Young Japanese Underweight Women with “Cinderella Weight” Are Prone to Malnutrition, including Vitamin Deficiencies
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Participants
2.2. Data Collection and Food Frequency Questionnaires
2.3. Statistical Analysis
3. Results
3.1. Underweight Is Much More Frequently Seen in Young Women Than in Young Men
3.2. Clinical Parameters of Patients Admitted to the Outpatient Nutritional Evaluation
3.3. The Analysis of Food Frequency Questionnaires in Young Underweight Subjects Admitted for Outpatient Nutritional Evaluation
3.4. Vitamin Intake and Plasma Vitamin Levels in Young Underweight Female Subjects
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saunders, J.; Smith, T. Malnutrition: Causes and consequences. Clin. Med. 2010, 10, 624–627. [Google Scholar] [CrossRef]
- Iwabu, M.; Yamauchi, T.; Shimomura, I.; Eguchi, K.; Ogawa, Y. Perceptions, attitudes and barriers to obesity management: Japanese data from the ACTION-IO study. J. Diabetes Investig. 2021, 12, 845–858. [Google Scholar] [CrossRef] [PubMed]
- Cederholm, T.; Jensen, G.L.; Correia, M.I.T.D.; Gonzalez, M.C.; Fukushima, R.; Higashiguchi, T.; Baptista, G.; Barazzoni, R.; Blaauw, R.; Coats, A.; et al. GLIM Core Leadership Committee; GLIM Working Group. GLIM criteria for the diagnosis of malnutrition—A consensus report from the global clinical nutrition community. Clin. Nutr. 2019, 38, 1–9. [Google Scholar] [CrossRef]
- Available online: https://japantoday.com/category/features/lifestyle/japan’s-extraslim-%27cinderella-weight%27-diet-target-sparks-debate-online (accessed on 2 April 2023).
- Centers for Disease Control and Prevention (CDC). Prevalence of Underweight among Adults Aged 20 and Over: United States, 1960–1962 through 2015–2016; National Center for Health Statistics (NCHS): Hyattsville, MD, USA, 2018.
- Ministry of Health, Labor and Welfare. National Nutrition Survey. 2013. Available online: http://www.mhlw.go.jp/file/04-Houdouhappyou-10904750-Kenkoukyoku-Gantaisakukenkouzoushinka/0000068070.pdf (accessed on 10 September 2015).
- Tatsumi, Y.; Higashiyama, A.; Kubota, Y.; Sugiyama, D.; Nishida, Y.; Hirata, T.; Kadota, A.; Nishimura, K.; Imano, H.; Miyamatsu, N.; et al. Underweight Young Women without Later Weight Gain Are at High Risk for Osteopenia after Midlife: The KOBE Study. J. Epidemiol. 2016, 26, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Boutari, C.; Pappas, P.D.; Mintziori, G. The effect of underweight on female and male reproduction. Metabolism 2020, 107, 154229. [Google Scholar] [CrossRef] [PubMed]
- Jauch-Chara, K.; Schmoller, A.; Oltmanns, K.M. Impaired glucose tolerance in healthy men with low body weight. Nutr. J. 2011, 10, 16. [Google Scholar] [CrossRef]
- Yamamoto, S.; Wada, Y. Awareness, use and information sources of folic acid supplementation to prevent neural tube defects in pregnant Japanese women. Public Health Nutr. 2018, 21, 732–739. [Google Scholar] [CrossRef]
- Ohta, H.; Kuroda, T.; Tsugawa, N.; Onoe, Y.; Okano, T.; Shiraki, M. Optimal vitamin D intake for preventing serum 25-hydroxyvitamin D insufficiency in young Japanese women. J. Bone Miner. Metab. 2018, 36, 620–625. [Google Scholar] [CrossRef]
- Zupo, R.; Castellana, F.; Boero, G.; Matera, E.; Colacicco, G.; Piscitelli, P.; Clodoveo, M.L.; Rondanelli, M.; Panza, F.; Lozupone, M.; et al. Processed foods and diet quality in pregnancy may affect child neurodevelopment disorders: A narrative review. Nutr. Neurosci. 2023, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Shibata, M.; Suzuki, A.; Sekiya, T.; Sekiguchi, S.; Asano, S.; Udagawa, Y.; Itoh, M. High prevalence of hypovitaminosis D in pregnant Japanese women with threatenedpremature delivery. J. Bone Miner. Metab. 2011, 29, 615–620. [Google Scholar] [CrossRef]
- Mohan, A.; Kumar, R.; Kumar, V.; Yadav, M. Homocysteine, vitamin B12 and folate level: Possible risk factors in the progression of chronic heart and kidney disorders. Curr. Cardiol. Rev. 2023, 19, e090223213539. [Google Scholar] [CrossRef]
- Arimond, M.; Ruel, M.T. Dietary Diversity Is Associated with Child Nutritional Status: Evidence from 11 Demographic and Health Surveys. J. Nutr. 2004, 134, 2579–2585. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.; Kim, M.; Shin, Y.; Cho, J.-H.; Lee, D.; Kim, Y. Association between Dietary Diversity Score and Metabolic Syndrome in Korean Adults: A Community-Based Prospective Cohort Study. Nutrients 2022, 14, 5298. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yu, K.; Tan, S.; Zheng, Y.; Zhao, A.; Wang, P.; Zhang, Y. Dietary diversity scores: An. indicator of micronutrient inadequacy instead of obesity for Chinese children. BMC Public Health 2017, 17, 440. [Google Scholar] [CrossRef]
- Ricotti, R.; Caputo, M.; Monzani, A.; Pigni, S.; Antoniotti, V.; Bellone, S.; Prodam, F. Breakfast Skipping, Weight, Cardiometabolic Risk, and Nutrition Quality in Children and Adolescents: A Systematic Review of Randomized Controlled and Intervention Longitudinal Trials. Nutrients 2021, 13, 3331. [Google Scholar] [CrossRef]
- Azadbakht, L.; Haghighatdoost, F.; Feizi, A.; Esmaillzadeh, A. Breakfast eating pattern and its association with dietary quality indices and anthropometric measurements in young women in Isfahan. Nutrition 2013, 29, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, F.; Inaba, H.; Edama, M.; Natsui, S.; Maruyama, S.; Omori, G. Sleep Quality and Nutrient Intake in Japanese Female University Student-Athletes: A Cross-Sectional Study. Healthcare 2022, 10, 663. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, Y.; Saito, I.; Henmi, I.; Yoshimura, K.; Maruyama, K.; Yamauchi, K.; Matsuo, T.; Kato, T.; Tanigawa, T.; Kishida, T.; et al. Skipping Breakfast is Correlated with Obesity. J. Rural Med. 2014, 9, 51–58. [Google Scholar] [CrossRef]
- Park, J.; Choi, Y.; Mizushima, R.; Yoshikawa, T.; Myoenzono, K.; Tagawa, K.; Matsui, M.; Tanaka, K.; Maeda, S. Dietary modification reduces serum angiopoietin-like protein 2 levels and arterial stiffness in overweight and obese men. J. Exerc. Nutr. Biochem. 2019, 23, 39–44. [Google Scholar] [CrossRef]
- Hata, T.; Seino, S.; Tomine, Y.; Yokoyama, Y.; Nishi, M.; Narita, M.; Hida, A.; Shinkai, S.; Kitamura, A. The effects of the “Tabepo Check Sheet,” which lists 10 food groups, on the dietary variety of older adults in a metropolitan area. Nihon Koshu Eisei Zasshi 2021, 68, 477–492. (In Japanese) [Google Scholar] [CrossRef]
- Kumagai, S.; Watanabe, S.; Shibata, H.; Amano, H.; Fujiwara, Y.; Shinkai, S.; Yoshida, H.; Suzuki, T.; Yukawa, H.; Yasumura, S.; et al. Effects of Dietary Variety on Declines in High-Level Functional Capacity in Elderly People Living in a Community. Nihon Koshu Eisei Zasshi 2003, 50, 1117–1124. [Google Scholar]
- Cabré, M.; Ferreiro, C.; Arus, M.; Roca, M.; Palomera, E.; Serra-Prat, M. Evaluation of CONUT for clinical malnutrition detection and shorttermprognostic assessment in hospitalized elderly people. J. Nutr. Health Aging 2015, 19, 729–733. [Google Scholar] [CrossRef]
- Available online: https://www.mhlw.go.jp/stf/seisakunitsuite/bunya/kenkou_iryou/kenkou/eiyou/syokuji_kijyun.html (accessed on 2 April 2023).
- Tatsumi, Y.; Ohno, Y.; Morimoto, A.; Nishigaki, Y.; Maejima, F.; Mizuno, S.; Watanabe, S. U-shaped relationship between body mass index and incidence of diabetes. Diabetol. Int. 2012, 3, 92–98. [Google Scholar] [CrossRef]
- Laura, W.; Nathaniel, L.; Flora, M.; Naomi, S.; Tansy, E.; Sharon, C. Performance of alternative measures to body mass index in the assessment of moderate and severe undernutrition among acutely unwell patients hospitalized in a TB ward in the Philippines: A cross-sectional study. PLoS ONE 2019, 14, e0215968. [Google Scholar] [CrossRef]
- Matos, L.C.; Tavares MMand Amaral, T.F. Handgrip strength as a hospital admission nutritional risk screening method. Eur. J. Clin. Nutr. 2007, 61, 1128–1135. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Ma, J.; Zheng, D.; Li, X.; Guo, X.; Wang, J.; Su, P. Sex differences in the nonlinear association between BMI and LDL cholesterol in middle-aged and older adults: Findings from two nationally representative surveys in China. Lipids Health Dis. 2021, 20, 162. [Google Scholar] [CrossRef] [PubMed]
- Omran, M.L.; Morley, J.E. Assessment of protein energy malnutrition in older persons, Part II: Laboratory evaluation. Nutrition 2000, 16, 131–140. [Google Scholar] [CrossRef]
- De Pergola, G.; Zupo, R.; Lampignano, L.; Paradiso, S.; Murro, I.; Cecere, A.; Bartolomeo, N.; Ciccone, M.M.; Giannelli, G.; Triggiani, V. Effects of a Low Carb Diet and Whey Proteins on Anthropometric, Hematochemical, and Cardiovascular Parameters in Subjects with Obesity. Endocr. Metab. Immune Disord. Drug Targets 2020, 20, 1719–1725. [Google Scholar] [CrossRef]
- Zhang, Z.; Pereira, S.L.; Luo, M.; Matheson, E.M. Evaluation of Blood Biomarkers Associated with Risk of Malnutrition in Older Adults: A Systematic Review and Meta-Analysis. Nutrients 2017, 9, 829. [Google Scholar] [CrossRef]
- Bharadwaj, S.; Ginoya, S.; Tandon, P.; Gohel, T.D.; Guirguis, J.; Vallabh, H.; Jevenn, A.; Hanouneh, I. Malnutrition: Laboratory markers vs nutritional assessment. Gastroenterol. Rep. 2016, 4, 272–280. [Google Scholar] [CrossRef] [PubMed]
- Pengpid, S.; Peltzer, K. Skipping Breakfast and Its Association with Health Risk Behavior and Mental Health Among University Students in 28 Countries. Diabetes Metab. Syndr. Obes. 2020, 13, 2889–2897. [Google Scholar] [CrossRef] [PubMed]
- Sievert, K.; Hussain, S.M.; Page, M.J.; Wang, Y.; Hughes, H.J.; Malek, M.; Cicuttini, F.M. Effect of breakfast on weight and energy intake: Systematic review and meta-analysis of randomized controlled trials. BMJ 2019, 364, l42. [Google Scholar] [CrossRef] [PubMed]
- Kondo, A.; Kamihira, O.; Shimosuka, Y.; Okai, I.; Gotoh, M.; Ozawa, H. Awareness of the role of folic acid, dietary folate intake and plasma folate concentration in Japan. J. Obstet. Gynecol. Res. 2005, 31, 172–177. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, M. Nutritional status of vitamin, A.; E, C, B1, B2, B6, nicotinic acid, B12, folate, and beta-carotene in young women. J. Nutr. Sci. Vitaminol. 2001, 47, 20–27. [Google Scholar] [CrossRef] [PubMed]
- Hiraoka, M.; Kato, K.; Saito, Y.; Yasuda, K.; Kagawa, Y. Gene-nutrient and gene–gene interactions of controlled folate intake by Japanese women. Biochem. Biophys. Res. Commun. 2004, 316, 1210–1216. [Google Scholar] [CrossRef] [PubMed]
- Lefevre, M.L.; Lefevre, N.M. Vitamin D Screening and Supplementation in Community-Dwelling Adults: Common Questions and Answers. Am. Fam. Physician. 2018, 97, 254–260. [Google Scholar]
- Tsugawa, N.; Kuwabara, A.; Ogasawara, H.; Nishino, M.; Nakagawa, K.; Kamao, M.; Hasegawa, H.; Tanaka, K. Vitamin D. Status in Japanese Young Women in 2016–2017 and 2020: Seasonal Variation and the Effect of Lifestyle Including Changes Caused by the COVID-19 Pandemic. J. Nutr. Sci. Vitaminol. 2022, 68, 172–180. [Google Scholar] [CrossRef]
- Yoshikata, H.; Tsugawa, N.; Watanabe, Y.; Tsuburai, T.; Chaki, O.; Hirahara, F.; Miyagi, E.; Sakakibara, H.; Uenishi, K.; Okano, T. 25-Hydroxyvitamin D profiles and maternal bone mass during pregnancy and lactation in Japanese women. J. Bone Miner. Metab. 2020, 38, 99–108. [Google Scholar] [CrossRef]
- De Pergola, G.; Martino, T.; Zupo, R.; Caccavo, D.; Pecorella, C.; Paradiso, S.; Silvestris, F.; Triggiani, V. 25 Hydroxyvitamin D Levels are Negatively and Independently Associated with Fat Mass in a Cohort of Healthy Overweight and Obese Subjects. Endocr. Metab. Immune Disord. Drug Targets 2019, 19, 838–844. [Google Scholar] [CrossRef]
- Carrelli, A.; Bucovsky, M.; Horst, R.; Cremers, S.; Zhang, C.; Bessler, M.; Schrope, B.; Evanko, J.; Blanco, J.; Silverberg, S.J.; et al. Vitamin D Storage in Adipose Tissue of Obese and Normal Weight Women. J. Bone Miner. Res. 2017, 32, 237–242. [Google Scholar] [CrossRef]
- Kanatani, K.T.; Nakayama, T.; Adachi, Y.; Hamazaki, K.; Onishi, K.; Konishi, Y.; Kawanishi, Y.; Go, T.; Sato, K.; Kurozawa, Y.; et al. High frequency of vitamin D deficiency in current pregnant Japanese women associated with UV avoidance and hypo-vitamin D diet. PLoS ONE 2019, 14, e0213264. [Google Scholar] [CrossRef]
Female (n = 1457) | Male (n = 643) | χ-Squared Test (p-Value) | |
---|---|---|---|
Underweight (BMI < 18.5) | 245 (16.8%) | 29 (4.5%) | p = 9.2 × 10−24 |
Normal weight (BMI 18.5~25) | 1096 (75.2%) | 482 (75%) | |
Overweight (BMI 25–) | 116 (8.0%) | 132 (20.5%) | |
Body Mass Index | |||
<17.5 | 86 (5.9%) | 9 (1.4%) | |
17.5–18.5 | 159 (10.9%) | 20 (3.1%) | |
18.5–25.0 | 1096 (75.2%) | 482 (75%) | |
25–30 | 103 (7.1%) | 113 (17.6%) | |
30–35 | 12 (0.8%) | 12 (1.9%) | |
35– | 1 (0.07%) | 7 (1.1%) |
Total | Underweight (<18.5) | Normal (18.5–24.9) | Overweight (>25) | χ-Squared Test | |
---|---|---|---|---|---|
n = 1457 | n = 245 | n = 1096 | n = 116 | ||
Age (years) | 28.25 ± 4.90 | 27.28 ± 4.46 | 28.26 ± 4.93 * | 30.24 ± 4.90 *** | |
BMI | 20.74 ± 2.73 | 17.60 ± 0.69 | 20.74 ± 1.54 *** | 27.36±2.26 *** | |
Handgrip strength (kg) | 24.10 ± 5.79 | 22.82 ± 5.55 | 24.21 ± 5.78 ** | 25.73 ± 5.81 *** | |
sBP (mmHg) | 111.5 ± 9.93 | 109.8 ± 9.95 | 111.2 ± 9.7 | 117.3 ± 9.9 *** | |
dBP (mmHg) | 68.9 ± 9.0 | 68.52 ± 9.18 | 68.7 ± 8.93 | 71.9 ± 8.7 ** | |
HbA1c (%) | 5.42 ± 0.25 | 5.41±0.23 | 5.41±0.22 | 5.53±0.44** | |
HbA1c ≧ 5.6 (n (%)) | 398 (27.3%) | 60 (24.5%) | 291 (26.6%) | 47 (40.5%) | p = 0.0032 |
HbA1c ≧ 6.5 (n (%)) | 2 (0.1%) | 2 (0.9%) | 7 (0.6%) | 5 (4.3%) | p = 0.00057 |
T-Chol (mg/dL) | 183.9 ± 28.9 | 177.8 ± 25.2 | 184.1 ± 29.2 * | 194.7 ± 31.2 * | |
T-Chol (<180 mg/dL) | 687 (47.2%) | 140 (57.1%) | 508 (46.3%) | 39 (33.6%) | p = 0.000057 |
Lymphocyte (/μL) | 1978 ± 548 | 1883 ± 503 | 1981 ± 524 * | 2148 ± 765 *** | |
Lymphocyte (<1600/μL) | 355 (24.3%) | 83 (34%) | 249 (22.7%) | 23 (19.8%) | p = 0.00057 |
Total | 20–39 y.o.a. | >40 y.o.a. | p-Value | |
---|---|---|---|---|
(n = 56) | (n = 44) | (n = 12) | ||
Age (years) | 32.41 ± 10.63 | 27.34 ± 3.98 | 51.00 ± 5.42 | p= 1.60 × 10−9 |
Body mass index (BMI) | 17.02 ± 0.69 | 16.96 ± 0.67 | 17.27 ± 0.71 | p = 0.2 |
BMI at 20 y.o.a. | 17.6 ± 1.72 | 17.30 ± 1.34 | 18.72 ± 2.37 | p = 0.22 |
Handgrip strength (kg) | 23.63 ± 5.44 | 23.08 ± 5.76 | 23.66 ± 3.31 | p = 0.062 |
Calf circumference (cm) | 31.32 ± 1.55 | 31.38 ± 1.69 | 31.10 ± 0.86 | p = 0.44 |
Βody fat (%BW) | 22.16 ± 3.78 | 22.53 ± 3.68 | 20.79 ± 3.86 | p = 0.2 |
Skeletal muscle index | 7.12 ± 0.45 | 7.08 ± 0.44 | 7.29 ± 0.43 | p = 0.15 |
Hb (g/dL) | 13.02 ± 1.11 | 12.91 ± 1.07 | 13.44 ± 1.15 | p = 0.18 |
Hb (<12 g/dL) | 8 (14%) | 7 (16%) | 1 (8.3%) | p = 0.51 |
HbA1c (%) | 5.48 ± 0.22 | 5.47 ± 0.23 | 5.51 ± 0.17 | p = 0.47 |
HbA1c (≧5.6%) | 22 (39%) | 16 (36%) | 6 (50%) | p = 0.39 |
TSH (μIU/mL) | 1.55 ± 1.25 | 1.50 ± 1.05 | 1.74 ± 1.77 | p = 0.21 |
FT4 (ng/dL) | 1.34 ± 0.34 | 1.33 ± 0.36 | 1.22 ± 0.23 | p = 0.68 |
CRP (mg/dL) | 0.023 ± 0.024 | 0.022 ± 0.023 | 0.023 ± 0.018 | p = 0.96 |
Prealbumin (mg/dL) | 23.73 ± 4.16 | 23.28 ± 3.60 | 25.33 ± 0.26 | p = 0.26 |
Prealbumin (<22 mg/dL) | 18 (32%) | 15 (34%) | 3 (25%) | p = 0.55 |
Alb (g/dL) | 4.47 ± 0.30 | 4.49 ± 0.31 | 4.38 ± 0.26 | p = 0.25 |
Alb (<4 mg/dL) | 3 (5.3%) | 2 (4.5%) | 1 (8.3%) | p = 0.61 |
Cholesterol (mg/dL) | 180.93 ± 45.14 | 173.79 ± 21.45 | 207.08 ± 83.38 | p = 0.22 |
Cholesterol (<180 mg/dL) | 32 (57.1%) | 26 (59.0%) | 6 (50%) | p = 0.31 |
Lymphocyte (/μL) | 1795 ± 519 | 1908 ± 486 | 1382 ± 419 | p= 0.0019 |
Lymphocytes (<1600/μL) | 24 (43%) | 14 (32%) | 10 (83%) | p= 0.001 |
CONUT score | ||||
CONUT normal (0–1) | 38 (68%) | 33 (75%) | 5 (42%) | p= 0.0017 |
CONUT mild high (2–3) | 18 (32%) | 11 (25%) | 7 (58%) |
Total (n = 56) | 20–39 y.o.a. (n = 44) | >40 y.o.a. (n = 12) | p-Value | |
---|---|---|---|---|
Breakfast Skipping | 16 (29%) | 14 (32%) | 2 (17%) | 0.3 |
DDS low (0–3) | 28 (50%) | 22 (50%) | 6 (50%) | 0.16 |
DDS middle (4–6) | 22 (39%) | 19 (43%) | 3 (25%) | |
DDS high (7–10) | 6 (11%) | 3 (7%) | 3 (25%) | |
TEI (kcal) | 1631 ± 431 | 1632 ± 399 | 1627 ± 536 | 0.97 |
TEI (<2050 kcal) | 49 (88%) | 40 (91%) | 9 (75%) | 0.14 |
TEE (kcal) | 1659 ± 118 | 1690 ± 104 | 1544 ± 93 | 0.00025 |
TEE to TEI ratio | 0.99 ± 0.28 | 0.97 ± 0.24 | 1.06 ± 0.37 | 0.44 |
Protein (g) | 58.2 ± 17.4 | 57.4 ± 17.2 | 61.4 ± 17.6 | 0.5 |
Protein (<50 g) | 16 (29%) | 14 (32%) | 2 (17%) | 5.43 × 10−41 |
Fat (g) | 56.5 ± 17.0 | 56.5 ± 16.7 | 56.5–18.1 | 0.99 |
Fat (g) (<46 g) | 12 (21%) | 9 (20%) | 3 (25%) | 0.73 |
Carbohydrate (g) | 212 ± 57 | 214 ± 51 | 205 ± 76 | 0.72 |
Carbohydrate (<256 g) | 46 (82%) | 39 (89%) | 7 (58%) | 0.015 |
Dietary fiber (g) | 10.8 ± 3.9 | 10.3 ± 3.4 | 12.5 ± 5.1 | 0.2 |
Dietary fiber (<18.9 g) | 54 (96%) | 42 (95%) | 10 (83%) | 0.15 |
Cholesterol (g) | 277.7 ± 95.9 | 275.09 ± 99.8 | 287.5 ± 79.3 | 0.66 |
SFA (g) | 17.3 ± 5.4 | 17.5 ± 5.3 | 16.9 ± 5.6 | 0.75 |
MUFA (g) | 20.3 ± 6.2 | 20.2 ± 6.1 | 20.5 ± 6.6 | 0.91 |
PUFA (g) | 12.3 ± 4.1 | 12.2 ± 3.9 | 12.7 ± 4.7 | 0.72 |
n-3 PUFA (g) | 2.04 ± 0.81 | 2.00±0.81 | 2.21±0.81 | 0.43 |
n-3 PUFA (<1.6 g/day) | 18 (32%) | 15 (34%) | 3 (25%) | 0.55 |
n-6 PUFA (g) | 10.23 ± 3.31 | 10.16 ± 3.13 | 10.47 ± 3.90 | 0.8 |
n-6 PUFA (<8 g/day) | 16 (29%) | 13 (30%) | 3 (25%) | 0.75 |
Fe (g) | 6.11 ± 2.11 | 5.90 ± 1.99 | 6.89 ± 2.34 | 0.21 |
Fe (<10.5 g) | 54 (96%) | 43 (97%) | 11 (92%) | 0.32 |
Calcium (mg) | 382.3 ± 143.8 | 385.7 ± 149.0 | 369.8 ± 116.3 | 0.71 |
Calcium (<650 mg) | 54 (96%) | 42 (95%) | 12 (100%) | 0.45 |
Total | 20–39 y.o.a. | >40 y.o.a. | p-Value | |
---|---|---|---|---|
n = 56 | n = 44 | n = 12 | ||
Vitamin B1 intake (g) | 0.90 ± 0.28 | 0.89 ± 0.28 | 0.92 ± 0.25 | 0.72 |
Vitamin B1 intake (<1.1 mg) | 48 (86%) | 38 (86%) | 10 (83%) | 0.79 |
Plasma Vitamin B1 (ng/mL) | 31.18 ± 12.24 | 32.11 ± 13.33 | 27.75 ± 5.75 | 0.11 |
Plasma B1 deficiency (<24 ng/mL) | 5 (8.9%) | 2 (4.6%) | 3 (25%) | 0.027 |
Vitamin B12 intake (μg) | 4.60 ± 2.93 | 4.22 ± 2.92 | 5.96 ± 2.53 | 0.064 |
Vitamin B12 intake (<2.0 μg) | 10 (18%) | 9 (20%) | 1 (8%) | 0.33 |
Plasma Vitamin B12 (pg/mL) | 311.16 ± 185.25 | 293.20 ± 154.25 | 377 ± 259.60 | 0.32 |
Plasma B12 deficiency (<200 pg/mL) | 14 (25%) | 11 (25%) | 3 (25%) | 0.31 |
Folate intake (μg) | 217 ± 89 | 204 ± 78 | 268 ± 106 | 0.08 |
Folate intake (<240μg) | 39 (70%) | 35 (80%) | 4 (33%) | 0.002 |
Plasma Folate (ng/mL) | 8.51 ± 5.07 | 7.91 ± 5.05 | 10.73 ± 4.54 | 0.089 |
Plasma Folate deficiency (<4 ng/mL) | 6 (11%) | 6 (14%) | 0 (0%) | 0.18 |
Vitamin D intake (μg) | 4.46 ± 3.11 | 4.12 ± 3.14 | 5.72 ± 2.65 | 0.1 |
Vitamin D intake (<8.5 μg) | 52 (93%) | 42 (95%) | 10 (83%) | 0.15 |
Plasma 25-OH Vitamin D (ng/mL) | 11.07 ± 4.86 | 10.78 ± 4.18 | 12.13 ± 6.71 | 0.53 |
Plasma 25-OH Vitamin D deficiency (<20 ng/mL) | 53 (95%) | 43 (98%) | 10 (83%) | 0.049 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iizuka, K.; Sato, H.; Kobae, K.; Yanagi, K.; Yamada, Y.; Ushiroda, C.; Hirano, K.; Ichimaru, S.; Seino, Y.; Ito, A.; et al. Young Japanese Underweight Women with “Cinderella Weight” Are Prone to Malnutrition, including Vitamin Deficiencies. Nutrients 2023, 15, 2216. https://doi.org/10.3390/nu15092216
Iizuka K, Sato H, Kobae K, Yanagi K, Yamada Y, Ushiroda C, Hirano K, Ichimaru S, Seino Y, Ito A, et al. Young Japanese Underweight Women with “Cinderella Weight” Are Prone to Malnutrition, including Vitamin Deficiencies. Nutrients. 2023; 15(9):2216. https://doi.org/10.3390/nu15092216
Chicago/Turabian StyleIizuka, Katsumi, Hiroko Sato, Kazuko Kobae, Kotone Yanagi, Yoshiko Yamada, Chihiro Ushiroda, Konomi Hirano, Satomi Ichimaru, Yusuke Seino, Akemi Ito, and et al. 2023. "Young Japanese Underweight Women with “Cinderella Weight” Are Prone to Malnutrition, including Vitamin Deficiencies" Nutrients 15, no. 9: 2216. https://doi.org/10.3390/nu15092216
APA StyleIizuka, K., Sato, H., Kobae, K., Yanagi, K., Yamada, Y., Ushiroda, C., Hirano, K., Ichimaru, S., Seino, Y., Ito, A., Suzuki, A., Saitoh, E., & Naruse, H. (2023). Young Japanese Underweight Women with “Cinderella Weight” Are Prone to Malnutrition, including Vitamin Deficiencies. Nutrients, 15(9), 2216. https://doi.org/10.3390/nu15092216