Neem Leaf Extract Exhibits Anti-Aging and Antioxidant Effects from Yeast to Human Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Strains and Cell Culture
2.2. Preparation of Neem Leaf Extracts
2.3. Chronological Lifespan Assays
2.4. Oxidative-Stress-Resistance Assays
2.5. Reactive Oxygen Species Measurement
2.6. Analysis of Active Compounds of NLE
2.7. Target Prediction of NLE
2.8. RNA-Seq
2.9. RT-qPCR
2.10. Senescence-Associated β-Galactosidase Staining
2.11. Statistical Analysis
3. Results
3.1. NLE Extends the Lifespan of Yeast Cells
3.2. NLE Enhances the Oxidative Stress Response (OSR) in Yeast Cells
3.3. Active Compounds and Target Prediction of NLE
3.4. NLE Induces Transcriptome Changes to OSR in Yeast
3.5. Oxidoreductases Are Involved in Enhanced OSR Induced by NLE
3.6. CCT1 Is Required for the Lifespan-Extension Effects of NLE
3.7. NLE Promotes Resistance against H2O2-Induced Oxidative Stress in Human Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mahmoud, N.; Dawood, M.; Huang, Q.; Ng, J.P.L.; Ren, F.; Wong, V.K.W.; Efferth, T. Nimbolide Inhibits 2D and 3D Prostate Cancer Cells Migration, Affects Microtubules and Angiogenesis and Suppresses B-RAF/p.ERK-Mediated In Vivo Tumor Growth. Phytomedicine 2022, 94, 153826. [Google Scholar] [CrossRef] [PubMed]
- Nagini, S.; Palrasu, M.; Bishayee, A. Limonoids from Neem (Azadirachta indica A. Juss.) Are Potential Anticancer Drug Candidates. Med. Res. Rev. 2024, 44, 457–496. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.M.; Shirahatti, P.S.; Ramu, R. Azadirachta Indica, A. Juss (Neem) against Diabetes Mellitus: A Critical Review on Its Phytochemistry, Pharmacology, and Toxicology. J. Pharm. Pharmacol. 2022, 74, 681–710. [Google Scholar] [CrossRef] [PubMed]
- Lakkim, V.; Reddy, M.C.; Lekkala, V.V.V.; Lebaka, V.R.; Korivi, M.; Lomada, D. Antioxidant Efficacy of Green-Synthesized Silver Nanoparticles Promotes Wound Healing in Mice. Pharmaceutics 2023, 15, 1517. [Google Scholar] [CrossRef] [PubMed]
- Akinduti, P.A.; Emoh-Robinson, V.; Obamoh-Triumphant, H.F.; Obafemi, Y.D.; Banjo, T.T. Antibacterial Activities of Plant Leaf Extracts against Multi-Antibiotic Resistant Staphylococcus Aureus Associated with Skin and Soft Tissue Infections. BMC Complement. Med. Ther. 2022, 22, 47. [Google Scholar] [CrossRef] [PubMed]
- Blum, F.C.; Singh, J.; Merrell, D.S. In Vitro Activity of Neem (Azadirachta Indica) Oil Extract against Helicobacter Pylori. J. Ethnopharmacol. 2019, 232, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Bandyopadhyay, U.; Biswas, K.; Sengupta, A.; Moitra, P.; Dutta, P.; Sarkar, D.; Debnath, P.; Ganguly, C.K.; Banerjee, R.K. Clinical Studies on the Effect of Neem (Azadirachta indica) Bark Extract on Gastric Secretion and Gastroduodenal Ulcer. Life Sci. 2004, 75, 2867–2878. [Google Scholar] [CrossRef] [PubMed]
- Zuccotti, E.; Oliveri, M.; Girometta, C.; Ratto, D.; Di Iorio, C.; Occhinegro, A.; Rossi, P. Nutritional Strategies for Psoriasis: Current Scientific Evidence in Clinical Trials. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8537–8551. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.C.; Prasad, S.; Tyagi, A.K.; Kunnumakkara, A.B.; Aggarwal, B.B. Neem (Azadirachta indica): An Indian Traditional Panacea with Modern Molecular Basis. Phytomedicine 2017, 34, 14–20. [Google Scholar] [CrossRef]
- Bose, A.; Chakraborty, K.; Sarkar, K.; Goswami, S.; Chakraborty, T.; Pal, S.; Baral, R. Neem Leaf Glycoprotein Induces Perforin-Mediated Tumor Cell Killing by T and NK Cells through Differential Regulation of IFNgamma Signaling. J. Immunother. 2009, 32, 42–53. [Google Scholar] [CrossRef]
- Chakraborty, K.; Bose, A.; Chakraborty, T.; Sarkar, K.; Goswami, S.; Pal, S.; Baral, R. Restoration of Dysregulated CC Chemokine Signaling for Monocyte/Macrophage Chemotaxis in Head and Neck Squamous Cell Carcinoma Patients by Neem Leaf Glycoprotein Maximizes Tumor Cell Cytotoxicity. Cell. Mol. Immunol. 2010, 7, 396–408. [Google Scholar] [CrossRef]
- Patel, M.J.; Tripathy, S.; Mukhopadhyay, K.D.; Wangjam, T.; Cabang, A.B.; Morris, J.; Wargovich, M.J. A Supercritical CO2 Extract of Neem Leaf (A. Indica) and Its Bioactive Liminoid, Nimbolide, Suppresses Colon Cancer in Preclinical Models by Modulating pro-Inflammatory Pathways. Mol. Carcinog. 2018, 57, 1156–1165. [Google Scholar] [CrossRef]
- Manikandan, P.; Anandan, R.; Nagini, S. Evaluation of Azadirachta Indica Leaf Fractions for in Vitro Antioxidant Potential and Protective Effects against H2O2 -Induced Oxidative Damage to pBR322 DNA and Red Blood Cells. J. Agric. Food Chem. 2009, 57, 6990–6996. [Google Scholar] [CrossRef]
- Subapriya, R.; Nagini, S. Medicinal Properties of Neem Leaves: A Review. Curr. Med. Chem. Anticancer Agents 2005, 5, 149–156. [Google Scholar] [CrossRef]
- Dahiya, R.; Mohammad, T.; Alajmi, M.F.; Rehman, M.T.; Hasan, G.M.; Hussain, A.; Hassan, M.I. Insights into the Conserved Regulatory Mechanisms of Human and Yeast Aging. Biomolecules 2020, 10, 882. [Google Scholar] [CrossRef]
- Zimmermann, A.; Hofer, S.; Pendl, T.; Kainz, K.; Madeo, F.; Carmona-Gutierrez, D. Yeast as a Tool to Identify Anti-Aging Compounds. FEMS Yeast Res. 2018, 18, foy020. [Google Scholar] [CrossRef]
- Nogales, C.; Mamdouh, Z.M.; List, M.; Kiel, C.; Casas, A.I.; Schmidt, H.H.H.W. Network Pharmacology: Curing Causal Mechanisms Instead of Treating Symptoms. Trends Pharmacol. Sci. 2022, 43, 136–150. [Google Scholar] [CrossRef]
- Boezio, B.; Audouze, K.; Ducrot, P.; Taboureau, O. Network-Based Approaches in Pharmacology. Mol. Inform. 2017, 36, 1700048. [Google Scholar] [CrossRef]
- Zhao, L.; Zhang, H.; Li, N.; Chen, J.; Xu, H.; Wang, Y.; Liang, Q. Network Pharmacology, a Promising Approach to Reveal the Pharmacology Mechanism of Chinese Medicine Formula. J. Ethnopharmacol. 2023, 309, 116306. [Google Scholar] [CrossRef]
- Wang, Z.-Y.; Chu, F.-H.; Gu, N.-N.; Wang, Y.; Feng, D.; Zhao, X.; Meng, X.-D.; Zhang, W.-T.; Li, C.-F.; Chen, Y.; et al. Integrated Strategy of LC-MS and Network Pharmacology for Predicting Active Constituents and Pharmacological Mechanisms of Ranunculus Japonicus Thunb. for Treating Rheumatoid Arthritis. J. Ethnopharmacol. 2021, 271, 113818. [Google Scholar] [CrossRef]
- Duan, Z.; Wang, Y.; Lu, Z.; Tian, L.; Xia, Z.-Q.; Wang, K.; Chen, T.; Wang, R.; Feng, Z.; Shi, G.; et al. Attenuates Angiogenesis and Inflammation by Modulating RAGE Signaling Pathway in IBD: Network Pharmacology Analysis and Experimental Evidence. Phytomedicine 2023, 111, 154658. [Google Scholar] [CrossRef]
- Fabrizio, P.; Longo, V.D. The Chronological Life Span of Saccharomyces Cerevisiae. Methods Mol. Biol. 2007, 371, 89–95. [Google Scholar] [CrossRef]
- Mussatto, S.I. Generating Biomedical Polyphenolic Compounds from Spent Coffee or Silverskin. In Coffee in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2015; pp. 93–106. [Google Scholar] [CrossRef]
- Huang, X.; Liu, J.; Dickson, R.C. Down-Regulating Sphingolipid Synthesis Increases Yeast Lifespan. PLoS Genet. 2012, 8, e1002493. [Google Scholar] [CrossRef]
- Shah, A.A.; Liu, B.; Tang, Z.; Wang, W.; Yang, W.; Hu, Q.; Liu, Y.; Zhang, N.; Liu, K. Hydrogen Sulfide Treatment at the Late Growth Stage of Saccharomyces Cerevisiae Extends Chronological Lifespan. Aging 2021, 13, 9859–9873. [Google Scholar] [CrossRef]
- Zhao, H.; Li, Z.; Wang, Y.; Wang, J.; Xiao, M.; Liu, H.; Quan, R.; Zhang, H.; Huang, R.; Zhu, L.; et al. Cellulose Synthase-like Protein OsCSLD4 Plays an Important Role in the Response of Rice to Salt Stress by Mediating Abscisic Acid Biosynthesis to Regulate Osmotic Stress Tolerance. Plant Biotechnol. J. 2022, 20, 468–484. [Google Scholar] [CrossRef]
- Young, M.D.; Wakefield, M.J.; Smyth, G.K.; Oshlack, A. Gene Ontology Analysis for RNA-Seq: Accounting for Selection Bias. Genome Biol. 2010, 11, R14. [Google Scholar] [CrossRef]
- Bjørklund, G.; Shanaida, M.; Lysiuk, R.; Butnariu, M.; Peana, M.; Sarac, I.; Strus, O.; Smetanina, K.; Chirumbolo, S. Natural Compounds and Products from an Anti-Aging Perspective. Molecules 2022, 27, 7084. [Google Scholar] [CrossRef]
- None, D.; Pk, M. Health Benefits of Quercetin in Age-Related Diseases. Molecules 2022, 27, 2498. [Google Scholar] [CrossRef]
- Imran, M.; Salehi, B.; Sharifi-Rad, J.; Gondal, T.A.; Saeed, F.; Imran, A.; Shahbaz, M.; Fokou, P.V.T.; Arshad, M.U.; Khan, H.; et al. Kaempferol: A Key Emphasis to Its Anticancer Potential. Molecules 2019, 24, 2277. [Google Scholar] [CrossRef]
- Pérez-Torres, I.; Castrejón-Téllez, V.; Soto, M.E.; Rubio-Ruiz, M.E.; Manzano-Pech, L.; Guarner-Lans, V. Oxidative Stress, Plant Natural Antioxidants, and Obesity. Int. J. Mol. Sci. 2021, 22, 1786. [Google Scholar] [CrossRef]
- Bernatoniene, J.; Kopustinskiene, D.M. The Role of Catechins in Cellular Responses to Oxidative Stress. Molecules 2018, 23, 965. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.-R.; Yu, H.-T.; Yang, Y.; Hang, L.; Yang, X.-W.; Ding, S.-H. Quercetin Phospholipid Complex Significantly Protects against Oxidative Injury in ARPE-19 Cells Associated with Activation of Nrf2 Pathway. Eur. J. Pharmacol. 2016, 770, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Xu, X.; Liu, Q.; Huang, H.; Huang, X.; Lv, H. Myricetin Prevents Cataract Formation by Inhibiting the Apoptotic Cell Death Mediated Cataractogenesis. Med. Sci. Monit. 2020, 26, e922519. [Google Scholar] [CrossRef] [PubMed]
Strain/Cell Line | Genotype | Source |
---|---|---|
BY4741 | MATa his3-∆1 leu2-∆0 ura3-∆0 met15-∆0 | Lab stock |
BY4742 | MATalpha his3-∆1 leu2-∆0 ura3-∆0 lys2-∆0 | Lab stock |
Δctt1 | BY4741 with ctt1::KAN | Saccharomyces Genome Deletion Project |
Δqcr8 | BY4741 with qcr8::KAN | Saccharomyces Genome Deletion Project |
Δgnd2 | BY4741 with gnd2::KAN | Saccharomyces Genome Deletion Project |
Δqcr9 | BY4741 with qcr9::KAN | Saccharomyces Genome Deletion Project |
HeLa | ATCC |
Gene | Primer (5′ to 3′) | |
---|---|---|
Forward | Reverse | |
Actin | CCATCCAAGCCGTTTTGTCC | TGAGCAGCGGTTTGCATTTC |
CTT1 | CATGCCAAAGGTGGTGGTTG | CAGTCATGGTTCCCCCACTC |
TKL2 | GGTGTGAGGGAACACGGAAT | TTGGACCATCCTCACCAAGC |
COX4 | TTCAGCAAAAACCCGTGGTG | AGAACCCGTACAACCGACAT |
QCR8 | TCACATGGGTGGTCCAAAGC | ACTCGTTACCGTTCTTCCACC |
GND2 | ACGGATTTACCGTGGTTGCT | TAAAGTGTCGACCGGAGCAC |
QCR9 | TGCAGGTGCCTTTGTTTTCC | CCTGCAGCTATTCGAGCCTT |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dang, J.; Zhang, G.; Li, J.; He, L.; Ding, Y.; Cai, J.; Cheng, G.; Yang, Y.; Liu, Z.; Fan, J.; et al. Neem Leaf Extract Exhibits Anti-Aging and Antioxidant Effects from Yeast to Human Cells. Nutrients 2024, 16, 1506. https://doi.org/10.3390/nu16101506
Dang J, Zhang G, Li J, He L, Ding Y, Cai J, Cheng G, Yang Y, Liu Z, Fan J, et al. Neem Leaf Extract Exhibits Anti-Aging and Antioxidant Effects from Yeast to Human Cells. Nutrients. 2024; 16(10):1506. https://doi.org/10.3390/nu16101506
Chicago/Turabian StyleDang, Jinye, Gongrui Zhang, Jingjing Li, Libo He, Yi Ding, Jiaxiu Cai, Guohua Cheng, Yuhui Yang, Zhiyi Liu, Jiahui Fan, and et al. 2024. "Neem Leaf Extract Exhibits Anti-Aging and Antioxidant Effects from Yeast to Human Cells" Nutrients 16, no. 10: 1506. https://doi.org/10.3390/nu16101506
APA StyleDang, J., Zhang, G., Li, J., He, L., Ding, Y., Cai, J., Cheng, G., Yang, Y., Liu, Z., Fan, J., Du, L., & Liu, K. (2024). Neem Leaf Extract Exhibits Anti-Aging and Antioxidant Effects from Yeast to Human Cells. Nutrients, 16(10), 1506. https://doi.org/10.3390/nu16101506