Examining the Effects of Nutrient Supplementation on Metabolic Pathways via Mitochondrial Ferredoxin in Aging Ovaries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Spatial Transcriptomics Analysis of Mouse Ovaries
2.2. Ethics Statement
2.3. Clinical Biopies and Collection
2.4. Human Cumulus Cell (CC) Isolation from Patients
2.5. RNA Extraction and Real-Time Polymerase Chain Reaction (PCR)
2.6. Statistical Analysis
3. Results
3.1. Demographic and Clinical Characteristics of Infertile Patients
3.2. Clinical and Cyclic Characteristics of Infertile Patients
3.3. Spatial Transcriptomics Uncovers Cell Cluster Distinctions in Young and Old Mouse Ovaries
3.4. Analysis of Intercellular Communication Networks Reveals Insights into the Ovarian Microenvironment
3.5. Nutritional Supplements Affect Changes in Cellular Metabolic Pathways
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Wang, X.; Wang, L.; Xiang, W. Mechanisms of ovarian aging in women: A review. J. Ovarian Res. 2023, 16, 67. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Liu, Y.; Song, Y.; Wang, L.; Ai, J.; Li, K. Aging conundrum: A perspective for ovarian aging. Front. Endocrinol. 2022, 13, 952471. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Huang, F.; Song, Z.; Tang, R.; Zhang, P.; Chen, R. Impact of NAD+ metabolism on ovarian aging. Immun. Ageing 2023, 20, 70. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, M.I.; May, L.; Roik, L.J.; Fuda, M.R.; Luo, A.; Hettinga, B.P.; Bujak, A.L.; Tarnopolsky, M.A. A Multi-Ingredient Supplement Protects against Obesity and Infertility in Western Diet-Fed Mice. Nutrients 2023, 15, 611. [Google Scholar] [CrossRef]
- Ota, K.; Mitsui, J.; Katsumata, S.; Takayanagi, Y.; Nako, Y.; Tajima, M.; Komiya, A.; Takahashi, T.; Kawai, K. Seasonal Serum 25(OH) Vitamin D Level and Reproductive or Immune Markers in Reproductive-Aged Women with Infertility: A Cross-Sectional Observational Study in East Japan. Nutrients 2023, 15, 5059. [Google Scholar] [CrossRef]
- Cristodoro, M.; Zambella, E.; Fietta, I.; Inversetti, A.; Di Simone, N. Dietary Patterns and Fertility. Biology 2024, 13, 131. [Google Scholar] [CrossRef] [PubMed]
- Webb, S.J.; Geoghegan, T.E.; Prough, R.A.; Michael Miller, K.K. The biological actions of dehydroepiandrosterone involves multiple receptors. Drug Metab. Rev. 2006, 38, 89–116. [Google Scholar] [CrossRef]
- Tsui, K.H.; Li, C.J. Mitoquinone shifts energy metabolism to reduce ROS-induced oxeiptosis in female granulosa cells and mouse oocytes. Aging 2023, 15, 246–260. [Google Scholar] [CrossRef]
- Suarez-Rivero, J.M.; Pastor-Maldonado, C.J.; Povea-Cabello, S.; Alvarez-Cordoba, M.; Villalon-Garcia, I.; Munuera-Cabeza, M.; Suarez-Carrillo, A.; Talaveron-Rey, M.; Sanchez-Alcazar, J.A. Coenzyme Q(10) Analogues: Benefits and Challenges for Therapeutics. Antioxidants 2021, 10, 236. [Google Scholar] [CrossRef]
- Fernandes, M.S.S.; Fidelis, D.; Aidar, F.J.; Badicu, G.; Greco, G.; Cataldi, S.; Santos, G.C.J.; de Souza, R.F.; Ardigo, L.P. Coenzyme Q10 Supplementation in Athletes: A Systematic Review. Nutrients 2023, 15, 3990. [Google Scholar] [CrossRef]
- Lesniak, K.; Rymarz, A.; Sobol, M.; Niemczyk, S. Low Free Triiodothyronine as a More Sensitive Predictor of Survival Than Total Testosterone among Dialysis Men. Nutrients 2023, 15, 595. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, W.; Zhang, W.; Sun, S.; Chen, C. Levothyroxine: Conventional and Novel Drug Delivery Formulations. Endocr. Rev. 2023, 44, 393–416. [Google Scholar] [CrossRef] [PubMed]
- Hoermann, R.; Pekker, M.J.; Midgley, J.E.M.; Dietrich, J.W. The role of supporting and disruptive mechanisms of FT3 homeostasis in regulating the hypothalamic-pituitary-thyroid axis. Ther. Adv. Endocrinol. Metab. 2023, 14, 20420188231158163. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.T.; Gong, Y.M.; Zhang, C.Y.; Pan, J.S.; Huang, T.; Li, Y.X. A Novel Cuprotosis-Related Gene FDX1 Signature for Overall Survival Prediction in Clear Cell Renal Cell Carcinoma Patients. Biomed. Res. Int. 2022, 2022, 9196540. [Google Scholar] [CrossRef] [PubMed]
- Tsui, K.H.; Hsiao, J.H.; Lin, L.T.; Tsang, Y.L.; Shao, A.N.; Kuo, C.H.; Chang, R.; Wen, Z.H.; Li, C.J. The Cross-Communication of Cuproptosis and Regulated Cell Death in Human Pathophysiology. Int. J. Biol. Sci. 2024, 20, 218–230. [Google Scholar] [CrossRef] [PubMed]
- Mohibi, S.; Zhang, Y.; Perng, V.; Chen, M.; Zhang, J.; Chen, X. Ferredoxin 1 is essential for embryonic development and lipid homeostasis. Elife 2024, 13, e91656. [Google Scholar] [CrossRef]
- Cai, K.; Tonelli, M.; Frederick, R.O.; Markley, J.L. Human Mitochondrial Ferredoxin 1 (FDX1) and Ferredoxin 2 (FDX2) Both Bind Cysteine Desulfurase and Donate Electrons for Iron-Sulfur Cluster Biosynthesis. Biochemistry 2017, 56, 487–499. [Google Scholar] [CrossRef] [PubMed]
- Tzeng, Y.T.; Hsiao, J.H.; Chu, P.Y.; Tseng, L.M.; Hou, M.F.; Tsang, Y.L.; Shao, A.N.; Sheu, J.J.; Li, C.J. The role of LSM1 in breast cancer: Shaping metabolism and tumor-associated macrophage infiltration. Pharmacol. Res. 2023, 198, 107008. [Google Scholar] [CrossRef]
- Li, C.J.; Lin, L.T.; Tsai, H.W.; Wen, Z.H.; Tsui, K.H. Phosphoglycerate mutase family member 5 maintains oocyte quality via mitochondrial dynamic rearrangement during aging. Aging Cell 2022, 21, e13546. [Google Scholar] [CrossRef]
- Wu, C.C.; Li, C.J.; Lin, L.T.; Lin, P.H.; Wen, Z.H.; Cheng, J.T.; Tsui, K.H. Cuproptosis-Related Gene FDX1 Identified as a Potential Target for Human Ovarian Aging. Reprod. Sci. 2024; Online ahead of print. [Google Scholar]
- Gong, M.; Hay, S.; Marshall, K.R.; Munro, A.W.; Scrutton, N.S. DNA binding suppresses human AIF-M2 activity and provides a connection between redox chemistry, reactive oxygen species, and apoptosis. J. Biol. Chem. 2007, 282, 30331–30340. [Google Scholar] [CrossRef]
- Wang, Z.H.; Chen, L.; Li, W.; Chen, L.; Wang, Y.P. Mitochondria transfer and transplantation in human health and diseases. Mitochondrion 2022, 65, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhao, H.; Li, Y. Mitochondrial dynamics in health and disease: Mechanisms and potential targets. Signal Transduct Target Ther. 2023, 8, 333. [Google Scholar] [CrossRef]
- Pan, H.; Cui, H.; Liu, S.; Qian, Y.; Wu, H.; Li, L.; Guan, Y.; Guan, X.; Zhang, L.; Fan, H.Y.; et al. Lgr4 gene regulates corpus luteum maturation through modulation of the WNT-mediated EGFR-ERK signaling pathway. Endocrinology 2014, 155, 3624–3637. [Google Scholar] [CrossRef] [PubMed]
- Fragouli, E.; Lalioti, M.D.; Wells, D. The transcriptome of follicular cells: Biological insights and clinical implications for the treatment of infertility. Hum. Reprod. Update 2014, 20, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Arias-Alvarez, M.; Garcia-Garcia, R.M.; Lopez-Tello, J.; Rebollar, P.G.; Gutierrez-Adan, A.; Lorenzo, P.L. In vivo and in vitro maturation of rabbit oocytes differently affects the gene expression profile, mitochondrial distribution, apoptosis and early embryo development. Reprod. Fertil. Dev. 2017, 29, 1667–1679. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Ortega, C.; Cancino-Villarreal, P.; Alonzo-Torres, V.E.; Martinez-Robles, I.; Perez-Pena, E.; Gutierrez-Gutierrez, A.M. Polarized light microscopy for evaluation of oocytes as a prognostic factor in the evolution of a cycle in assisted reproduction. Ginecol. Obstet. Mex. 2016, 84, 217–227. [Google Scholar] [PubMed]
- Imamichi, Y.; Mizutani, T.; Ju, Y.; Matsumura, T.; Kawabe, S.; Kanno, M.; Yazawa, T.; Miyamoto, K. Transcriptional regulation of human ferredoxin 1 in ovarian granulosa cells. Mol. Cell. Endocrinol. 2013, 370, 1–10. [Google Scholar] [CrossRef]
- Shi, Y.; Ghosh, M.; Kovtunovych, G.; Crooks, D.R.; Rouault, T.A. Both human ferredoxins 1 and 2 and ferredoxin reductase are important for iron-sulfur cluster biogenesis. Biochim. Biophys. Acta 2012, 1823, 484–492. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.L. Steroidogenic electron-transfer factors and their diseases. Ann. Pediatr. Endocrinol. Metab. 2021, 26, 138–148. [Google Scholar] [CrossRef]
- Miller, W.L. Minireview: Regulation of steroidogenesis by electron transfer. Endocrinology 2005, 146, 2544–2550. [Google Scholar] [CrossRef]
- Miller, W.L. Molecular biology of steroid hormone synthesis. Endocr. Rev. 1988, 9, 295–318. [Google Scholar] [CrossRef] [PubMed]
- Jamnongjit, M.; Gill, A.; Hammes, S.R. Epidermal growth factor receptor signaling is required for normal ovarian steroidogenesis and oocyte maturation. Proc. Natl. Acad. Sci. USA 2005, 102, 16257–16262. [Google Scholar] [CrossRef] [PubMed]
- Su, W.P.; Li, C.J.; Lin, L.T.; Lin, P.H.; Wen, Z.H.; Sheu, J.J.; Tsui, K.H. Boosting mitochondrial function and metabolism in aging female germ cells with dual ROCK/ROS inhibition. Biomed. Pharmacother. 2023, 163, 114888. [Google Scholar] [CrossRef] [PubMed]
- Tsui, K.H.; Wang, P.H.; Lin, L.T.; Li, C.J. DHEA protects mitochondria against dual modes of apoptosis and necroptosis in human granulosa HO23 cells. Reproduction 2017, 154, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Li, C.J.; Chen, S.N.; Lin, L.T.; Chern, C.U.; Wang, P.H.; Wen, Z.H.; Tsui, K.H. Dehydroepiandrosterone Ameliorates Abnormal Mitochondrial Dynamics and Mitophagy of Cumulus Cells in Poor Ovarian Responders. J. Clin. Med. 2018, 7, 293. [Google Scholar] [CrossRef]
- Lin, P.H.; Lin, L.T.; Li, C.J.; Kao, P.G.; Tsai, H.W.; Chen, S.N.; Wen, Z.H.; Wang, P.H.; Tsui, K.H. Combining Bioinformatics and Experiments to Identify CREB1 as a Key Regulator in Senescent Granulosa Cells. Diagnostics 2020, 10, 295. [Google Scholar] [CrossRef]
- Lin, P.H.; Su, W.P.; Li, C.J.; Lin, L.T.; Sheu, J.J.; Wen, Z.H.; Cheng, J.T.; Tsui, K.H. Investigating the Role of Ferroptosis-Related Genes in Ovarian Aging and the Potential for Nutritional Intervention. Nutrients 2023, 15, 2461. [Google Scholar] [CrossRef] [PubMed]
- Muta-Takada, K.; Terada, T.; Yamanishi, H.; Ashida, Y.; Inomata, S.; Nishiyama, T.; Amano, S. Coenzyme Q10 protects against oxidative stress-induced cell death and enhances the synthesis of basement membrane components in dermal and epidermal cells. Biofactors 2009, 35, 435–441. [Google Scholar] [CrossRef] [PubMed]
- Cirilli, I.; Damiani, E.; Dludla, P.V.; Hargreaves, I.; Marcheggiani, F.; Millichap, L.E.; Orlando, P.; Silvestri, S.; Tiano, L. Role of Coenzyme Q(10) in Health and Disease: An Update on the Last 10 Years (2010–2020). Antioxidants 2021, 10, 1325. [Google Scholar] [CrossRef]
- Li, C.J.; Lin, L.T.; Tsui, K.H. Dehydroepiandrosterone Shifts Energy Metabolism to Increase Mitochondrial Biogenesis in Female Fertility with Advancing Age. Nutrients 2021, 13, 2449. [Google Scholar] [CrossRef]
Parameters | Aging (n = 40) | Aging/Nutri. (n = 30) |
---|---|---|
Age (years) | 39.4 ± 4.1 | 39.9 ± 3.2 |
BMI (kg/m2) | 24.6 ± 3.5 | 24.8 ± 3.8 |
Duration of infertility (years) | 3.1 ± 1.7 | 2.7 ± 2.6 |
Previous IVF failure (n) | 1.4 ± 2.3 | 1.8 ± 1.2 |
Types of infertility n (%) | ||
Primary infertility | 17/40 (42.5%) | 16/30 (53.3%) |
Secondary infertility | 23/40 (57.5%) | 14/30 (46.7%) |
Basal FSH (IU/L) | 5.1 ± 5.4 | 5.5 ± 3.6 |
Basal E2 (pg/mL) | 109.8 ± 72.8 | 103.8 ± 77.2 |
Basal LH (IU/L) | 6.4 ± 6.8 | 6.2 ± 5.8 |
Parameters | Aging (n = 40) | Aging/Nutri. (n = 30) |
---|---|---|
Stimulation duration (days) | 10.7 ± 2.8 | 10.6 ± 1.4 |
No. of oocytes retrieved (n) | 6.5 ± 3.9 | 14.2 ± 6.4 ** |
No. of metaphase II oocytes (n) | 5.4 ± 3.1 | 11.6 ± 5.2 *** |
Maturation rate (%) | 79.2 ± 18.6 | 82.4 ± 18.2 |
No. of fertilized oocytes (n) | 4.6 ± 3.2 | 8.9 ± 4.1 ** |
Fertilization rate (%) | 85.2 ± 20.7 | 84.6 ± 17.4 |
No. of Day 3 embryos (n) | 4.4 ± 3.7 | 8.6 ± 4.2 ** |
No. of top-quality D3 embryos (n) | 2.1 ± 1.7 | 3.2 ± 2.8 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, C.-C.; Li, C.-J.; Lin, L.-T.; Wen, Z.-H.; Cheng, J.-T.; Tsui, K.-H. Examining the Effects of Nutrient Supplementation on Metabolic Pathways via Mitochondrial Ferredoxin in Aging Ovaries. Nutrients 2024, 16, 1470. https://doi.org/10.3390/nu16101470
Wu C-C, Li C-J, Lin L-T, Wen Z-H, Cheng J-T, Tsui K-H. Examining the Effects of Nutrient Supplementation on Metabolic Pathways via Mitochondrial Ferredoxin in Aging Ovaries. Nutrients. 2024; 16(10):1470. https://doi.org/10.3390/nu16101470
Chicago/Turabian StyleWu, Chia-Chun, Chia-Jung Li, Li-Te Lin, Zhi-Hong Wen, Jiin-Tsuey Cheng, and Kuan-Hao Tsui. 2024. "Examining the Effects of Nutrient Supplementation on Metabolic Pathways via Mitochondrial Ferredoxin in Aging Ovaries" Nutrients 16, no. 10: 1470. https://doi.org/10.3390/nu16101470
APA StyleWu, C. -C., Li, C. -J., Lin, L. -T., Wen, Z. -H., Cheng, J. -T., & Tsui, K. -H. (2024). Examining the Effects of Nutrient Supplementation on Metabolic Pathways via Mitochondrial Ferredoxin in Aging Ovaries. Nutrients, 16(10), 1470. https://doi.org/10.3390/nu16101470