The Effect of 14-Day Consumption of Hydrogen-Rich Water Alleviates Fatigue but Does Not Ameliorate Dyspnea in Long-COVID Patients: A Pilot, Single-Blind, and Randomized, Controlled Trial
Abstract
:1. Introduction
2. Methods
2.1. Participants
2.2. Study Protocol
2.3. Intervention Protocol
2.3.1. Assessment of Fatigue
2.3.2. Assessment of Dyspnea
2.3.3. Assessment of Cardiorespiratory Endurance
2.3.4. Assessment of Musculoskeletal Function
2.3.5. Assessment of Sleep Quality and Mood
2.4. Study Outcomes
2.5. Statistical Analysis
3. Results
3.1. Effects of HRW on Fatigue
3.2. Effects of HRW on Dyspnea
3.3. Effects of HRW on Cardiorespiratory Endurance
3.4. Effects of HRW on Musculoskeletal Function
3.5. The Association between Fatigue, Cardiorespiratory Endurance, and Musculoskeletal Function
3.6. Effects of HRW on Sleep Quality and Mood: Exploratory Subgroup Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aiyegbusi, O.L.; Hughes, S.E.; Turner, G.; Rivera, S.C.; McMullan, C.; Chandan, J.S.; Haroon, S.; Price, G.; Davies, E.H.; Nirantharakumar, K.; et al. Symptoms, Complications and Management of Long COVID: A Review. J. R. Soc. Med. 2021, 114, 428–442. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major Findings, Mechanisms and Recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [CrossRef] [PubMed]
- Constantinescu-Bercu, A.; Lobiuc, A.; Căliman-Sturdza, O.A.; Oiţă, R.C.; Iavorschi, M.; Pavăl, N.-E.; Șoldănescu, I.; Dimian, M.; Covasa, M. Long COVID: Molecular Mechanisms and Detection Techniques. Int. J. Mol. Sci. 2023, 25, 408. [Google Scholar] [CrossRef] [PubMed]
- Gaebler, C.; Wang, Z.; Lorenzi, J.C.C.; Muecksch, F.; Finkin, S.; Tokuyama, M.; Cho, A.; Jankovic, M.; Schaefer-Babajew, D.; Oliveira, T.Y.; et al. Evolution of Antibody Immunity to SARS-CoV-2. Nature 2021, 591, 639–644. [Google Scholar] [CrossRef]
- Talla, A.; Vasaikar, S.V.; Szeto, G.L.; Lemos, M.P.; Czartoski, J.L.; MacMillan, H.; Moodie, Z.; Cohen, K.W.; Fleming, L.B.; Thomson, Z.; et al. Persistent Serum Protein Signatures Define an Inflammatory Subcategory of Long COVID. Nat. Commun. 2023, 14, 3417. [Google Scholar] [CrossRef]
- Leng, A.; Shah, M.; Ahmad, S.A.; Premraj, L.; Wildi, K.; Li Bassi, G.; Pardo, C.A.; Choi, A.; Cho, S.-M. Pathogenesis Underlying Neurological Manifestations of Long COVID Syndrome and Potential Therapeutics. Cells 2023, 12, 816. [Google Scholar] [CrossRef]
- Lage, S.L.; Amaral, E.P.; Hilligan, K.L.; Laidlaw, E.; Rupert, A.; Namasivayan, S.; Rocco, J.; Galindo, F.; Kellogg, A.; Kumar, P.; et al. Persistent Oxidative Stress and Inflammasome Activation in CD14highCD16- Monocytes From COVID-19 Patients. Front. Immunol. 2021, 12, 799558. [Google Scholar] [CrossRef] [PubMed]
- Njøten, K.L.; Espehaug, B.; Magnussen, L.H.; Jürgensen, M.; Kvale, G.; Søfteland, E.; Aarli, B.B.; Frisk, B. Relationship between Exercise Capacity and Fatigue, Dyspnea, and Lung Function in Non-hospitalized Patients with Long COVID. Physiol. Rep. 2023, 11, e15850. [Google Scholar] [CrossRef]
- Perveen, I.; Bukhari, B.; Najeeb, M.; Nazir, S.; Faridi, T.A.; Farooq, M.; Ahmad, Q.-A.; Abusalah, M.A.H.A.; ALjaraedah, T.Y.; Alraei, W.Y.; et al. Hydrogen Therapy and Its Future Prospects for Ameliorating COVID-19: Clinical Applications, Efficacy, and Modality. Biomedicines 2023, 11, 1892. [Google Scholar] [CrossRef]
- Besnier, F.; Bérubé, B.; Malo, J.; Gagnon, C.; Grégoire, C.-A.; Juneau, M.; Simard, F.; L’Allier, P.; Nigam, A.; Iglésies-Grau, J.; et al. Cardiopulmonary Rehabilitation in Long-COVID-19 Patients with Persistent Breathlessness and Fatigue: The COVID-Rehab Study. Int. J. Environ. Res. Public Health 2022, 19, 4133. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Z.; Lian, N.; Wang, Y.; Zheng, W.; Xie, K. Molecular Hydrogen: A Promising Adjunctive Strategy for the Treatment of the COVID-19. Front. Med. 2021, 8, 671215. [Google Scholar] [CrossRef]
- Singh, R.B.; Tarnava, A.; Fedacko, J.; Fatima, G.; Rupee, S.; Sumbalova, Z. Effects of Molecular Hydrogen in the Pathophysiology and Management of Metabolic and Non-Communicable Diseases. In Molecular Hydrogen in Health and Disease; Slezak, J., Kura, B., Eds.; Springer Nature: Cham, Switzerland, 2024; pp. 287–317. ISBN 978-3-031-47375-3. [Google Scholar]
- Milovancev, A.; Avakumovic, J.; Drid, P.; Todorovic, N.; Stajer, V.; Ostojic, S.M. Hydrogen-Rich Water Alleviates Inflammation and Fatigue in COVID-19: A Pilot Study. Eur. J. Inflamm. 2022, 20, 1721727X2210941. [Google Scholar] [CrossRef]
- Luo, P.; Ding, Y.; He, Y.; Chen, D.; He, Q.; Huang, Z.; Huang, S.; Lei, W.; Campos, M.C.; Nery, T.; et al. Hydrogen-Oxygen Therapy Alleviates Clinical Symptoms in Twelve Patients Hospitalized with COVID-19. Medicine 2022, 101, e27759. [Google Scholar] [CrossRef]
- Singh, R.B.; Halabi, G.; Fatima, G.; Rai, R.H.; Tarnava, A.T.; LeBaron, T.W. Molecular Hydrogen as an Adjuvant Therapy May Be Associated with Increased Oxygen Saturation and Improved Exercise Tolerance in a COVID-19 Patient. Clin. Case Rep. 2021, 9, e05039. [Google Scholar] [CrossRef]
- Guan, W.-J.; Wei, C.-H.; Chen, A.-L.; Sun, X.-C.; Guo, G.-Y.; Zou, X.; Shi, J.-D.; Lai, P.-Z.; Zheng, Z.-G.; Zhong, N.-S. Hydrogen/Oxygen Mixed Gas Inhalation Improves Disease Severity and Dyspnea in Patients with Coronavirus Disease 2019 in a Recent Multicenter, Open-Label Clinical Trial. J. Thorac. Dis. 2020, 12, 3448–3452. [Google Scholar] [CrossRef]
- Sisó-Almirall, A.; Brito-Zerón, P.; Conangla Ferrín, L.; Kostov, B.; Moragas Moreno, A.; Mestres, J.; Sellarès, J.; Galindo, G.; Morera, R.; Basora, J.; et al. Long COVID-19: Proposed Primary Care Clinical Guidelines for Diagnosis and Disease Management. Int. J. Environ. Res. Public Health 2021, 18, 4350. [Google Scholar] [CrossRef]
- Rafl, J.; Bachman, T.E.; Rafl-Huttova, V.; Walzel, S.; Rozanek, M. Commercial Smartwatch with Pulse Oximeter Detects Short-Time Hypoxemia as Well as Standard Medical-Grade Device: Validation Study. Digit. Health 2022, 8, 20552076221132127. [Google Scholar] [CrossRef]
- Valko, P.O.; Bassetti, C.L.; Bloch, K.E.; Held, U.; Baumann, C.R. Validation of the Fatigue Severity Scale in a Swiss Cohort. Sleep 2008, 31, 1601–1607. [Google Scholar] [CrossRef]
- Munari, A.B.; Gulart, A.A.; dos Santos, K.; Venâncio, R.S.; Karloh, M.; Mayer, A.F. Modified Medical Research Council Dyspnea Scale in GOLD Classification Better Reflects Physical Activities of Daily Living. Respir. Care 2018, 63, 77–85. [Google Scholar] [CrossRef]
- Celli, B.; Tetzlaff, K.; Criner, G.; Polkey, M.I.; Sciurba, F.; Casaburi, R.; Tal-Singer, R.; Kawata, A.; Merrill, D.; Rennard, S. The 6-Minute-Walk Distance Test as a Chronic Obstructive Pulmonary Disease Stratification Tool. Insights from the COPD Biomarker Qualification Consortium. Am. J. Respir. Crit. Care Med. 2016, 194, 1483–1493. [Google Scholar] [CrossRef]
- Núñez-Cortés, R.; Flor-Rufino, C.; Martínez-Arnau, F.M.; Arnal-Gómez, A.; Espinoza-Bravo, C.; Hernández-Guillén, D.; Cortés-Amador, S. Feasibility of the 30 s Sit-to-Stand Test in the Telehealth Setting and Its Relationship to Persistent Symptoms in Non-Hospitalized Patients with Long COVID. Diagnostics 2022, 13, 24. [Google Scholar] [CrossRef]
- Lein, D.H.; Alotaibi, M.; Almutairi, M.; Singh, H. Normative Reference Values and Validity for the 30-Second Chair-Stand Test in Healthy Young Adults. Int. J. Sports Phys. Ther. 2022, 17, 907–914. [Google Scholar]
- Sancho-Domingo, C.; Carballo, J.L.; Coloma-Carmona, A.; Buysse, D.J. Brief Version of the Pittsburgh Sleep Quality Index (B-PSQI) and Measurement Invariance across Gender and Age in a Population-Based Sample. Psychol. Assess. 2008, 31, 1601–1607. [Google Scholar] [CrossRef]
- Ali, A.M.; Alkhamees, A.A.; Hori, H.; Kim, Y.; Kunugi, H. The Depression Anxiety Stress Scale 21: Development and Validation of the Depression Anxiety Stress Scale 8-Item in Psychiatric Patients and the General Public for Easier Mental Health Measurement in a Post COVID-19 World. IJERPH 2021, 18, 10142. [Google Scholar] [CrossRef]
- Hopkins, W.G.; Marshall, S.W.; Batterham, A.M.; Hanin, J. Progressive Statistics for Studies in Sports Medicine and Exercise Science. Med. Sci. Sports Exerc. 2009, 41, 3–13. [Google Scholar] [CrossRef]
- Botek, M.; Krejčí, J.; McKune, A.J.; Sládečková, B. Hydrogen-Rich Water Supplementation and Up-Hill Running Performance: Effect of Athlete Performance Level. Int. J. Sports Physiol. Perform. 2012, 15, 1193–1196. [Google Scholar] [CrossRef]
- Javorac, D.; Stajer, V.; Ratgeber, L.; Betlehem, J.; Ostojic, S. Short-Term H2 Inhalation Improves Running Performance and Torso Strength in Healthy Adults. Biol. Sport. 2019, 36, 333–339. [Google Scholar] [CrossRef]
- Ara, J.; Fadriquela, A.; Ahmed, M.F.; Bajgai, J.; Sajo, M.E.J.; Lee, S.P.; Kim, T.S.; Jung, J.Y.; Kim, C.S.; Kim, S.-K.; et al. Hydrogen Water Drinking Exerts Antifatigue Effects in Chronic Forced Swimming Mice via Antioxidative and Anti-Inflammatory Activities. Biomed. Res. Int. 2018, 2018, 2571269. [Google Scholar] [CrossRef]
- Hirano, S.; Ichikawa, Y.; Sato, B.; Takefuji, Y.; Satoh, F. Successful Treatment of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome Using Hydrogen Gas: Four Case Reports. Med. Gas. Res. 2023, 14, 84–86. [Google Scholar] [CrossRef]
- Sim, M.; Kim, C.-S.; Shon, W.-J.; Lee, Y.-K.; Choi, E.Y.; Shin, D.-M. Hydrogen-Rich Water Reduces Inflammatory Responses and Prevents Apoptosis of Peripheral Blood Cells in Healthy Adults: A Randomized, Double-Blind, Controlled Trial. Sci. Rep. 2020, 10, 12130. [Google Scholar] [CrossRef]
- Ortelli, P.; Ferrazzoli, D.; Sebastianelli, L.; Engl, M.; Romanello, R.; Nardone, R.; Bonini, I.; Koch, G.; Saltuari, L.; Quartarone, A.; et al. Neuropsychological and Neurophysiological Correlates of Fatigue in Post-Acute Patients with Neurological Manifestations of COVID-19: Insights into a Challenging Symptom. J. Neurol. Sci. 2021, 420, 117271. [Google Scholar] [CrossRef]
- Ishihara, G.; Kawamoto, K.; Komori, N.; Ishibashi, T. Molecular Hydrogen Suppresses Superoxide Generation in the Mitochondrial Complex I and Reduced Mitochondrial Membrane Potential. Biochem. Biophys. Res. Commun. 2020, 522, 965–970. [Google Scholar] [CrossRef]
- Botek, M.; Krejčí, J.; McKune, A.; Valenta, M.; Sládečková, B. Hydrogen Rich Water Consumption Positively Affects Muscle Performance, Lactate Response, and Alleviates Delayed Onset of Muscle Soreness After Resistance Training. J. Strength Cond. Res. 2022, 36, 2792–2799. [Google Scholar] [CrossRef]
- Ohta, S. Will the Hydrogen Therapy Be Approved Shortly? Ann. Transl. Med. 2020, 8, 264. [Google Scholar] [CrossRef]
- Fatima, G.; Singh, R.B.; Raizada, M.; Fedacko, J.; Manal, M.A.; Singh, J.; Rupee, S.; Elkilany, G.; Magomedova, A. Editorial 2—Effects of Long COVID on the Heart. World Heart J. 2023, 15, 5–11. [Google Scholar]
- Richardson, R.S.; Harms, C.A.; Grassi, B.; Hepple, R.T. Skeletal Muscle: Master or Slave of the Cardiovascular System? Med. Sci. Sports Exerc. 2000, 32, 89–93. [Google Scholar] [CrossRef]
- Hellsten, Y.; Nyberg, M. Cardiovascular Adaptations to Exercise Training. Compr. Physiol. 2015, 6, 1–32. [Google Scholar] [CrossRef]
- Agarwala, P.; Salzman, S.H. Six-Minute Walk Test. Chest 2020, 157, 603–611. [Google Scholar] [CrossRef]
- Todorovic, N.; Zanini, D.; Stajer, V.; Korovljev, D.; Ostojic, J.; Ostojic, S.M. Hydrogen-rich Water and Caffeine for Alertness and Brain Metabolism in Sleep-deprived Habitual Coffee Drinkers. Food Sci. Nutr. 2021, 9, 5139–5145. [Google Scholar] [CrossRef]
- Vincent, S.M.; Madani, M.; Dikeman, D.; Golden, K.; Crocker, N.; Jackson, C.; Wimmer, S.P.; Dover, M.; Tucker, A.; Ghiani, C.A.; et al. Hydrogen-Rich Water Improves Sleep Consolidation and Enhances Forebrain Neuronal Activation in Mice. Sleep. Adv. 2023, 5, zpad057. [Google Scholar] [CrossRef]
- Tedjasukmana, R.; Budikayanti, A.; Islamiyah, W.R.; Witjaksono, A.M.A.L.; Hakim, M. Sleep Disturbance in Post COVID-19 Conditions: Prevalence and Quality of Life. Front. Neurol. 2023, 13, 1095606. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.; Yalamanchi, N.; Jin, R.; Kenne, D.R.; Phan, N. Investigating COVID-19′s Impact on Mental Health: Trend and Thematic Analysis of Reddit Users’ Discourse. J. Med. Internet Res. 2023, 25, e46867. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Tee, M.; Roy, A.E.; Fardin, M.A.; Srichokchatchawan, W.; Habib, H.A.; Tran, B.X.; Hussain, S.; Hoang, M.T.; Le, X.T.; et al. The Impact of COVID-19 Pandemic on Physical and Mental Health of Asians: A Study of Seven Middle-Income Countries in Asia. PLoS ONE 2021, 16, e0246824. [Google Scholar] [CrossRef]
- Iketani, M.; Ohsawa, I. Molecular Hydrogen as a Neuroprotective Agent. Curr. Neuropharmacol. 2017, 15, 324–331. [Google Scholar] [CrossRef]
Characteristics | HRW (n = 16) | PW (n = 16) | p-Value |
---|---|---|---|
Age (years) | 33.38 ± 11.05 | 38.31 ± 14.52 | 0.288 |
Height (cm) | 170.06 ± 11.71 | 167.25 ± 8.57 | 0.444 |
Body weight (kg) | 67.60 ± 15.19 | 64.91 ± 9.30 | 0.551 |
BMI (kg/m2) | 23.16 ± 2.95 | 23.20 ± 2.82 | 0.934 |
Male/Female (%) | 5/11 | 5/11 | |
Duration of COVID-19 (day) | 8.44 ± 3.81 | 7.19 ± 3.56 | 0.346 |
Days after COVID-19 (day) | 31.19 ± 6.95 | 32.69 ± 8.87 | 0.598 |
Difficulty in Sleeping (n) | 9 | 10 | |
Anxiety and Depression (n) | 9 | 7 |
Variable | Group (n) | Pre | Post | Percent Changes (%) | |
---|---|---|---|---|---|
Fatigue | FSS (score) | HRW (16) | 38.13 ± 12.71 | 21.69 ± 8.07 **# | −16.44 ± 11.36 |
PW (16) | 38.88 ± 16.35 | 31.44 ± 14.95 | −7.44 ± 14.35 | ||
Dyspnea | mMRC (score) | HRW (16) | 1.69 ± 0.70 | 1.19 ± 0.40 * | −0.50 ± 0.63 |
PW (16) | 1.63 ± 0.81 | 1.44 ± 0.51 | −0.19 ± 0.83 | ||
Cardiorespiratory Endurance | 6MWT (m) | HRW (16) | 531.89 ± 96.84 | 601.22 ± 83.50 | 69.33 ± 57.10 |
PW (16) | 515.78 ± 98.66 | 534.68 ± 89.27 | 18.90 ± 41.54 | ||
Musculoskeletal Function | 30s-CST (times) | HRW (16) | 21.88 ± 6.83 | 27.25 ± 5.46 *# | 5.38 ± 3.40 |
PW (16) | 22.06 ± 5.08 | 23.88 ± 5.54 | 1.81 ± 2.54 | ||
Sleep Quality | PSQI (score) | HRW (16) | 6.06 ± 3.37 | 3.31 ± 2.89 *# | −2.75 ± 2.46 |
PW (16) | 4.63 ± 1.63 | 4.00 ± 1.83 | −0.63 ± 1.41 | ||
Mood | DASS-depression (score) | HRW (16) | 21.25 ± 8.10 | 19.00 ± 4.79 | −2.25 ± 7.26 |
PW (16) | 18.88 ± 4.95 | 17.50 ± 4.76 | −1.37 ± 3.91 | ||
DASS-anxiety (score) | HRW (16) | 22.75 ± 7.00 | 19.38 ± 4.66 | −3.37 ± 7.72 | |
PW (16) | 20.25 ± 6.06 | 18.25 ± 5.75 | −2.00 ± 3.50 | ||
DASS-stress (score) | HRW (16) | 25.25 ± 7.86 | 21.63 ± 7.63 | −3.62 ± 6.12 | |
PW (16) | 20.69 ± 7.27 | 19.50 ± 7.17 | −1.19 ± 2.17 |
Variable | Group (n) | Pre-Test | Post-Test | Percent Changes (%) |
---|---|---|---|---|
PSQI (score) | HRW (9) | 6.89 ± 3.06 | 3.33 ± 3.12 *# | −3.57 ± 2.88 |
PW (10) | 5.50 ± 1.43 | 4.90 ± 1.52 | −0.60 ± 1.58 | |
DASS-depression (score) | HRW (9) | 22.89 ± 10.15 | 19.33 ± 5.66 | −3.56 ± 9.53 |
PW (7) | 22.29 ± 5.36 | 20.57 ± 5.86 | −1.71 ± 5.47 | |
DASS-anxiety (score) | HRW (9) | 25.11 ± 9.75 | 20.00 ± 4.90 | −5.11 ± 9.23 |
PW (7) | 25.71 ± 4.68 | 23.14 ± 5.64 | −2.57 ± 4.58 | |
DASS-stress (score) | HRW (9) | 27.56 ± 8.53 | 23.33 ± 8.83 | −4.22 ± 2.09 # |
PW (7) | 27.14 ± 6.31 | 25.43 ± 7.28 | −1.71 ± 2.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Y.; Xie, Y.; Dong, G.; Yin, M.; Shang, Z.; Zhou, K.; Bao, D.; Zhou, J. The Effect of 14-Day Consumption of Hydrogen-Rich Water Alleviates Fatigue but Does Not Ameliorate Dyspnea in Long-COVID Patients: A Pilot, Single-Blind, and Randomized, Controlled Trial. Nutrients 2024, 16, 1529. https://doi.org/10.3390/nu16101529
Tan Y, Xie Y, Dong G, Yin M, Shang Z, Zhou K, Bao D, Zhou J. The Effect of 14-Day Consumption of Hydrogen-Rich Water Alleviates Fatigue but Does Not Ameliorate Dyspnea in Long-COVID Patients: A Pilot, Single-Blind, and Randomized, Controlled Trial. Nutrients. 2024; 16(10):1529. https://doi.org/10.3390/nu16101529
Chicago/Turabian StyleTan, Yineng, Yixun Xie, Gengxin Dong, Mingyue Yin, Zhangyuting Shang, Kaixiang Zhou, Dapeng Bao, and Junhong Zhou. 2024. "The Effect of 14-Day Consumption of Hydrogen-Rich Water Alleviates Fatigue but Does Not Ameliorate Dyspnea in Long-COVID Patients: A Pilot, Single-Blind, and Randomized, Controlled Trial" Nutrients 16, no. 10: 1529. https://doi.org/10.3390/nu16101529
APA StyleTan, Y., Xie, Y., Dong, G., Yin, M., Shang, Z., Zhou, K., Bao, D., & Zhou, J. (2024). The Effect of 14-Day Consumption of Hydrogen-Rich Water Alleviates Fatigue but Does Not Ameliorate Dyspnea in Long-COVID Patients: A Pilot, Single-Blind, and Randomized, Controlled Trial. Nutrients, 16(10), 1529. https://doi.org/10.3390/nu16101529