo, M.J.; Sáez-Francàs, N.; Calvo, N.; Román-Malo, L.; Aliste, L.; de Sevilla, T.F.; Alegre, J. Does Oral Coenzyme Q10 Plus NADH Supplementation Improve Fatigue and Biochemical Parameters in Chronic Fatigue Syndrome? Antioxid. Redox Signal. 2015, 22, 679–685. [Google Scholar] [CrossRef]
- Castro-Marrero, J.; Segundo, M.J.; Lacasa, M.; Martinez-Martinez, A.; Sentañes, R.S.; Alegre-Martin, J. Effect of Dietary Coenzyme Q10 Plus NADH Supplementation on Fatigue Perception and Health-Related Quality of Life in Individuals with Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: A Prospective, Randomized, Double-Blind, Placebo-Controlled Trial. Nutrients 2021, 13, 2658. [Google Scholar] [CrossRef]
- Castro-Marrero, J.; Sáez-Francàs, N.; Segundo, M.J.; Calvo, N.; Faro, M.; Aliste, L.; de Sevilla, T.F.; Alegre, J. Effect of coenzyme Q10 plus nicotinamide adenine dinucleotide supplementation on maximum heart rate after exercise testing in chronic fatigue syndrome–A randomized, controlled, double-blind trial. Clin. Nutr. 2016, 35, 826–834. [Google Scholar] [CrossRef]
- Mizuno, K.; Tanaka, M.; Nozaki, S.; Mizuma, H.; Ataka, S.; Tahara, T.; Sugino, T.; Shirai, T.; Kajimoto, Y.; Kuratsune, H.; et al. Antifatigue effects of coenzyme Q10 during physical fatigue. Nutrition 2008, 24, 293–299. [Google Scholar] [CrossRef]
- Gökbel, H.; Gül, I.; Belviranl, M.; Okudan, N. The Effects of Coenzyme Q10 Supplementation on Performance During Repeated Bouts of Supramaximal Exercise in Sedentary Men. J. Strength Cond. Res. 2010, 24, 97–102. [Google Scholar] [CrossRef]
- Sanoobar, M.; Dehghan, P.; Khalili, M.; Azimi, A.; Seifar, F. Coenzyme Q10 as a treatment for fatigue and depression in multiple sclerosis patients: A double blind randomized clinical trial. Nutr. Neurosci. 2015, 19, 138–143. [Google Scholar] [CrossRef]
- Miyamae, T.; Seki, M.; Naga, T.; Uchino, S.; Asazuma, H.; Yoshida, T.; Iizuka, Y.; Kikuchi, M.; Imagawa, T.; Natsumeda, Y.; et al. Increased oxidative stress and coenzyme Q10 deficiency in juvenile fibromyalgia: Amelioration of hypercholesterolemia and fatigue by ubiquinol-10 supplementation. Redox Rep. 2013, 18, 12–19. [Google Scholar] [CrossRef]
- Pierro, F.D.; Rossi, A.; Consensi, A.; Giacomelli, C.; Bazzichi, L. Role for a water-soluble form of CoQ10 in female subjects affected by fibromyalgia. A preliminary study. Clin. Exp. Rheumatol. 2017, 35, 9. [Google Scholar]
- Lee, Y.-J.; Cho, W.-J.; Kim, J.-K.; Lee, D.-C. Effects of Coenzyme Q10 on Arterial Stiffness, Metabolic Parameters, and Fatigue in Obese Subjects: A Double-Blind Randomized Controlled Study. J. Med. Food 2011, 14, 386–390. [Google Scholar] [CrossRef] [PubMed]
- Gharahdaghi, N.; Shabkhiz, F.; Azarboo, E.; Keyhanian, A. The Effects of Daily Coenzyme Q10 Supplementation on VO2max, vVO2max and Intermittent Exercise Performance in Soccer Players. Life Sci. J. 2013, 10, 22–28. [Google Scholar]
- Peel, M.M.; Cooke, M.; Lewis-Peel, H.J.; Lea, R.A.; Moyle, W. A randomized controlled trial of coenzyme Q10 for fatigue in the late-onset sequelae of poliomyelitis. Complement. Ther. Med. 2015, 23, 789–793. [Google Scholar] [CrossRef]
- Lesser, G.J.; Case, D.; Stark, N.; Williford, S.; Giguere, J.; Garino, L.A.; Naughton, M.J.; Vitolins, M.Z.; Lively, M.O.; Shaw, E.G. A Randomized, Double-Blind, Placebo-Controlled Study of Oral Coenzyme Q10 to Relieve Self-Reported Treatment-Related Fatigue in Newly Diagnosed Patients with Breast Cancer. J. Support. Oncol. 2012, 11, 31–42. [Google Scholar] [CrossRef]
- An, J.H.; Kim, Y.J.; Kim, K.J.; Kim, S.H.; Kim, N.H.; Kim, H.Y.; Kim, N.H.; Choi, K.M.; Baik, S.H.; Choi, D.S.; et al. L-carnitine supplementation for the management of fatigue in patients with hypothyroidism on levothyroxine treatment: A randomized, double-blind, placebo-controlled trial. Endocr. J. 2016, 63, 885–895. [Google Scholar] [CrossRef]
- Matsui, H.; Einama, T.; Shichi, S.; Kanazawa, R.; Shibuya, K.; Suzuki, T.; Matsuzawa, F.; Hashimoto, T.; Homma, S.; Yamamoto, J.; et al. L-Carnitine supplementation reduces the general fatigue of cancer patients during chemotherapy. Mol. Clin. Oncol. 2018, 8, 413–416. [Google Scholar] [CrossRef]
- A Cruciani, R.; Dvorkin, E.; Homel, P.; Culliney, B.; Malamud, S.; Shaiova, L.; Fleishman, S.; Lapin, J.; Klein, E.; Lesage, P.; et al. l-Carnitine Supplementation for the Treatment of Fatigue and Depressed Mood in Cancer Patients with Carnitine Deficiency: A Preliminary Analysis. Ann. N. Y. Acad. Sci. 2004, 1033, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, R.A.; Dvorkin, E.; Homel, P.; Culliney, B.; Malamud, S.; Lapin, J.; Portenoy, R.K.; Esteban-Cruciani, N. L-Carnitine Supplementation in Patients with Advanced Cancer and Carnitine Deficiency: A Double-Blind, Placebo-Controlled Study. J. Pain Symptom Manag. 2009, 37, 622–631. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, R.A.; Zhang, J.J.; Manola, J.; Cella, D.; Ansari, B.; Fisch, M.J. L-Carnitine Supplementation for the Management of Fatigue in Patients With Cancer: An Eastern Cooperative Oncology Group Phase III, Randomized, Double-Blind, Placebo-Controlled Trial. JCO 2012, 30, 3864–3869. [Google Scholar] [CrossRef] [PubMed]
- Cruciani, R.A.; Revuelta, M.; Dvorkin, E.; Homel, P.; Lesage, P.; Esteban-Cruciani, N. L-carnitine supplementation in patients with HIV/AIDS and fatigue: A double-blind, placebo-controlled pilot study. HIV/AIDS Res. Palliat. Care 2015, 7, 65–73. [Google Scholar] [CrossRef] [PubMed]
- Graziano, F.; Bisonni, R.; Catalano, V.J.; Da Silva, R.C.F.; Rovidati, S.; Mencarini, E.; Ferraro, B.; Canestrari, F.; Baldelli, A.M.; De Gaetano, A.; et al. Potential role of levocarnitine supplementation for the treatment of chemotherapy-induced fatigue in non-anaemic cancer patients. Br. J. Cancer 2002, 86, 1854–1857. [Google Scholar] [CrossRef] [PubMed]
- Gramignano, G.; Lusso, M.R.; Madeddu, C.; Massa, E.; Serpe, R.; Deiana, L.; Lamonica, G.; Dessì, M.; Spiga, C.; Astara, G.; et al. Efficacy of l-carnitine administration on fatigue, nutritional status, oxidative stress, and related quality of life in 12 advanced cancer patients undergoing anticancer therapy. Nutrition 2006, 22, 136–145. [Google Scholar] [CrossRef] [PubMed]
- Vasiljevski, E.R.; Burns, J.; Bray, P.; Donlevy, G.; Mudge, A.J.; Jones, K.J.; Summers, M.A.; Biggin, A.; Munns, C.F.; McKay, M.J.; et al. L-carnitine supplementation for muscle weakness and fatigue in children with neurofibromatosis type 1: A Phase 2a clinical trial. Am. J. Med. Genet. Part A 2021, 185, 2976–2985. [Google Scholar] [CrossRef]
- Pistone, G.; Marino, A.D.; Leotta, C.; Dell’arte, S.; Finocchiaro, G.; Malaguarnera, M. Levocarnitine Administration in Elderly Subjects with Rapid Muscle Fatigue: Effect on Body Composition, Lipid Profile and Fatigue. Drugs Aging 2003, 20, 761–767. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Cammalleri, L.; Gargante, M.P.; Vacante, M.; Colonna, V.; Motta, M. l-Carnitine treatment reduces severity of physical and mental fatigue and increases cognitive functions in centenarians: A randomized and controlled clinical trial. Am. J. Clin. Nutr. 2007, 86, 1738–1744. [Google Scholar] [CrossRef]
- Malaguarnera, M.; Gargante, M.P.; Cristaldi, E.; Colonna, V.; Messano, M.; Koverech, A.; Neri, S.; Vacante, M.; Cammalleri, L.; Motta, M. Acetyl l-carnitine (ALC) treatment in elderly patients with fatigue. Arch. Gerontol. Geriatr. 2008, 46, 181–190. [Google Scholar] [CrossRef]
- Vermeulen, R.C.W.; Scholte, H.R. Exploratory Open Label, Randomized Study of Acetyl- and Propionylcarnitine in Chronic Fatigue Syndrome. Psychosom. Med. 2004, 66, 276–282. [Google Scholar] [CrossRef] [PubMed]
- Cavallini, G.; Caracciolo, S.; Vitali, G.; Modenini, F.; Biagiotti, G. Carnitine versus androgen administration in the treatment of sexual dysfunction, depressed mood, and fatigue associated with male aging. Urology 2004, 63, 641–646. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, S.; Danneskiold-Samsøe, B.; Andersen, R.B. Oral S-adenosylmethionine in Primary Fibromyalgia. Double-blind Clinical Evaluation. Scand. J. Rheumatol. 1991, 20, 294–302. [Google Scholar] [CrossRef] [PubMed]
- Afzali, A.; Goli, S.; Moravveji, A.; Bagheri, H.; Mirhosseini, S.; Ebrahimi, H. The effect of zinc supplementation on fatigue among elderly community dwellers: A parallel clinical trial. Heal. Sci. Rep. 2021, 4, e301. [Google Scholar] [CrossRef]
- Siahbazi, S.; Behboudi-Gandevani, S.; Montazeri, A.; Moghaddam-Banaem, L. Effect of zinc sulfate supplementation on premenstrual syndrome and health-related quality of life: Clinical randomized controlled trial. J. Obstet. Gynaecol. Res. 2017, 43, 887–894. [Google Scholar] [CrossRef]
- Roy, S.; Sherman, A.; Monari-Sparks, M.J.; Schweiker, O.; Hunter, K. Correction of low vitamin D improves fatigue: Effect of correction of low vitamin D in fatigue study (EViDiF study). N. Am. J. Med Sci. 2014, 6, 396–402. [Google Scholar] [CrossRef]
- Nowak, A.; Boesch, L.; Andres, E.; Battegay, E.; Hornemann, T.; Schmid, C.; Bischoff-Ferrari, H.; Suter, P.M.; Krayenbuehl, P.-A. Effect of vitamin D3 on self-perceived fatigue: A double-blind randomized placebo-controlled trial. Medicine 2016, 95, e5353. [Google Scholar] [CrossRef]
- Lima, G.L.; Paupitz, J.; Aikawa, N.E.; Takayama, L.; Bonfa, E.; Pereira, R.M.R. Vitamin D Supplementation in Adolescents and Young Adults with Juvenile Systemic Lupus Erythematosus for Improvement in Disease Activity and Fatigue Scores: A Randomized, Double-Blind, Placebo-Controlled Trial. Arthritis Care Res. 2015, 68, 91–98. [Google Scholar] [CrossRef]
- Khan, Q.J.; Reddy, P.S.; Kimler, B.F.; Sharma, P.; Baxa, S.E.; O’dea, A.P.; Klemp, J.R.; Fabian, C.J. Effect of vitamin D supplementation on serum 25-hydroxy vitamin D levels, joint pain, and fatigue in women starting adjuvant letrozole treatment for breast cancer. Breast Cancer Res. Treat. 2009, 119, 111–118. [Google Scholar] [CrossRef]
- Forsyth, L.M.; Preuss, H.G.; MacDowell, A.L.; Chiazze, L.; Birkmayer, G.D.; A Bellanti, J. Therapeutic effects of oral NADH on the symptoms of patients with chronic fatigue syndrome. Ann. Allergy Asthma Immunol. 1999, 82, 185–191. [Google Scholar] [CrossRef]
- Santaella, M.L.; Font, I.; Disdier, O.M. Comparison of oral nicotinamide adenine dinucleotide (NADH) versus conventional therapy for chronic fatigue syndrome. P. R. Health Sci. J. 2004, 23, 89–93. [Google Scholar]
- Cordero, M.D.; De Miguel, M.; Fernández, A.M.M.; López, I.M.C.; Maraver, J.G.; Cotán, D.; Izquierdo, L.G.; Bonal, P.; Campa, F.; Bullon, P.; et al. Mitochondrial dysfunction and mitophagy activation in blood mononuclear cells of fibromyalgia patients: Implications in the pathogenesis of the disease. Arthritis Res. Ther. 2010, 12, R17. [Google Scholar] [CrossRef] [PubMed]
- Avasarala, J.R.; Cross, A.H.; Trinkaus, K. Comparative assessment of Yale Single Q uestion and Beck Depression Inventory Scale in screening for depression in multiple sclerosis. Mult. Scler. J. 2003, 9, 307–310. [Google Scholar] [CrossRef] [PubMed]
- Chaturvedi, R.K.; Beal, M.F. Mitochondrial Approaches for Neuroprotection. Ann. N. Y. Acad. Sci. 2008, 1147, 395–412. [Google Scholar] [CrossRef]
- Foster, D.W. The Role of the Carnitine System in Human Metabolism. Ann. N. Y. Acad. Sci. 2004, 1033, 1–16. [Google Scholar] [CrossRef]
- I Wagner, L.; Cella, D. Fatigue and cancer: Causes, prevalence and treatment approaches. Br. J. Cancer 2004, 91, 822–828. [Google Scholar] [CrossRef]
- Prasad, A.S. Clinical, immunological, anti-inflammatory and antioxidant roles of zinc. Exp. Gerontol. 2008, 43, 370–377. [Google Scholar] [CrossRef]
- Fukada, T.; Kambe, T. (Eds.) Zinc Signaling; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Lee, S.R.; Noh, S.J.; Pronto, J.R.; Jeong, Y.J.; Kim, H.K.; Song, I.S.; Xu, Z.; Kwon, H.Y.; Kang, S.C.; Sohn, E.-H.; et al. The Critical Roles of Zinc: Beyond Impact on Myocardial Signaling. Korean J. Physiol. Pharmacol. 2015, 19, 389–399. [Google Scholar] [CrossRef]
- Sales, M.C.; de Oliveira, L.P.; de Araújo Cabral, N.L.; de Sousa, S.E.S.; das Graças Almeida, M.; Lemos, T.M.A.M.; de Oliveira Lyra, C.; de Lima, K.C.; Sena-Evangelista, K.C.M.; de Fatima Campos Pedrosa, L. Plasma zinc in institutionalized elderly individuals: Relation with immune and cardiometabolic biomarkers. J. Trace Elem. Med. Biol. 2018, 50, 615–621. [Google Scholar] [CrossRef]
- Cruciani, R.A.; Dvorkin, E.; Homel, P.; Malamud, S.; Culliney, B.; Lapin, J.; Portenoy, R.K.; Esteban-Cruciani, N. Safety, Tolerability and Symptom Outcomes Associated with l-Carnitine Supplementation in Patients with Cancer, Fatigue, and Carnitine Deficiency: A Phase I/II Study. J. Pain Symptom Manag. 2006, 32, 551–559. [Google Scholar] [CrossRef]
- Dwivedi, A.; Gupta, B.; Tiwari, S.; Pratyush, D.D.; Singh, S.; Singh, S.K. Parenteral vitamin D supplementation is superior to oral in vitamin D insufficient patients with type 2 diabetes mellitus. Diabetes Metab. Syndr. Clin. Res. Rev. 2017, 11, S373–S375. [Google Scholar] [CrossRef] [PubMed]
- Padayatty, S.J.; Sun, H.; Wang, Y.; Riordan, H.D.; Hewitt, S.M.; Katz, A.; Wesley, R.A.; Levine, M. Vitamin C Pharmacokinetics: Implications for Oral and Intravenous Use. Ann. Intern. Med. 2004, 140, 533–537. [Google Scholar] [CrossRef]
- Nauman, G.; Gray, J.C.; Parkinson, R.; Levine, M.; Paller, C.J. Systematic Review of Intravenous Ascorbate in Cancer Clinical Trials. Antioxidants 2018, 7, 89. [Google Scholar] [CrossRef] [PubMed]
- Ou, J.; Zhu, X.; Chen, P.; Du, Y.; Lu, Y.; Peng, X.; Bao, S.; Wang, J.; Zhang, X.; Zhang, T.; et al. A randomized phase II trial of best supportive care with or without hyperthermia and vitamin C for heavily pretreated, advanced, refractory non-small-cell lung cancer. J. Adv. Res. 2020, 24, 175–182. [Google Scholar] [CrossRef]
- Takahashi, H.; Mizuno, H.; Yanagisawa, A. High-dose intravenous vitamin C improves quality of life in cancer patients. Pers. Med. Universe 2012, 1, 49–53. [Google Scholar] [CrossRef]
- Yeom, C.H.; Jung, G.C.; Song, K.J. Changes of Terminal Cancer Patients’ Health-related Quality of Life after High Dose Vitamin C Administration. J. Korean Med. Sci. 2007, 22, 7–11. [Google Scholar] [CrossRef] [PubMed]
- Vollbracht, C.; Schneider, B.; Leendert, V.; Weiss, G.; Auerbach, L.; Beuth, J. Intravenous Vitamin C Administration Improves Quality of Life in Breast Cancer Patients during Chemo-/Radiotherapy and Aftercare: Results of a Retrospective, Multicentre, Epidemiological Cohort Study in Germany. In Vivo 2011, 6, 983–990. [Google Scholar]
- Suh, S.-Y.; Bae, W.K.; Ahn, H.-Y.; Choi, S.-E.; Jung, G.-C.; Yeom, C.H. Intravenous Vitamin C administration reduces fatigue in office workers: A double-blind randomized controlled trial. Nutr. J. 2012, 11, 7. [Google Scholar] [CrossRef]
- Vollbracht, C.; Raithel, M.; Krick, B.; Kraft, K.; Hagel, A.F. Intravenous vitamin C in the treatment of allergies: An interim subgroup analysis of a long-term observational study. J. Int. Med. Res. 2018, 46, 3640–3655. [Google Scholar] [CrossRef]
- Jeon, Y.; Park, J.S.; Moon, S.; Yeo, J. Effect of Intravenous High Dose Vitamin C on Postoperative Pain and Morphine Use after Laparoscopic Colectomy: A Randomized Controlled Trial. Pain Res. Manag. 2016, 2016, 9147279. [Google Scholar] [CrossRef]
- Aziz, A.N.Y. Improvement in fatigue status in patients with liver cirrhosis due to chronic viral hepatitis c after vitamin d supplementation. Acta Med. Mediterr. 2020, 37, 8. [Google Scholar] [CrossRef]
- Brass, E.P.; Adler, S.; Sietsema, K.E.; Hiatt, W.R.; Orlando, A.M.; Amato, A. CHIEF Investigators Intravenous l-carnitine increases plasma carnitine, reducesfatigue, and may preserve exercise capacity in hemodialysis patients. Am. J. Kidney Dis. 2001, 37, 1018–1028. [Google Scholar] [CrossRef]
- Massey, P.B. Reduction of fibromyalgia symptoms through intravenous nutrient therapy: Results of a pilot clinical trial. Altern. Ther. Health Med. 2007, 13, 32–34. [Google Scholar]
- Di Benedetto, P.; Iona, L.; Zidarich, V. Clinical evaluation of S-adenosyl-L-methionine versus transcutaneous electrical nerve stimulation in primary fibromyalgia. Curr. Ther. Res. 1993, 53, 222–229. [Google Scholar] [CrossRef]
- Pękala, J.W.; Patkowska-Sokola, B.; Bodkowski, R.; Jamroz, D.; Nowakowski, P.; Lochynski, S.; Librowski, T. L-Carnitine—Metabolic Functions and Meaning in Humans Life. Curr. Drug Metab. 2011, 12, 667–678. [Google Scholar] [CrossRef] [PubMed]
- Han, M.; Lee, D.; Lee, S.H.; Kim, T.H. Oxidative Stress and Antioxidant Pathway in Allergic Rhinitis. Antioxidants 2021, 10, 1266. [Google Scholar] [CrossRef]
- Cannataro, R.; Carbone, L.; Petro, J.L.; Cione, E.; Vargas, S.; Angulo, H.; Forero, D.A.; Odriozola-Martínez, A.; Kreider, R.B.; Bonilla, D.A. Sarcopenia: Etiology, Nutritional Approaches, and miRNAs. Int. J. Mol. Sci. 2021, 22, 9724. [Google Scholar] [CrossRef]
- Smith, S.A.; Montain, S.J.; Matott, R.P.; Zientara, G.P.; Jolesz, F.A.; Fielding, R.A. Creatine supplementation and age influence muscle metabolism during exercise. J. Appl. Physiol. 1998, 85, 1349–1356. [Google Scholar] [CrossRef]
- Klasson, C.; Helde-Frankling, M.; Sandberg, C.; Nordström, M.; Lundh-Hagelin, C.; Björkhem-Bergman, L. Vitamin D and Fatigue in Palliative Cancer: A Cross-Sectional Study of Sex Difference in Baseline Data from the Palliative D Cohort. J. Palliat. Med. 2021, 24, 433–437. [Google Scholar] [CrossRef]
Reference | Study Design | Group | Treatment | No. of Participants | Main Findings |
---|---|---|---|---|---|
Coenzyme Q10 | |||||
Castro-Marrero et al., 2015 [27] | Randomized, double-blind placebo-controlled trial | Chronic fatigue syndrome (CFS) patients | Oral CoQ10 (200 mg/day) + NADH (20 mg/day) for 8 weeks | 73 | Significant improvement of fatigue showing a reduction in fatigue impact scale total score (p < 0.05) |
Castro-Marrero et al., 2021 [28] | Prospective, randomized, double-blind, placebo-controlled trial | Individuals with Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) | Oral CoQ10 (200 mg/day) + NADH (20 mg/day) for 12 weeks | 207 | Significant reduction in cognitive fatigue perception and overall fatigue impact scale (FIS-40) score (p < 0.001 and p = 0.022, respectively) |
Castro-Marrero et al., 2016 [29] | Randomized, controlled, double-blind trial | Chronic fatigue syndrome (CFS) patients | 50 mg of CoQ10 and 5 mg of NADH twice daily for 8 weeks | 80 | Significant reduction in perception of fatigue through all follow-up visits in active group versus placebo (p = 0.03) |
Iwase et al., 2016 [22] | Multi-institutional, randomized, exploratory trial | Breast cancer patients | Inner Power (IP) oral supplement containing branched-chain amino acids (2500 mg), coenzyme Q10 (30 mg), and L-carnitine (50 mg), once daily for 21 days | 57 | Changes in the worst level of fatigue, global fatigue score (GFS), and current feeling of fatigue were significantly different between the intervention and control groups |
Mizuno et al., 2008 [30] | Double-blinded, placebo-controlled, three crossover design | Healthy volunteers | Oral coenzyme Q10 (100 or 300 mg/d) or placebo administration for 8 days | 17 | Significant alleviation of subjective fatigue sensation measured on a visual analogue scale in the 300-mg coenzyme Q10–administered group after |
Mizuno et al., 2020 [23] | Double-blind, placebo-controlled study | Healthy volunteers | Ubiquinol-10 (100 or 150 mg/d) or placebo administration for 12 weeks | 104 | Improvements in subjective levels of fatigue sensation and sleepiness after cognitive tasks |
Gokbel et al., 2010 [31] | Randomized, double-blind, crossover study | Healthy and sedentary men | 100 mg/day CoQ10 for two 8-week periods | 15 | Mean power increased only with CoQ10 supplementation during the fifth Wingate test (WT5) |
Sanoobar et al., 2016 [32] | Randomized, double-blinded, placebo-controlled trial | Multiple sclerosis patients | 500 mg/day CoQ10 for 12 weeks | 48 | Significant decrease of fatigue severity scale (FSS) was observed in CoQ10 group during the intervention (p = 0.001) |
Cordero et al., 2013 [16] | Randomized, double-blind, placebo- controlled trial | Fibromyalgia (FM) patients | CoQ10 supplementation (300 mg/day) for 40 days | 20 | Prominent reduction in pain (p < 0.001), fatigue, and morning tiredness (p < 0.01) |
Miyamae et al., 2013 [33] | Double-blind, placebo-controlled trial | Patients with juvenile FM (n = 10) and healthy control subjects (n = 67) | Ubiquinol-10 (100 mg/day) for 12 weeks | 77 | Significant improvements in chronic fatigue scores as measured by the Chalder Fatigue Scale |
Pierro et al., 2017 [34] | Randomised, open-label, cross-over study | Female Fibromyalgia (FM) patients | CoQ10 200 mg × 2/day for 3 months | 22 | Statistically significant relieve of the fatigue symptoms |
Berman et al., 2004 [19] | Randomized, Placebo-Controlled Study | Patients with end-stage heart failure | CoQ10 60 mg U/day for 3 months | 32 | Statistically significant relieve of the fatigue symptoms |
Lee et al., 2011 [35] | Randomized, double-blind, placebo-controlled, single- centre study | Obese subjects | CoQ10 200 mg/day for 12 weeks | 36 | NS, mean FSS score decreased significantly from 40.1 to 33.1 in the coenzyme Q10 group (p = 0.017), but no significant change was seen in the placebo group (p = 0.464) |
Gharahdaghi et al., 2013 [36] | Randomized, double-blind placebo-controlled trial | Soccer players | CoQ10 300 mg/day for 4 weeks | 16 | NS, fatigue index did not significantly change (p = 0.27), no significant changes in body composition, significant changes in VO2max and performance |
Peel et al., 2015 [37] | Parallel-group, randomized, placebo-controlled trial | Patients with late-onset sequelae of poliomyelitis | CoQ10 100 mg/day for 2 months | 101 | NS, no significant changes in fatigue scores (p = 0.36) |
Fukuda et al., 2016 [15] | Open-Label study, Randomized clinical trial | Patients with chronic fatigue syndrome (CFS) | CoQ10 150 mg/day for 2 months | 20 | NS, no significant changes in fatigue scores (p > 0.05) |
Lesser et al., 2013 [38] | Randomized Double-Blind, Placebo-Controlled Study | Breast Cancer subjects | CoQ10 300 mg/day for 3 months | 236 | NS, no significant changes in fatigue scores (p > 0.05) |
L-Carnitine | |||||
An et al., 2016 [39] | Randomized, double-blind, placebo-controlled trial | Hypothyroid patients | L-carnitine (990 mg) twice daily for 12 weeks | 60 | Mental fatigue score (MFS) was significantly decreased, physical fatigue score (PFS) was significantly improved in patients younger than 50 years and those with free T3 ≥ 4.0 pg/mL |
Matsui et al., 2018 [40] | Single-institution, non-randomized study | Cancer patients | 1500 mg/day of levocarnitine per os for 8 weeks | 11 | Significant reduction of general fatigue |
Cruciani et al., 2006, 2004 [41] | Open-label Phase I/II clinical trial | Cancer patients | L-carnitine (250, 750, 1250, 1750, 2250, 2750, 3000 mg/day), administered in two daily doses for 7 days | 38 | Dose-response relationship for total—(r = 0.54, p = 0.03), free-carnitine (r = 0.56, p = 0.02) levels, and fatigue (BFI) scores (r = −0.61, p = 0.01). |
Cruciani et al., 2009 [42] | Double-Blind, Placebo-Controlled Study | Cancer patients | L-carnitine 1 g twice daily for 2 weeks | 29 | Significant improvement of fatigue on the FACT-An fatigue subscale (p < 0.03), significant improvement of FACT-An functional well-being subscale (p < 0.03) |
Cruciani et al., 2012 [43] | Phase III, Randomized, Double-Blind, Placebo-Controlled Trial | Cancer patients | L-carnitine 2 g/d for 4 weeks | 376 | NS, no statistically significant differences between the placebo and treatment arms (p = 0.57) in fatigue symptoms evaluated by Brief Fatigue Inventory (BFI) |
Cruciani et al., 2015 [44] | Double-blind, placebo-controlled pilot study | HIV/AIDS patients with carnitine deficiency and fatigue | L-carnitine 3 g/d for 4 weeks | 35 | NS, no statistically significant differences in fatigue symptoms evaluated by Brief Fatigue Inventory (BFI) |
Graziano et al., 2002 [45] | Prospective observational study | Cancer patients | Oral levocarnitine 4 g daily for 7 days | 50 | Significant improvement of fatigue measured by Functional Assessment of Cancer Therapy-Fatigue score |
Gramignano et al., 2006 [46] | Open-label, non-randomized study | Cancer patients | L-carnitine 6 g/d for 4 weeks | 12 | Fatigue, as measured by the Multidimensional Fatigue Symptom Inventory—Short Form, was significantly decreased |
Vasiljevski et al., 2021 [47] | Open-label, single-arm, single centre, phase 2a clinical trial | Children with neurofibromatosis type 1 (NF1) | Levocarnitine tartrate 1000 mg/day for 12 weeks | 6 | 53% increase in dorsiflexion strength (p = 0.02), mean 66% increase in plantarflexion strength (p = 0.03), 10% increase in long jump distance (p = 0.01) and 6MWT distance (p = 0.03) |
Pistone et al., 2003 [48] | Placebo-controlled, randomised, double-blind, two-phase study | Elderly subjects | Levocarnitine 2 g/day | 84 | Wessely and Powell scores decreased significantly by 40% (physical fatigue) and 45% (mental fatigue) |
Malaguarnera et al., 2007 [49] | Placebo-controlled, randomized, double-blind, 2-phase study | Centenarians | Levocarnitine 2 g/day | 66 | Significant differences in physical fatigue, mental fatigue, fatigue severity, and MMSE; significant improvements in the following markers: total fat mass, total muscle mass, plasma concentrations of total carnitine |
Malaguarnera et al., 2008 [50] | Single centre, randomized, double blind, comparative clinical trial | Elderly subjects | Acetyl L-carnitine (ALC), 32 g twice-a-day | 96 | Decrease in physical fatigue: 6.2 (p < 0.001), in mental fatigue: 2.8 (p < 0.001), in severity of fatigue: 21.0 (p < 0.001) and improvements in functional status: 16.1 (p < 0.001) and cognitive functions: 2.7 (p < 0.001) |
Vermeulen et al., 2004 [51] | Open Label, randomized Study | Chronic fatigue syndrome (CFS) patients | 2 g/d acetyl-L-carnitine, 2 g/d propionyl-L- carnitine, and its combination for 24 weeks | 90 | Acetylcarnitine significantly improved mental fatigue (p = 0.015) and propionylcarnitine improved general fatigue (p = 0.004); attention concentration improved in all groups |
Cavallini et al., 2004 [52] | Randomized, double-blind placebo-controlled trial | Men older than 60 years | Propionyl-L-carnitine 2 g/day plus acetyl-L-carnitine 2 g/day for 6 months | 120 | Significant reduction of the fatigue scale score at 3 months (p = 0.01), significant improvement of the nocturnal penile tumescence and International Index of Erectile Function score |
Hershman et al., 2013 [13] | Randomized Double-Blind Placebo-Controlled Trial | Cancer patients | Acetyl-L-carnitine (ALC) 3 g/d for 24 weeks | 409 | NS, no significant changes in fatigue scores evaluated by Functional Assessment of Chronic Illness Therapy—Fatigue (FACIT-F), Grade 3 to 4 neurotoxicity was more frequent in the ALC arm |
Methionine | |||||
Jacobsen et al., 1991 [53] | Double-blind Clinical Evaluation | Fibromyalgia (FM) patients | S-adenosylmethionine 800 mg/day for 6 weeks | 44 | Improvements were seen for clinical disease activity (p = 0.04), pain experienced during the last week (p = 0.002), fatigue (p = 0.02), morning stiffness (p = 0.03) and mood evaluated by Face Scale (p = 0.006) in the actively treated group compared to placebo |
Zinc | |||||
Afzali et al., 2021 [54] | Randomized clinical trial | Elderly subjects aged ≥60 years | Zinc supplement 30 mg/day for 70 days | 150 | Significant reduction of fatigue (mean difference: −10.41 vs. 1.37, p < 0.001), significant increase in serum zinc level (mean difference: 14.22, vs. −0.57, p < 0.001) |
Siahbazi et al., 2017 [55] | Double-blind randomized and placebo-controlled trial | Women with premenstrual syndrome (PMS) | Zinc sulphate 220-mg capsules (containing 50 mg elemental zinc) from the 16th day of the menstrual cycle to the second day of the next cycles | 142 | Significant improvements in Premenstrual Symptoms Screening Tool (PSST) component scores including fatigue, mental and physical symptoms |
Vitamin D | |||||
Roy et al., 2014 [56] | Prospective non-randomized therapeutic study | Patients with fatigue and stable chronic medical conditions | Vitamin D2 (Ergocalciferol 50,000 units), three times per week for 5 weeks | 174 | Fatigue symptom scores improved significantly (p < 0.001); prevalence of low vitamin D was 77.2% in patients who presented with fatigue |
Nowak et al., 2016 [57] | Double-blind placebo-controlled clinical trial | Healthy persons presenting with fatigue and vitamin D deficiency (serum 25(OH)D < 20 mg/L) | Vitamin D3 (cholecalciferol), single oral dose of 100,000 units | 120 | Mean fatigue assessment scale (FAS) scores decreased significantly in the vitamin D group compared with placebo (p = 0.01) |
Han et al., 2017 [20] | Observational study | Kidney transplant recipients (KTRs) | Vitamin D3 (cholecalciferol) 800 IU/d, for 9 months | 60 | 25(OH)D was increased with 18.5% (p = 0.004) and subscale fatigue of the Checklist Individual Strength (CIS) scores improved with 10.0% (p = 0.007) |
Lima et al., 2016 [58] | Randomized, double-blind, placebo-controlled trial | Juvenile-onset systemic lupus erythematosus (SLE) patients | Vitamin D3 (cholecalciferol) 50,000 IU/week for 6 months | 40 | Reduction in fatigue related to social life score evaluated using the Kids Fatigue Severity Scale (K-FSS) (p = 0.008) |
Wang et al., 2021 [21] | Retrospective cohort study | Post-stroke fatigue (PSF) patients with vitamin D deficiency | Study group: vitamin D3 (cholecalciferol, 600 IU/day) for 3 months, control group: patients with vitamin D deficiency were not treated with combined vitamin D | 139 | Fatigue Severity Scale score was significantly lower in the study group than in the control group at 1 month (t = −4.731, p < 0.01) and 3 months (t = −7.937, p < 0.01) after treatment |
Khan et al., 2010 [59] | Prospective observational study | Post-menopausal women with early-stage, receptor-positive invasive breast cancer | Vitamin D3 (cholecalciferol) 50,000 IU/week for 12 weeks | 51 | NS, the difference between the fatigue scores of subjects exhibiting 25OHD levels above the median (66 ng/mL) and those with 25OHD levels below the median were not statistically significant |
Achiron et al., 2015 [25] | Randomized, double-blind placebo-controlled study | Multiple sclerosis patients | Alfacalcidol (1 mcg/d) for six consecutive months | 80 | Significant decrease in Fatigue Impact Scale (FIS) scores |
Vitamin C | |||||
Huck et al., 2013 [14] | Placebo-controlled pilot trial | Obese adults | Vitamin C capsule 500 mg/day or placebo for 4 weeks | 20 | The general fatigue score was significantly decreased in the VC group compared to the control group (p = 0.001) |
NADH | |||||
Forsyth et al., 1999 [60] | Randomized, double-blind, placebo-controlled crossover study | Chronic fatigue syndrome (CFS) patients | NADH 10 mg/day for a 4-week period | 26 | Statistically significant relieve of the fatigue symptoms |
Santaella et al., 2004 [61] | Randomized, double-blind placebo-controlled study | Chronic fatigue syndrome (CFS) patients | NADH 5–10 mg/day for 24 months | 32 | Statistically significant reduction of the mean symptom score in the first trimester (p < 0.001). However, symptom scores in the subsequent trimesters of therapy were similar in both treatment groups. |
Thiamine | |||||
Sevim et al., 2017 [24] | Retrospective observational study | Multiple sclerosis patients | Sulbutiamine 400 mg/day for two months | 26 | Significant decrease in Fatigue Impact Scale (FIS) scores |
Bager et al., 2020 [26] | Randomised, double-blinded, placebo-controlled crossover trial | Patients with inflammatory bowel disease (IBD) and severe chronic fatigue | Thiamine hydrochloride (600–1800 mg/d) for 4 weeks | 40 | Significant reduction in chronic fatigue |
References | Study Design | Group | Treatment | No. of Participants | Main Results |
---|---|---|---|---|---|
Vitamin C | |||||
Suh et al., 2012 [79] | Randomized, double-blind, controlled clinical trial | Healthy volunteers | a single intravenous treatment of either vitamin C (10 g) or normal saline | 141 | Fatigue scores decreased significantly (p = 0.004) in the vitamin C group after two hours and remained lower for one day. |
Takahashi et al., 2012 [76] | Multicentre prospective observational study | Cancer patients | up to 50 g IVC twice a week, for 4 weeks + oral vitamin c 2–4 g/day | 60 | Significant improvements in fatigue scores at 2 weeks of IVC therapy (p < 0.01) |
Yeom et al., 2007 [77] | Prospective Observational Study | Cancer patients | 10 g IVC administered twice with a 3-day interval + oral vitamin c 4 g/day for a week | 39 | Patients reported significantly lower scores for fatigue (p < 0.05) |
Vollbracht et al., 2011 [78] | Epidemiological, multicentre cohort study with parallel groups | Cancer patients | i.v. vitamin C (supplied as Pascorbin® 7.5 g) additional to standard tumour therapy for at least 4 weeks; control group did not receive vitamin C therapy | 125 | Significant reduction in fatigue symptoms |
Ou et al., 2020 [75] | Single-centre, phase II, randomized clinical trial | Non-Small-Cell Lung Cancer (NSCLC) patients | 1 g/kg.d IVC concurrently with modulated electrohyperthermia (mEHT) plus best supportive care (BSC), three times a week for 25 treatments; the control arm received BSC only | 97 | Significant reduction in fatigue symptoms evaluated by Quality-of-Life Questionnaire (QLQ-C30) |
Vollbracht et al., 2018 [80] | Multicentre prospective observational study | Patients with allergy-related respiratory or cutaneous indications | i.v. vitamin C (PascorbinVR 7.5 g/50 mL) in 100 mL NaCl 0.9% | 71 | Significant reduction in fatigue symptoms |
Jeon et al., 2016 [81] | Single-centre, randomized, double-blind, controlled clinical trial | Patients undergoing laparoscopic colectomy | IVC 50 mg/ kg bw or placebo; Single application after induction of anaesthesia | 97 | NS, no significant differences in fatigue score 2, 6, and 24 h post operation |
Vitamin D | |||||
Aziz et al., 2021 [82] | Prospective cohort study | Patients with liver cirrhosis due to chronic hepatitis C | Vitamin D3 (200,000 IU IM single dose) | 50 | Fatigue severity scale (FSS) and fatigue impact scale (FIS) scores improved significantly after administration of vitamin D3 |
L-Carnitine | |||||
Brass et al., 2001 [83] | Placebo-controlled, double-blinded, randomized study | Patients with end-stage renal disease (ESRD) | Intravenous L-carnitine 10, 20, and 40 mg/kg or placebo at the conclusion of each thrice-weekly dialysis session for 24 weeks | 150 | Significant improvement in the fatigue domain of the Kidney Disease Questionnaire (KDQ) after 12 (p = 0.01) and 24 weeks (p = 0.03) of treatment compared with placebo |
Zhang et al., 2014 [18] | Randomized, single-blind, placebo-controlled, pilot study | Metabolic syndrome (MetS) patients | 4 g/day of intravenous L-carnitine for 7 days; patients in the control group were injected with saline | 15 | Physical fatigue (LC −3.2 ± 3.17 vs. CT 1.8 ± 2.04, p < 0.001) and fatigue severity (LC −11.6 ± 8.38 vs. CT 8.18 ± 7.32, p < 0.001) were significantly reduced in the LC group but were aggravated in the CT group |
Intravenous nutrient therapy (IVNT) | |||||
Massey et al., 2007 [84] | Open-label clinical trial | Therapy-resistant Fibromyalgia (FM) patients | Intravenous nutrient therapy (IVNT) once per week for 8 weeks (Modified Myers’ intravenous nutrient formula: 400 mg Magnesium chloride hexahydrate, 40 mg Calcium gluconate, 3000 mg Vitamin C, 1000 µg Hydroxocobalamin (B12), 100 mg Pyridoxine hydrochloride (B6), 250 mg Dexpanthenol (B5), 2 mg Riboflavin (B2), 100 mg Thiamine (B1), 100 mg Niacinamide | 7 | 60% reduction in pain (p = 0.005) and 80% decrease in fatigue (p = 0.005) |
Thiamine | |||||
Costantini et al., 2013 [17] | Pilot study | Multiple sclerosis patients | High-dose thiamine 600–1500 mg/day orally or 100 mg/mL once a week parenterally for 20 days | 15 | Statistically significant relieve of the fatigue symptoms |
Methionine | |||||
Benedetto et al., 1993 [85] | Controlled clinical trial | Fibromyalgia (FM) patients | 6 weeks of treatment with either SAMe or TENS. S-adenosyl-L-methionine (SAMe) 200-mg vial intramuscularly + two 200-mg tablets daily for 6 weeks. Patients in the TENS group (n = 15) completed five morning sessions a week | 30 | SAMe significantly decreased total number of tender points, pain and fatigue, and Hamilton Depression and Anxiety Rating Scales scores |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barnish, M.; Sheikh, M.; Scholey, A. Nutrient Therapy for the Improvement of Fatigue Symptoms. Nutrients 2023, 15, 2154. https://doi.org/10.3390/nu15092154
Barnish M, Sheikh M, Scholey A. Nutrient Therapy for the Improvement of Fatigue Symptoms. Nutrients. 2023; 15(9):2154. https://doi.org/10.3390/nu15092154
Chicago/Turabian StyleBarnish, Michael, Mahsa Sheikh, and Andrew Scholey. 2023. "Nutrient Therapy for the Improvement of Fatigue Symptoms" Nutrients 15, no. 9: 2154. https://doi.org/10.3390/nu15092154