Adansonia digitata L. (Baobab) Bioactive Compounds, Biological Activities, and the Potential Effect on Glycemia: A Narrative Review
Abstract
:1. Introduction
2. Nutritional Composition
Nutritional Composition | g/100 g Dry 1 or Fresh 2 Weight of L. Fruit Pulp | Reference |
---|---|---|
Starch 1 | 39.2 | [8] |
Glucose 1 | 7.9 | [8] |
Fructose 1 | 7.0 | [8] |
Sucrose 1 | 1.7 | [8] |
Protein 1 | 3.0 | [8] |
Lipid 1 | 0.5 | [8] |
Fiber 1 | 80.3 | [22] |
mg/100 g Dry 1 or Fresh 2 Weight of L. Fruit Pulp | ||
Calcium 1 | 309 ± 1 | [25] |
Iron 1 | 14.97 ± 0.06 | [25] |
Sodium 1 | 34.61 ± 0.3 | [25] |
Magnesium 1 | 155 ± 2 | [25] |
Phosphorus 1 | 775 ± 2 | [25] |
Zinc 2 | 1.8 ± 0 | [25] |
Potassium 2 | 1240 ± 40 | [24] |
Vitamin C 1 | 466 ± 2.55 | [31] |
3. Phytochemical Compounds
4. Ethnobotanical Uses and Pharmacological Applications
5. Mechanisms of Action of Adansonia digitata L. Bioactive Compounds
Bioactive Compound | Effect | Mechanism of Action | Reference |
---|---|---|---|
(–)-epicatechin | Increase glucose transporter into cells Decrease blood glucose level Decrease oxidative stress | ↑ GLUT4 ↑ PI3K/Akt ↑ AMPK ↓ ERO | [17,57] |
Epicatechin-(2β→O→7, 4β→8) -epicatechin (A2) | Decrease blood glucose level Decrease pancreatic apoptosis Increase insulin secretion Increase glucose homeostasis | ↑GLUT2 mRNA ↑ Pdx1 | [51] |
Epicatechin-(4β→8)-epicatechin (B2) | Increase insulin level Increase islet sizes Decrease inflammation Decrease oxidative stress | ↓ Alpha-glucosidase activity ↓ AGE ↓ ROS ↓ IL-1β ↓ 15-LO ↓ XO | [17,52,53] |
Epicatechin-(4β→6)-epicatechin (B5) | ↓ Blood glucose level | ↓ alpha-glucosidase | [52] |
Epicatechin-(4β→8)-epicatechin-(4β→8)-epicatechin (C1) | Increase glucose transporter into cell ↓ Blood glucose level ↓ Oxidative stress | ↑ GLUT4 ↑ PI3K/Akt ↓ α-glucosidase ↑ AMPK ↓ ROS ↓ 15-LO | [17,52] |
Epigallocatechin-3-gallate (EGCG) | Increase glucose transporter ↓ Insulin resistance | ↑ GLUT4 ↑AMPK ↑ PI3K/Akt | [54] |
Gallic acid (3, 4, 5-trihydroxybenzoic acid) | Improve insulin homeostasis Improve glucose homeostasis | ↑ AMPK ↑ PGC1alpha | [55] |
Phytic acid | ↓ Blood glucose level ↓ Oxidative stress | ↓ α-glucosidase ↓ α-amylase ↓ Scavenging free radicals | [56] |
6. Antidiabetic Activities of Adansonia digitata L.
6.1. In Vitro Studies
6.2. In Vivo Studies
6.3. Human Clinical Trials
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yu, K.; Ke, M.Y.; Li, W.H.; Zhang, S.Q.; Fang, X.C. The Impact of Soluble Dietary Fibre on Gastric Emptying, Postprandial Blood Glucose and Insulin in Patients with Type 2 Diabetes. Asia Pac. J. Clin. Nutr. 2014, 23, 210–218. [Google Scholar] [CrossRef]
- Rudnicka, E.; Napierała, P.; Podfigurna, A.; Męczekalski, B.; Smolarczyk, R.; Grymowicz, M. The World Health Organization (WHO) Approach to Healthy Ageing. Maturitas 2020, 139, 6–11. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Ageing and Health. Available online: https://www.who.int/news-room/fact-sheets/detail/ageing-and-health (accessed on 24 February 2023).
- Afshar, S.; Roderick, P.J.; Kowal, P.; Dimitrov, B.D.; Hill, A.G. Multimorbidity and the Inequalities of Global Ageing: A Cross-Sectional Study of 28 Countries Using the World Health Surveys. BMC Public Health 2015, 15, 776. [Google Scholar] [CrossRef] [PubMed]
- De Saintrain, M.V.L.; Sandrin, R.L.e.S.P.; Bezerra, C.B.; Lima, A.O.P.; Nobre, M.A.; Braga, D.R.A. Nutritional Assessment of Older Adults with Diabetes Mellitus. Diabetes Res. Clin. Pract. 2019, 155, 107819. [Google Scholar] [CrossRef]
- Bellary, S.; Kyrou, I.; Brown, J.E.; Bailey, C.J. Type 2 Diabetes Mellitus in Older Adults: Clinical Considerations and Management. Nat. Rev. Endocrinol. 2021, 17, 534–548. [Google Scholar] [CrossRef] [PubMed]
- Kamatou, G.P.P.; Vermaak, I.; Viljoen, A.M. An Updated Review of Adansonia Digitata: A Commercially Important African Tree. S. Afr. J. Bot. 2011, 77, 908–919. [Google Scholar] [CrossRef]
- Sundarambal, M.; Muthusamy, P.; Radha, R.; Jerad Suresh, A. A Review on Adansonia Digitata Linn. J. Pharmacogn. Phytochem. 2015, 4, 12–16. [Google Scholar]
- Ibrahima, C.; Didier, M.; Max, R.; Pascal, D.; Benjamin, Y.; Renaud, B. Biochemical and Nutritional Properties of Baobab Pulp from Endemic Species of Madagascar and the African Mainland. Afr. J. Agric. Res. 2013, 8, 6046–6054. [Google Scholar]
- Rahul, J.; Kumar Jain, M.; Pal Singh, S.; Kant Kamal, R.; Naz, A.; Kumar Gupta, A.; Kumar Mrityunjay, S. Adansonia Digitata L. (Baobab): A Review of Traditional Information and Taxonomic Description. Asian Pac. J. Trop. Biomed. 2015, 5, 79–84. [Google Scholar] [CrossRef]
- Caluwé, E.; Halamová, K.; Van Damme, P. Adansonia Digitata L.—A Review of Traditional Uses, Phytochemistry and Pharmacology. Afrika Focus 2010, 23. [Google Scholar] [CrossRef]
- Besco, E.; Braccioli, E.; Vertuani, S.; Ziosi, P.; Brazzo, F.; Bruni, R.; Sacchetti, G.; Manfredini, S. The Use of Photochemiluminescence for the Measurement of the Integral Antioxidant Capacity of Baobab Products. Food Chem. 2007, 102, 1352–1356. [Google Scholar] [CrossRef]
- Braca, A.; Sinisgalli, C.; De Leo, M.; Muscatello, B.; Cioni, P.L.; Milella, L.; Ostuni, A.; Giani, S.; Sanogo, R. Phytochemical Profile, Antioxidant and Antidiabetic Activities of Adansonia Digitata l. (Baobab) from Mali, as a Source of Health-Promoting Compounds. Molecules 2018, 23, 3104. [Google Scholar] [CrossRef]
- Ramadan, A.; Harraz, F.M.; El-Mougy, S.A. Anti-Inflammatory, Analgesic and Antipyretic Effects of the Fruit Pulp of Adansonia Digitata. Fototerapia 1994, LXV, 418–422. [Google Scholar]
- Al-Qarawi, A.A.; Al-Damegh, M.A.; El-Mougy, S.A. Hepatoprotective Influence of Adansonia Digitata Pulp. J. Herbs Spices Med. Plants 2003, 10, 1–6. [Google Scholar] [CrossRef]
- Cicolari, S.; Dacrema, M.; Sokeng, A.J.T.; Xiao, J.; Nwakiban, A.P.A.; Di Giovanni, C.; Santarcangelo, C.; Magni, P.; Daglia, M. Hydromethanolic Extracts from Adansonia Digitata L. Edible Parts Positively Modulate Pathophysiological Mechanisms Related to the Metabolic Syndrome. Molecules 2020, 25, 2858. [Google Scholar] [CrossRef]
- Domínguez Avila, J.A.; Rodrigo García, J.; González Aguilar, G.A.; de la Rosa, L.A. The Antidiabetic Mechanisms of Polyphenols Related to Increased Glucagon-Like Peptide-1 (GLP1) and Insulin Signaling. Molecules 2017, 22, 903. [Google Scholar] [CrossRef]
- Yamashita, Y.; Wang, L.; Nanba, F.; Ito, C.; Toda, T.; Ashida, H. Procyanidin Promotes Translocation of Glucose Transporter 4 in Muscle of Mice through Activation of Insulin and AMPK Signaling Pathways. PLoS ONE 2016, 11, e0161704. [Google Scholar] [CrossRef]
- Keyla, R.; Bernardo, M.A.; Silva, M.L.; Brito, J.; Mesquita, M.F.; Pintão, A.M.; Moncada, M. Adansonia Digitata L. (Baobab Fruit) Effect on Postprandial Glycemia in Healthy Adults: A Randomized Controlled Trial. Nutrients 2022, 14, 398. [Google Scholar] [CrossRef]
- Tanko, Y.; Yerima, M.; Mahdi, M.; Yaro, A. Hypoglycemic Activity of Methanolic Stem Bark of Adansonnia Digitata Extract on Blood Glucose Levels of Streptozocin-Induced Diabetic Wistar Rats. Artic. Int. J. Appl. Res. Nat. Prod. 2008, 1, 32–36. [Google Scholar]
- Eckel, R.H.; Bornfeldt, K.E.; Goldberg, I.J. Cardiovascular Disease in Diabetes, beyond Glucose. Cell Metab. 2021, 33, 1519–1545. [Google Scholar] [CrossRef]
- Luc, K.; Schramm-Luc, A.; Guzik, T.J.; Mikolajczyk, T.P. Oxidative Stress and Inflammatory Markers in Prediabetes and Diabetes. J. Physiol. Pharmacol. 2019, 70, 809–824. [Google Scholar] [CrossRef]
- Magaia, T.; Uamusse, A.; Sjöholm, I.; Skog, K. Dietary Fiber, Organic Acids and Minerals in Selected Wild Edible Fruits of Mozambique. Springerplus 2013, 2, 88. [Google Scholar] [CrossRef]
- Reynolds, A.N.; Akerman, A.P.; Mann, J. Dietary Fibre and Whole Grains in Diabetes Management: Systematic Review and Meta-Analyses. PLoS Med. 2020, 17, e1003053. [Google Scholar] [CrossRef]
- Osman, M. Chemical and Nutrient Analysis of Baobab (Adansonia Digitata) Fruit and Seed Protein Solubility. Plant Foods Hum. Nutr. 2004, 59, 29–33. [Google Scholar] [CrossRef]
- Compaoré, W.; Nikièma, P.A.; Bassolé, H.I.N.; Savagodo, A.; Mouecoucou, J.; Hounhouigan, D.J.; Traoré, S.A. Chemical Composition and Antioxidative Properties of Seeds of Moringa Oleifera and Pulps of Parkia Biglobosa and Adansonia Digitata Commonly Used in Food Fortification in Burkina Faso. Curr. Res. J. Biol. Sci. 2011, 3, 64–72. [Google Scholar]
- Khattab, M.; Abi-Rashed, C.; Ghattas, H.; Hlais, S.; Obeid, O. Phosphorus Ingestion Improves Oral Glucose Tolerance of Healthy Male Subjects: A Crossover Experiment. Nutr. J. 2015, 14, 112. [Google Scholar] [CrossRef]
- Chatterjee, R.; Yeh, H.C.; Edelman, D.; Brancati, F. Potassium and Risk of Type 2 Diabetes. Expert Rev. Endocrinol. Metab. 2011, 6, 665–672. [Google Scholar] [CrossRef]
- Mohammadifard, N.; Humphries, K.H.; Gotay, C.; Mena-Sánchez, G.; Salas-Salvadó, J.; Esmaillzadeh, A.; Ignaszewski, A.; Sarrafzadegan, N. Trace Minerals Intake: Risks and Benefits for Cardiovascular Health. Crit. Rev. Food Sci. Nutr. 2019, 59, 1334–1346. [Google Scholar] [CrossRef]
- Dubey, P.; Thakur, V.; Chattopadhyay, M. Role of Minerals and Trace Elements in Diabetes and Insulin Resistance. Nutrients 2020, 12, 1864. [Google Scholar] [CrossRef]
- Monteiro, S.; Reboredo, F.H.; Lageiro, M.M.; Lourenço, V.M.; Dias, J.; Lidon, F.; Abreu, M.; Martins, A.P.L.; Alvarenga, N. Nutritional Properties of Baobab Pulp from Different Angolan Origins. Plants 2022, 11, 2272. [Google Scholar] [CrossRef]
- Nkafamiya, I.I.; Osemeahon, S.A.; Dahiru, D.; Umaru, H.A. Studies on the Chemical Composition and Physico-Chemical Properties of the Seeds of Baobab (Adasonia Digitata). Afr. J. Biotechnol. 2007, 6, 756–759. [Google Scholar]
- Yang, S.C.; Hsu, C.Y.; Chou, W.L.; Fang, J.Y.; Chuang, S.Y. Bioactive Agent Discovery from the Natural Compounds for the Treatment of Type 2 Diabetes Rat Model. Molecules 2020, 25, 5713. [Google Scholar] [CrossRef] [PubMed]
- Tembo, D.T. Optimisation of Baobab (Adansonia Digitata) Fruit Processing and Handling Techniques for Increased Human Nutrition and Commercialisation in Malawi. Ph.D. Thesis, University of Leeds, Leeds, UK, 2016. [Google Scholar]
- Ribeiro, V.L. Estudo de Compostos Bioativos Presentes Em Adansonia Digitata e o Seu Potencial Fitoquímico Na Indústria Farmacêutica. Master’s Thesis, Universidade Fernando Pessoa, Porto, Portugal, 2012. [Google Scholar]
- Shahat, A.A. Procyanidins from Adansonia Digitata. Pharm. Biol. 2006, 44, 445–450. [Google Scholar] [CrossRef]
- Gwarzo, M.Y.; Bako, H.Y. Hypoglycemic Activity of Methanolic Fruit Pulp Extract of Adansonia Digitata on Blood Glucose Levels of Alloxan Induced Diabetic Rats. Int. J. Anim. Vet. Adv. 2013, 5, 108–113. [Google Scholar] [CrossRef]
- Sun, C.; Zhao, C.; Guven, E.C.; Paoli, P.; Simal-Gandara, J.; Ramkumar, K.M.; Wang, S.; Buleu, F.; Pah, A.; Turi, V.; et al. Dietary Polyphenols as Antidiabetic Agents: Advances and Opportunities. Food Front. 2020, 1, 18–44. [Google Scholar] [CrossRef]
- Bozzetto, L.; Annuzzi, G.; Pacini, G.; Costabile, G.; Vetrani, C.; Vitale, M.; Griffo, E.; Giacco, A.; De Natale, C.; Cocozza, S.; et al. Polyphenol-Rich Diets Improve Glucose Metabolism in People at High Cardiometabolic Risk: A Controlled Randomised Intervention Trial. Diabetologia 2015, 58, 1551–1560. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Tang, G.; Zhang, C.; Wang, N.; Feng, Y. Gallic Acid and Diabetes Mellitus: Its Association with Oxidative Stress. Molecules 2021, 26, 7115. [Google Scholar] [CrossRef]
- Chadare, F.J.; Linnemann, A.R.; Hounhouigan, J.D.; Nout, M.J.R.; van Boekel, M.A.J.S. Baobab Food Products: A Review on Their Composition and Nutritional Value. Crit. Rev. Food Sci. Nutr. 2009, 49, 254–274. [Google Scholar] [CrossRef]
- Sharma, B.K.; Bhat, A.A.; Jain, A.K. Adansonia Digitata L. (Malvaceae) a Threatened Tree Species of Medicinal Importance. Med. Plants 2015, 7, 173–181. [Google Scholar] [CrossRef]
- Kaboré, D.; Swadogo-Lingani, H.; Diawara, B.; Compaoré, C.; Dicko, M.H.; Jakobsen, M. A Review of Baobab (Adansonia Digitata) Products: Effect of Processing Techniques, Medicinal Properties and Uses. Afr. J. Food Sci. 2011, 5, 833–844. [Google Scholar] [CrossRef]
- Francis, T.; China, C.; Olounlade, P.A.; Salifou, S. Monographic Study of Plant Species Most Used For Treatment of Common Diseases of Somba Cattle in Benin. J. Drug Deliv. Ther. 2014, 2014, 87–105. [Google Scholar] [CrossRef]
- Coe, S.; Ryan, L. White Bread Enriched with Polyphenol Extracts Shows No Effect on Glycemic Response or Satiety, yet May Increase Postprandial Insulin Economy in Healthy Participants. Nutr. Res. 2016, 36, 193–200. [Google Scholar] [CrossRef]
- Singh, S.; Parasharami, V.; Rai, S. Medicinal Uses of Adansonia Digitata L.: An Endangered Tree Species. J. Pharm. Sci. Innov. 2013, 2, 14–16. [Google Scholar] [CrossRef]
- El-Masry, O.S.; Goja, A.; Rateb, M.; Owaidah, A.Y.; Alsamman, K. RNA Sequencing Identified Novel Target Genes for Adansonia Digitata in Breast and Colon Cancer Cells. Sci. Prog. 2021, 104, 00368504211032084. [Google Scholar] [CrossRef]
- Kim, Y.A.; Keogh, J.B.; Clifton, P.M. Polyphenols and Glycemic Control. Nutrients 2016, 8, 17. [Google Scholar] [CrossRef] [PubMed]
- Bahadoran, Z.; Mirmiran, P.; Azizi, F. Dietary Polyphenols as Potential Nutraceuticals in Management of Diabetes: A Review. J. Diabetes Metab. Disord. 2013, 12, 43. [Google Scholar] [CrossRef]
- Janeček, Š.; Svensson, B.; MacGregor, E.A. α-Amylase: An Enzyme Specificity Found in Various Families of Glycoside Hydrolases. Cell. Mol. Life Sci. 2014, 71, 1149–1170. [Google Scholar] [CrossRef]
- De Gomes, J.H.S.; Mbiakop, U.C.; Oliveira, R.L.; Stehmann, J.R.; de Pádua, R.M.; Cortes, S.F.; Braga, F.C. Polyphenol-Rich Extract and Fractions of Terminalia Phaeocarpa Eichler Possess Hypoglycemic Effect, Reduce the Release of Cytokines, and Inhibit Lipase, α-Glucosidase, and α-Amilase Enzymes. J. Ethnopharmacol. 2021, 271, 113847. [Google Scholar] [CrossRef]
- Ahangarpour, A.; Afsharf, G.; Mard, S.A.; Khodadadi, A.; Hashemitabar, M. Preventive Effects of Procyanidin A2 on Glucose Homeostasis, Pancreatic and Duodenal Homebox 1, and Glucose Transporter 2 Gene Expression Disturbance Induced by Bisphenol A in Male Mice. J. Physiol. Pharmacol. 2016, 67, 243–252. [Google Scholar] [PubMed]
- Bräunlich, M.; Slimestad, R.; Wangensteen, H.; Brede, C.; Malterud, K.E.; Barsett, H. Extracts, Anthocyanins and Procyanidins from Aronia Melanocarpa as Radical Scavengers and Enzyme Inhibitors. Nutrients 2013, 5, 663–678. [Google Scholar] [CrossRef]
- Yin, W.; Li, B.; Li, X.; Yu, F.; Cai, Q.; Zhang, Z.; Cheng, M.; Gao, H. Anti-Inflammatory Effects of Grape Seed Procyanidin B2 on a Diabetic Pancreas. Food Funct. 2015, 6, 3065–3071. [Google Scholar] [CrossRef]
- Zhang, Z.F.; Li, Q.; Liang, J.; Dai, X.Q.; Ding, Y.; Wang, J.B.; Li, Y. Epigallocatechin-3-O-Gallate (EGCG) Protects the Insulin Sensitivity in Rat L6 Muscle Cells Exposed to Dexamethasone Condition. Phytomedicine 2010, 17, 14–18. [Google Scholar] [CrossRef]
- Doan, K.V.; Ko, C.M.; Kinyua, A.W.; Yang, D.J.; Choi, Y.H.; Oh, I.Y.; Nguyen, N.M.; Ko, A.; Choi, J.W.; Jeong, Y.; et al. Gallic Acid Regulates Body Weight and Glucose Homeostasis through AMPK Activation. Endocrinology 2015, 156, 157–168. [Google Scholar] [CrossRef]
- Kunyanga, C.N.; Imungi, J.K.; Okoth, M.W.; Biesalski, H.K.; Vadivel, V. Antioxidant and Type 2 Diabetes Related Functional Properties of Phytic Acid Extract from Kenyan Local Food Ingredients: Effects of Traditional Processing Methods. Ecol. Food Nutr. 2011, 50, 452–471. [Google Scholar] [CrossRef]
- Tomaru, M.; Takano, H.; Osakabe, N.; Yasuda, A.; Inoue, K.-I.; Yanagisawa, R.; Ohwatari, T.; Uematsu, H. Dietary Supplementation with Cacao Liquor Proanthocyanidins Prevents Elevation of Blood Glucose Levels in Diabetic Obese Mice. Nutrition 2007, 23, 351–355. [Google Scholar] [CrossRef]
- Coe, S.A.; Clegg, M.; Armengol, M.; Ryan, L. The Polyphenol-Rich Baobab Fruit (Adansonia Digitata L.) Reduces Starch Digestion and Glycemic Response in Humans. Nutr. Res. 2013, 33, 888–896. [Google Scholar] [CrossRef]
- Boath, A.S.; Grussu, D.; Stewart, D.; McDougall, G.J. Berry Polyphenols Inhibit Digestive Enzymes: A Source of Potential Health Benefits? Food Dig. 2012, 3, 1–7. [Google Scholar] [CrossRef]
- Vosloo, M.C. Some Factors Affecting the Digestion of Glycaemic Carbohydrates and the Blood Glucose Response. J. Fam. Ecol. Consum. Sci. 2005, 33, 1–9. [Google Scholar] [CrossRef]
- Saravanaraj, M. A Pharmacognostical Profile on Fruits of Adansonia Digitata Linn. World J. Pharm. Pharm. Sci. 2017, 6, 1173–1187. [Google Scholar] [CrossRef]
- Muhammad, I.; Jarumi, I.; Alhassan, A.; Wudil, A.; Dangambo, M. Acute Toxicity and Hypoglycemic Activity of Aqueous Fruit Pulp Extract of Adansonia Digitata L. (Afpead) on Alloxan Induced Diabetic Rats. J. Adv. Med. Pharm. Sci. 2016, 6, 1–6. [Google Scholar] [CrossRef]
- Ebaid, H.; Bashandy, S.A.E.; Alhazza, I.M.; Hassan, I.; Al-Tamimi, J. Efficacy of a Methanolic Extract of Adansonia Digitata Leaf in Alleviating Hyperglycemia, Hyperlipidemia, and Oxidative Stress of Diabetic Rats. Biomed Res. Int. 2019, 2019, 2835152. [Google Scholar] [CrossRef]
- Pamela, O.; Francis, A.; Celestine, A.; Ifeoma, A.; Choice, N.; Pamela, A.; Princewill, U.; Jide, U.; Uzoma, I.; Nnamdi, E.; et al. The Effect of Aqueous Leaf Extract of Adansonia Digitata (Baobab) on Diabetes Mellitus and the Anterior Pituitary of Adult Male Wistar Rats. J. Diabetes Endocrinol. 2019, 10, 18–29. [Google Scholar] [CrossRef]
- Wang, M.; Hng, T.-M. HbA1c: More than Just a Number. AJGP 2021, 50, 628–632. [Google Scholar] [CrossRef]
- Horton, W.B.; Barrett, E.J. Microvascular Dysfunction in Diabetes Mellitus and Cardiometabolic Disease. Endocrinol. Rev. 2021, 42, 29–55. [Google Scholar] [CrossRef]
- Tremblay, A.; Bellisle, F. Nutrients, Satiety, and Control of Energy Intake. Appl. Physiol. Nutr. Metab. 2015, 40, 971–979. [Google Scholar] [CrossRef]
- Brand-Miller, J.; Hayne, S.; Petocz, P.; Colagiuri, S. Low-Glycemic Index Diets in the Management of Diabetes: A Meta-Analysis of Randomized Controlled Trials. Diabetes Care 2003, 26, 2261–2267. [Google Scholar] [CrossRef] [PubMed]
- Wolever, T.M.; Mehling, C. Long-Term Effect of Varying the Source or Amount of Dietary Carbohydrate on Postprandial Plasma Glucose, Insulin, Triacylglycerol, and Free Fatty Acid Concentrations in Subjects with Impaired Glucose Tolerance. Am. J. Clin. Nutr. 2003, 77, 612–621. [Google Scholar] [CrossRef] [PubMed]
- Garvey, R.; Clegg, M.; Coe, S. The Acute Effects of Baobab Fruit (Adansonia Digitata) on Satiety in Healthy Adults. Nutr. Health 2017, 23, 83–86. [Google Scholar] [CrossRef] [PubMed]
Compounds | mg/100 g Fresh Weight of L. Fruit Pulp | Reference |
---|---|---|
Gallic acid | 68.54 ± 12.4 | [33] |
(–)-epicatechin | 43 ± 3.08 | [33] |
Epicatechin-3-Gallate | 9.98 ± 0.08 | [33] |
Procyanidin B2 | 533.30 ± 22.6 | [33] |
Condensed tannins | 336.33 ± 10.85 | [18] |
Hydrolysable tannins | 237.63 ± 4.71 | [18] |
Total phenols | 702.39 ± 11.85 | [18] |
Total carotenoids | 0.29 ± 0.5 | [34] |
Caffeine | 0.87 ± 0.04 | [34] |
Phytic acid | 2.6 ± 0.4 | [24] |
Trypsin inhibitors | 5.9 ± 0.3 | [24] |
Part Used | Traditional Use | Country | Reference |
---|---|---|---|
Pulp aqueous extract | Oral hydration for diarrhea and dysentery | India | [42] |
Seeds with water | Oral hydration for diarrhea and dysentery | South Africa | [6] |
Antipyretic agent | South Africa | [6] | |
Seeds and fruit decoction | Oral hydration for diarrhea and dysentery | Tanzania, Cameroon, Central Africa | [6] |
Hemoptysis | Tanzania | [6] | |
Antipyretic agent | Tanzania, Cameroon, Central Africa | [6] | |
Pulp and seeds | Oral hydration for diarrhea and dysentery | Ivory Coast | [6] |
Antiparasitic agent against worms | Ivory Coast | [6] | |
Pulp and seeds aqueous extract | Neutralization of Strophanthus genus toxic compounds | Eastern Africa | [10] |
Seed oil | Hydration in cases of eczema and psoriasis | Africa | [43] |
Seed powder | Antitussive agent | South Africa | [6] |
Seeds | Oral hydration | Eastern Africa | [10] |
Pulp and seed powder | Sudorific agent | Eastern Africa | [10] |
Leaves | Toothache, gingivitis | Burkina Faso | [6] |
Leaves | Diaphoretic, fever remedy | Kenya | [6] |
Fruit, seeds | Diuretic, refreshing | Tanzania | [6] |
Leaves | Malaria | Sierra Leone | [6] |
Part Used | Effect | Bioactive Compounds | Reference |
---|---|---|---|
Pulp aqueous extract | Analgesic and anti-inflammatory | Sterols, saponins, and triterpenes | [13] |
Antipyretic | Sterols, saponins, e triterpenes | [13] | |
Oral hydration for diarrhea | Tannins, mucilage, cellulose, and citric acid | [42] | |
Anti-inflammatory | Tannins, mucilage, cellulose, and citric acid | [42] | |
Improve insulin response | Tannins and flavonoids | [44] | |
Improve glycemia response | Polyphenols and soluble fiber | [44] | |
Anti-inflammatory, analgesic, immunostimulant Antimicrobial agent | Triterpenes, β–sitosterol, palmitate β–amirine, and ursolique acid | [14] | |
Stimulation of growth and metabolic activity of beneficial bacteria | Soluble fiber | [42,45] | |
Pulp aqueous extract and red fibers | Protection against oxidative stress and immunity increase in chronic illness | Polyphenols and ascorbic acid | [11] |
Extracts of fruit powder and fibers | Protection against proliferation of human colon cancer | - | [46] |
Seed oil | Regenerator, moisturizing, and smoothing of the skin | Vitamins, fat acids, and sterols | [6,31] |
Regeneration agent on epithelial tissue; promotion of skin tone and elasticity; analgesia | Vitamins | [6] | |
Oral and dental cleaning tool | - | [5] | |
Pulp and seed extract | Antibacterial agent against Bacillus subtilis, Escherichia coli, and Mycobacterium leprae | - | [45] |
Seed aqueous extract | Anti-inflammatory in rheumatic diseases | - | [7] |
References | Study Design | Samples | Interventions | Outcomes |
---|---|---|---|---|
[19] | Clinical controlled trial | Streptozotocin-induced diabetic rats (n = 25) | Rhytidome methanolic extract (100, 200, and 400 mg/kg), 7 h | ↓ Blood glucose level (p < 0.05) |
[36] | Clinical controlled trial | Alloxan-induced diabetic rats (n = 40) | Pulp methanolic extract (100, 200, and 300 mg/kg per day), 28 days | ↓ Blood glucose level (p < 0.05) |
[62] | Clinical controlled trial | Alloxan-induced diabetic rats (n = 36) | Pulp aqueous extract (1, 2, and 3 g/kg per day), 14 days | ↓ Blood glucose level (p < 0.05) |
[61] | Clinical controlled trial | Diabetic rats (n = 30) | Pulp ethanolic extract (200 and 400 mg/kg per day) 28 days | Necrosis and fibrosis improvement; Increase of pancreatic beta-cell number and size |
[63] | Clinical controlled trial | Streptozotocin-induced diabetic rats (n = 40) | Leaf methanolic extract (5, 200, 400 mg/kg), 6 weeks | Improved body weight (p < 0.05) ↓ Total cholesterol level (p < 0.05) |
[64] | Clinical controlled trial | Alloxan-induced diabetic rats (n = 36) | Aqueous leaf extract (200, 400, 600 mg/kg), 2 weeks | ↓ Fasting blood glucose level (p < 0.05) |
[58] | Randomized, blind, controlled trial | Healthy female subjects (n = 9) | Pulp aqueous extract (18.5 g/in 250 mL water; 37 g/in 250 mL water), 3 days | ↓ Postprandial blood glucose with both doses (p < 0.05) No effect on satiety |
[44] | Randomized, blind, controlled trial | Overweight male and female subjects (n = 13) | Pulp with bread (1.8% in 106.97 g of bread) 1 time with bread | ↓ Total insulin response—area under the curve (p < 0.05) |
[18] | Randomized, controlled trial | Impaired fasting glycemia subjects (n = 22) | Aqueous extract (0.13 g/mL extract fresh weight), 1 time (OGTT) | ↓ glycemia incremental area under the curve (p = 0.012) ↓ glucose maximum concentration (p = 0.029) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva, M.L.; Rita, K.; Bernardo, M.A.; Mesquita, M.F.d.; Pintão, A.M.; Moncada, M. Adansonia digitata L. (Baobab) Bioactive Compounds, Biological Activities, and the Potential Effect on Glycemia: A Narrative Review. Nutrients 2023, 15, 2170. https://doi.org/10.3390/nu15092170
Silva ML, Rita K, Bernardo MA, Mesquita MFd, Pintão AM, Moncada M. Adansonia digitata L. (Baobab) Bioactive Compounds, Biological Activities, and the Potential Effect on Glycemia: A Narrative Review. Nutrients. 2023; 15(9):2170. https://doi.org/10.3390/nu15092170
Chicago/Turabian StyleSilva, Maria Leonor, Keyla Rita, Maria Alexandra Bernardo, Maria Fernanda de Mesquita, Ana Maria Pintão, and Margarida Moncada. 2023. "Adansonia digitata L. (Baobab) Bioactive Compounds, Biological Activities, and the Potential Effect on Glycemia: A Narrative Review" Nutrients 15, no. 9: 2170. https://doi.org/10.3390/nu15092170
APA StyleSilva, M. L., Rita, K., Bernardo, M. A., Mesquita, M. F. d., Pintão, A. M., & Moncada, M. (2023). Adansonia digitata L. (Baobab) Bioactive Compounds, Biological Activities, and the Potential Effect on Glycemia: A Narrative Review. Nutrients, 15(9), 2170. https://doi.org/10.3390/nu15092170