Dietary Patterns and New-Onset Diabetes Mellitus in Southwest China: A Prospective Cohort Study in the China Multi-Ethnic Cohort (CMEC)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Design and Study Population
2.2. Dietary Patterns Assessment
2.3. Assessment of Covariates
2.4. Continuous Variables Converted to Categorical Variables
2.5. Outcome Ascertainment
2.6. Statistical Analyses
3. Results
3.1. Baseline Description of Each Patterns
3.2. Risk Analysis
3.3. Subgroup Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magliano, D.J.; Boyko, E.J.; IDF Diabetes Atlas 10th Edition Scientific Committee. IDF Diabetes Atlas [Internet], 10th ed.; DiabetesAtlas: Brussels, Belgium, 2021; Available online: https://diabetesatlas.org/ (accessed on 6 December 2021). [PubMed]
- Li, Y.; Teng, D. Prevalence of diabetes recorded in mainland China using 2018 diagnostic criteria from the American Diabetes Association: National cross sectional study. BMJ 2020, 369, m997. [Google Scholar] [CrossRef]
- Qian, F.; Riddle, M.C.; Wylie-Rosett, J.; Hu, F.B. Red and Processed Meats and Health Risks: How Strong Is the Evidence? Diabetes Care 2020, 43, 265–271. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Fu, J.; Moore, J.B.; Stoner, L.; Li, R. Processed and Unprocessed Red Meat Consumption and Risk for Type 2 Diabetes Mellitus: An Updated Meta-Analysis of Cohort Studies. Int. J. Environ. Res. Public Health 2021, 18, 10788. [Google Scholar] [CrossRef] [PubMed]
- Connolly, G.; Clark, C.M.; Campbell, R.E.; Byers, A.W.; Reed, J.B.; Campbell, W.W. Poultry Consumption and Human Health: How Much Is Really Known? A Systematically Searched Scoping Review and Research Perspective. Adv. Nutr. 2022, 13, 2115–2124. [Google Scholar] [CrossRef] [PubMed]
- Kahleova, H.; Salas-Salvadó, J.; Rahelić, D.; Kendall, C.W.; Rembert, E.; Sievenpiper, J.L. Dietary Patterns and Cardiometabolic Outcomes in Diabetes: A Summary of Systematic Reviews and Meta-Analyses. Nutrients 2019, 11, 2209. [Google Scholar] [CrossRef] [PubMed]
- Salas-Salvado, J.; Becerra-Tomas, N.; Papandreou, C.; Bullo, M. Dietary Patterns Emphasizing the Consumption of Plant Foods in the Management of Type 2 Diabetes: A Narrative Review. Adv. Nutr. 2019, 10 (Suppl. S4), S320–S331. [Google Scholar] [CrossRef] [PubMed]
- Beigrezaei, S.; Jambarsang, S.; Khayyatzadeh, S.S.; Mirzaei, M.; Mehrparvar, A.H.; Salehi-Abargouei, A. The association between dietary patterns derived by three statistical methods and type 2 diabetes risk: YaHS-TAMYZ and Shahedieh cohort studies. Sci. Rep. 2023, 13, 410. [Google Scholar] [CrossRef]
- American Diabetes Association Professional Practice Committee. 5. Facilitating Behavior Change and Well-being to Improve Health Outcomes: Standards of Medical Care in Diabetes-2022. Diabetes Care 2022, 45, S60–S82. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Hong, F.; Yin, J.; Tang, W.; Zhang, G.; Liang, X.; Li, J.; Cui, C.; Li, X.; The China Multi-Ethnic Cohort (CMEC) Collaborative Group. Cohort Profile: The China Multi-Ethnic cohort (CMEC) study. Int. J. Epidemiol. 2020, 50, 721–721l. [Google Scholar] [CrossRef]
- Hills, R.D., Jr.; Pontefract, B.A.; Mishcon, H.R.; Black, C.A.; Sutton, S.C.; Theberge, C.R. Gut Microbiome: Profound Implications for Diet and Disease. Nutrients 2019, 11, 1613. [Google Scholar] [CrossRef]
- Prieto, J.; Singh, K.B.; Nnadozie, M.C.; Abdal, M.; Shrestha, N.; Abe, R.A.M.; Masroor, A.; Khorochkov, A.; Mohammed, L. New Evidence in the Pathogenesis of Celiac Disease and Type 1 Diabetes Mellitus: A Systematic Review. Cureus 2021, 13, e16721. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, L.; Liu, Z.; Jia, S.; Man, Q.; Zhu, Q.; Li, C.; Yang, Y.; Liu, B.; Zhang, J. Dietary Pattern Associated with the Risk of Poor Glycemic Control in Chinese Diabetic Adults: Results from the China Nutrition and Health Surveillance 2015–2017 Survey. Nutrients 2022, 15, 56. [Google Scholar] [CrossRef] [PubMed]
- Gutin, I. In BMI we trust: Reframing the body mass index as a measure of health. Soc. Theory Health 2018, 16, 256–271. [Google Scholar] [CrossRef] [PubMed]
- Piercy, K.L.; Troiano, R.P.; Ballard, R.M.; Carlson, S.A.; Fulton, J.E.; Galuska, D.A.; George, S.M.; Olson, R.D. The Physical Activity Guidelines for Americans. JAMA 2018, 320, 2020–2028. [Google Scholar] [CrossRef]
- Chinese Diabetes Society. Guideline for the prevention and treatment of type 2 diabetes mellitus in China (2020 edition). Chin. J. Diabetes Mellit. 2021, 13, 317–411. [Google Scholar] [CrossRef]
- Ge, L.; Sadeghirad, B.; Ball, G.D.C.; Da Costa, B.R.; Hitchcock, C.L.; Svendrovski, A.; Kiflen, R.; Quadri, K.; Kwon, H.Y.; Karamouzian, M.; et al. Comparison of dietary macronutrient patterns of 14 popular named dietary programmes for weight and cardiovascular risk factor reduction in adults: Systematic review and network meta-analysis of randomised trials. BMJ 2020, 369, m696. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.D.; Vadiveloo, M.K.; Petersen, K.S.; Anderson, C.A.; Springfield, S.; Van Horn, L.; Khera, A.; Lamendola, C.; Mayo, S.M.; Joseph, J.J.; et al. Popular Dietary Patterns: Alignment with American Heart Association 2021 Dietary Guidance: A Scientific Statement From the American Heart Association. Circulation 2023, 147, 1715–1730. [Google Scholar] [CrossRef] [PubMed]
- Xiao, X.; Qin, Z.; Lv, X.; Dai, Y.; Ciren, Z.; Yangla, Y.; Zeng, P.; Ma, Y.; Li, X.; Wang, L.; et al. Dietary patterns and cardiometabolic risks in diverse less-developed ethnic minority regions: Results from the China Multi-Ethnic Cohort (CMEC) Study. Lancet Reg. Health West. Pac. 2021, 15, 100252. [Google Scholar] [CrossRef] [PubMed]
- Shirani, F.; Salehi-Abargouei, A.; Azadbakht, L. Effects of dietary approaches to stop hypertension (DASH) diet on some risk for developing type 2 diabetes: A systematic review and meta-analysis on controlled clinical trials. Nutrition 2013, 29, 939–947. [Google Scholar] [CrossRef]
- Jannasch, F.; Kröger, J.; Schulze, M.B. Dietary patterns and type 2 diabetes: A systematic literature review and meta-analysis of prospective studies. J. Nutr. 2017, 147, 1174–1182. [Google Scholar] [CrossRef]
- Tison, S.E.; Shikany, J.M.; Long, D.L.; Carson, A.P.; Cofield, S.S.; Pearson, K.E.; Howard, G.; Judd, S.E. Differences in the Association of Select Dietary Measures with Risk of Incident Type 2 Diabetes. Diabetes Care 2022, 45, 2602–2610. [Google Scholar]
- Saslow, L.R.; Jones, L.M.; Sen, A.; Wolfson, J.A.; Diez, H.L.; O’brien, A.; Leung, C.W.; Bayandorian, H.; Daubenmier, J.; Missel, A.L.; et al. Comparing Very Low-Carbohydrate vs. DASH Diets for Overweight or Obese Adults with Hypertension and Prediabetes or Type 2 Diabetes: A Randomized Trial. Ann. Fam. Med. 2023, 21, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Appel, L.J.; Moore, T.J.; Obarzanek, E.; Vollmer, W.M.; Svetkey, L.P.; Sacks, F.M.; Bray, G.A.; Vogt, T.M.; Cutler, J.A.; Windhauser, M.M.; et al. A clinical trial of the effects of dietary patterns on blood pressure. DASH Collaborative Research Group. N. Engl. J. Med. 1997, 336, 1117–1124. [Google Scholar] [CrossRef] [PubMed]
- Svetkey, L.P.; Simons-Morton, D.; Vollmer, W.M.; Appel, L.J.; Conlin, P.R.; Ryan, D.H.; Ard, J.; Kennedy, B.M.; DASH Research Group. Effects of Dietary Patterns on Blood Pressure: Subgroup analysis of the Dietary Approaches to Stop Hypertension (DASH) randomized clinical trial. Arch. Inter. Med. 1999, 159, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Ru, Y.; Wang, N.; Min, Y.; Wang, X.; McGurie, V.; Duan, M.; Xu, X.; Zhao, X.; Wu, Y.-H.; Lu, Y.; et al. Characterization of dietary patterns and assessment of their relationships with metabolomic profiles: A community-based study. Clin. Nutr. 2021, 40, 3531–3541. [Google Scholar] [CrossRef] [PubMed]
- Meng, J.-M.; Cao, S.-Y.; Wei, X.-L.; Gan, R.-Y.; Wang, Y.-F.; Cai, S.-X.; Xu, X.-Y.; Zhang, P.-Z.; Li, H.-B. Effects and Mechanisms of Tea for the Prevention and Management of Diabetes Mellitus and Diabetic Complications: An Updated Review. Antioxidants 2019, 8, 170. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, X.-F.; Chen, J.; Xia, L.; Cao, A.; Zhang, Y.; Wang, J.; Li, H.; Yang, K.; Guo, K.; et al. Combined lifestyle factors and risk of incident type 2 diabetes and prognosis among individuals with type 2 diabetes: A systematic review and meta-analysis of prospective cohort studies. Diabetologia 2020, 63, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Pastor, A.; Conn, J.; MacIsaac, R.J.; Bonomo, Y. Alcohol and illicit drug use in people with diabetes. Lancet Diabetes Endocrinol. 2020, 8, 239–248. [Google Scholar] [CrossRef] [PubMed]
- Carlsson, S.; Hammar, N.; Grill, V.; Kaprio, J. Alcohol consumption and the incidence of type 2 diabetes: A 20-year follow-up of the Finnish twin cohort study. Diabetes Care 2003, 26, 2785–2790. [Google Scholar] [CrossRef]
- Knott, C.; Bell, S.; Britton, A. Alcohol consumption and the risk of type 2 diabetes: A systematic review and dose-response metaanalysis of more than 1.9 million individuals from 38 observational studies. Diabetes Care 2015, 38, 1804–1812. [Google Scholar] [CrossRef]
- Kerr, W.C.; Ye, Y.; Williams, E.; Lui, C.K.; Greenfield, T.K.; Lown, E.A. Lifetime alcohol use patterns and risk of diabetes onset in the national alcohol survey. Alcohol. Clin. Exp. Res. 2019, 43, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Barouti, A.A.; Tynelius, P.; Lager, A.; Björklund, A. Fruit and vegetable intake and risk of prediabetes and type 2 diabetes: Results from a 20-year long prospective cohort study in Swedish men and women. Eur. J. Nutr. 2022, 61, 3175–3187. [Google Scholar] [CrossRef] [PubMed]
- Livesey, G.; Taylor, R.; Livesey, H.F.; Buyken, A.E.; Jenkins, D.J.A.; Augustin, L.S.A.; Sievenpiper, J.L.; Barclay, A.W.; Liu, S.; Wolever, T.M.S.; et al. Dietary Glycemic Index and Load and the Risk of Type 2 Diabetes: Assessment of Causal Relations. Nutrients 2019, 11, 1436. [Google Scholar] [CrossRef] [PubMed]
- Mirmiran, P.; Hosseini, S.; Bahadoran, Z.; Azizi, F. Dietary pattern scores in relation to pre-diabetes regression to normal glycemia or progression to type 2 diabetes: A 9-year follow-up. BMC Endocr. Disord. 2023, 23, 20. [Google Scholar] [CrossRef] [PubMed]
- Arias-Gastélum, M.; Lindberg, N.M.; Leo, M.C.; Bruening, M.; Whisner, C.M.; Der Ananian, C.; Hooker, S.P.; LeBlanc, E.S.; Stevens, V.J.; Shuster, E.; et al. Dietary Patterns with Healthy and Unhealthy Traits among Overweight/Obese Hispanic Women with or at High Risk for Type 2 Diabetes. J. Racial Ethn. Health Disparities 2021, 8, 293–303. [Google Scholar] [CrossRef] [PubMed]
- Roversi, C.; Vettoretti, M.; Del Favero, S.; Facchinetti, A.; Sparacino, G. The Prospective Associations of Lipid Metabolism-Related Dietary Patterns with the Risk of Diabetes in Chinese Adults. Diabetes Technol. Ther. 2020, 22, 749–759. [Google Scholar] [CrossRef] [PubMed]
- Ma, E.; Ohira, T.; Hirai, H.; Okazaki, K.; Nagao, M.; Hayashi, F.; Nakano, H.; Suzuki, Y.; Sakai, A.; Takahashi, A.; et al. Dietary Patterns and New-Onset Type 2 Diabetes Mellitus in Evacuees after the Great East Japan Earthquake: A 7-Year Longitudinal Analysis in the Fukushima Health Management Survey. Nutrients 2022, 14, 4872. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.A.; Son, N.; Lee, W.K.; Park, H. Diabetes-Related Dietary Pattern Is Associated with Incident Diabetes in Obese Men in the Korean Genome Epidemiology Study. J. Nutr. 2019, 149, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Maskarinec, G.; Erber, E.; Grandinetti, A.; Park, S.; Hopping, B.; Kolonel, L. Dietary patterns and risk for diabetes: The Multiethnic Cohort. Diabetes Care 2010, 33, 532–538. [Google Scholar]
- WS/T 429-2013; Dietary Guide for Adult Diabetes Patients. National Health Commission of the People’s Republic of China: Beijing, China, 2013.
- National Institute for Nutrition and Health. China Food Composition Tables, 6th ed.; Peking University Medical Press: Beijing, China, 2018. [Google Scholar]
- National Bureau of Statistics. China Statistical Yearbook—2018; China Statistics Press: Beijing, China, 2019.
- Fung, T.T.; Chiuve, S.E.; McCullough, M.L.; Rexrode, K.M.; Logroscino, G.; Hu, F.B. Adherence to a DASH-Style Diet and Risk of Coronary Heart Disease and Stroke in Women. Arch. Intern. Med. 2008, 168, 713–720. [Google Scholar] [CrossRef]
- Chen, L.; Tang, W.; Wu, X.; Zhang, R.; Ding, R.; Liu, X.; Tang, X.; Wu, J.; Ding, X. Eating Spicy Food, Dietary Approaches to Stop Hypertension (DASH) Score, and Their Interaction on Incident Stroke in Southwestern Chinese Aged 30–79: A Prospective Cohort Study. Nutrients 2023, 15, 1222. [Google Scholar] [CrossRef]
- Xu, H.; Guo, B.; Qian, W.; Ciren, Z.; Guo, W.; Zeng, Q.; Mao, D.; Xiao, X.; Wu, J.; Wang, X.; et al. Dietary Pattern and Long-Term Effects of Particulate Matter on Blood Pressure: A Large Cross-Sectional Study in Chinese Adults. Hypertension 2021, 78, 184–194. [Google Scholar] [CrossRef]
- Bonaccio, M.; Di Castelnuovo, A.; Costanzo, S.; Gialluisi, A.; Persichillo, M.; Cerletti, C.; Donati, M.B.; de Gaetano, G.; Iacoviello, L. Mediterranean diet and mortality in the elderly: A prospective cohort study and a meta-analysis. Br. J. Nutr. 2018, 120, 841–854. [Google Scholar] [CrossRef]
- Baden, M.Y.; Liu, G.; Satija, A.; Li, Y.; Sun, Q.; Fung, T.T.; Rimm, E.B.; Willett, W.C.; Hu, F.B.; Bhupathiraju, S.N. Changes in Plant-Based Diet Quality and Total and Cause-Specific Mortality. Circulation 2019, 140, 979–991. [Google Scholar] [CrossRef]
- Chiu, S.; Bergeron, N.; Williams, P.T.; Bray, G.A.; Sutherland, B.; Krauss, R.M. Comparison of the DASH (Dietary Approaches to Stop Hypertension) diet and a higher-fat DASH diet on blood pressure and lipids and lipoproteins: A randomized controlled trial. Am. J. Clin. Nutr. 2016, 103, 341–347. [Google Scholar] [CrossRef]
Overall | Meat Pattern | † p-Value | Dairy Products-Eggs Pattern | † p-Value | Alcohol-Wheat Products Pattern | † p-Value | DASH Pattern | † p-Value | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q5 | Q1 | Q5 | Q1 | Q5 | Q1 | Q5 | ||||||
* Pattern score | −0.95 ± 0.25 | 1.48 ± 1.19 | <0.001 | −1.20 ± 0.35 | 1.50 ± 0.77 | <0.001 | −0.91 ± 0.32 | 1.43 ± 1.30 | <0.001 | 13.22 ± 1.69 | 26.89 ± 1.82 | <0.001 | |
Incidence of diabetes, n (%) | 875 (6.1) | 185 (6.5) | 193 (6.8) | 0.587 | 199 (7.0) | 167 (5.8) | 0.075 | 152 (5.3) | 218 (7.6) | <0.001 | 162 (7.5) | 166 (5.3) | <0.001 |
* Cohort time, years | 4.64 ± 0.50 | 4.62 ± 0.53 | 4.63 ± 0.52 | 0.012 | 4.60 ± 0.58 | 4.66 ± 0.44 | 0.957 | 4.69 ± 0.39 | 4.55 ± 0.69 | <0.001 | 4.53 ± 0.67 | 4.70 ± 0.34 | <0.001 |
* Age, years | 48.6 ± 11.0 | 51.3 ± 11.6 | 47.1 ± 10.3 | <0.001 | 49.9 ± 11.0 | 48.5 ± 11.2 | <0.001 | 47.2 ± 11.0 | 51.0 ± 11.0 | <0.001 | 50.8 ± 10.9 | 47.5 ± 10.8 | <0.001 |
a Elders, n (%) | 2572 (18.1) | 738 (26.0) | 384 (13.5) | <0.001 | 611 (21.6) | 515 (18.2) | <0.001 | 450 (15.9) | 682 (24.1) | <0.001 | 496 (23.2) | 483 (15.5) | <0.001 |
Female, n (%) | 7727 (54.5) | 897 (31.6) | 1842 (65.0) | <0.001 | 1025 (36.2) | 1936 (68.3) | <0.001 | 1886 (66.5) | 770 (27.2) | <0.001 | 831 (38.8) | 2203 (70.6) | <0.001 |
Urban area, n (%) | 4552 (32.1) | 1069 (37.7) | 632 (22.3) | <0.001 | 510 (18.0) | 1296 (45.7) | <0.001 | 866 (30.5) | 876 (30.9) | 0.012 | 383 (17.9) | 1363 (43.7) | <0.001 |
High school above, n (%) | 2667 (18.8) | 446 (15.7) | 518 (18.3) | <0.001 | 257 (9.1) | 742 (26.2) | <0.001 | 574 (20.2) | 475 (16.8) | <0.001 | 176 (8.2) | 871 (27.9) | <0.001 |
Household income ≥ 20,000 CNY/year, n (%) | 3091 (21.8) | 463 (16.3) | 743 (26.2) | <0.001 | 401 (14.1) | 770 (27.2) | <0.001 | 612 (21.6) | 634 (22.4) | 0.015 | 260 (12.1) | 855 (27.4) | <0.001 |
b Sufficient weekly physical activity, n (%) | 12,623.3 (89.0) | 2441.5 (86.1) | 2579.4 (91.0) | <0.001 | 2516.3 (88.7) | 2542.2 (89.7) | 0.006 | 2580.7 (91.0) | 2465.6 (86.9) | <0.001 | 1840.4 (85.9) | 2818.1 (90.3) | <0.001 |
Current smoker, n (%) | 3545 (25.0) | 461 (16.3) | 1102 (38.9) | <0.001 | 1081 (38.1) | 435 (15.3) | <0.001 | 463 (16.3) | 1426 (50.3) | <0.001 | 727 (33.9) | 461 (14.8) | <0.001 |
Current alcohol drinker, n (%) | 7817 (55.1) | 1303 (46.0) | 1901 (67.1) | <0.001 | 1636 (57.7) | 1477 (52.1) | 0.002 | 1342 (47.3) | 2051 (72.3) | <0.001 | 1102 (51.4) | 1722 (55.2) | 0.008 |
Current tea drinker, n (%) | 2684 (18.9) | 426 (15.0) | 703 (24.8) | <0.001 | 449 (15.8) | 637 (22.5) | <0.001 | 202 (7.1) | 1273 (44.9) | <0.001 | 376 (17.6) | 641 (20.5) | 0.112 |
c Regular spicy food intake, n (%) | 6465 (45.6) | 1097 (38.7) | 1570 (55.4) | <0.001 | 1361 (48.0) | 6465 (45.6) | <0.001 | 1195 (42.2) | 1628 (57.4) | <0.001 | 1002 (46.8) | 1264 (40.5) | <0.001 |
* Total energy intake, kcal/day | 1720.4 ± 660.4 | 1440.1 ± 609.2 | 2310.4 ± 706.1 | <0.001 | 1820.2 ± 718.4 | 1910.3 ± 679.6 | <0.001 | 1760.4 ± 688.0 | 2050.6 ± 726.8 | <0.001 | 1740.1 ± 690.1 | 1720.5 ± 632.2 | 0.677 |
Protein, g/day | 64.1 ± 32.1 | 41.5 ± 19.7 | 105.0 ± 36.6 | <0.001 | 63.9 ± 35.2 | 77.0 ± 34.3 | <0.001 | 65.7 ± 32.6 | 76.4 ± 36.1 | <0.001 | 64.5 ± 34.0 | 65.5 ± 31.0 | <0.001 |
Fat, g/day | 65.3 ± 39.2 | 53.2 ± 35.7 | 92.0 ± 44.2 | <0.001 | 63.3 ± 41.2 | 72.3 ± 38.9 | <0.001 | 65.8 ± 40.7 | 73.0 ± 43.7 | <0.001 | 73.8 ± 44.7 | 58.6 ± 33.3 | <0.001 |
Carbohydrate, g/day | 206 ± 91.4 | 194.0 ± 97.5 | 242.0 ± 102.0 | <0.001 | 226.0 ± 102.0 | 232.0 ± 99.4 | <0.001 | 223.0 ± 103.0 | 236.0 ± 99.7 | <0.001 | 186.0 ± 89.8 | 225.0 ± 92.6 | <0.001 |
Family history of diabetes, n (%) | 978 (6.9) | 181 (6.4) | 203 (7.2) | 0.792 | 164 (5.8) | 247 (8.7) | <0.001 | 177 (6.2) | 206 (7.3) | 0.718 | 122 (5.7) | 247 (7.9) | 0.047 |
d Overweight and above, n (%) | 7338 (51.8) | 1423 (50.2) | 1563 (55.1) | 0.001 | 1574 (55.5) | 1342 (47.3) | <0.001 | 1289 (45.5) | 1652 (58.3) | <0.001 | 1185 (55.3) | 1471 (47.1) | <0.001 |
e Abnormal serum creatinine levels, n (%) | 677 (4.8) | 150 (5.3) | 132 (4.7) | 0.352 | 150 (5.3) | 139 (4.9) | 0.502 | 145 (5.1) | 127 (4.5) | 0.183 | 94 (4.4) | 147 (4.7%) | 0.522 |
e Abnormal systolic blood pressure, n (%) | 2757 (19.4) | 668 (23.6) | 531 (18.7) | <0.001 | 684 (24.1) | 453 (16.0) | <0.001 | 471 (16.6) | 701 (24.7) | <0.001 | 576 (26.9) | 465 (14.9%) | <0.001 |
e Abnormal diastolic blood pressure, n (%) | 1734 (12.2) | 356 (12.6) | 391 (13.8) | 0.008 | 433 (15.3) | 253 (8.9) | <0.001 | 259 (9.1) | 486 (17.1) | <0.001 | 353 (16.5) | 288 (9.2%) | <0.001 |
e Abnormal triglyceride, n (%) | 1254 (8.8) | 253 (8.9) | 284 (10.0) | 0.172 | 271 (9.6) | 274 (9.7) | 0.062 | 237 (8.4) | 303 (10.7) | 0.012 | 235 (11.0) | 244 (7.8) | <0.001 |
e Abnormal total cholesterol, n (%) | 1679 (11.8) | 316 (11.1) | 416 (14.7) | <0.001 | 421 (14.9) | 261 (9.2) | <0.001 | 253 (8.9) | 483 (17.0) | <0.001 | 257 (12.0) | 299 (9.6) | <0.001 |
e Abnormal low density lipoprotein cholesterol, n (%) | 974 (6.9) | 169 (6.0) | 247 (8.7) | <0.001 | 236 (8.3) | 147 (5.2) | <0.001 | 161 (5.7) | 217 (7.7) | <0.001 | 162 (7.6) | 173 (5.5) | 0.006 |
e Abnormal high density lipoprotein cholesterol, n (%) | 616 (4.3) | 113 (4.0) | 150 (5.3) | 0.157 | 133 (4.7) | 135 (4.8) | 0.512 | 126 (4.4) | 139 (4.9) | 0.600 | 103 (4.8) | 119 (3.8) | 0.340 |
Quintiles of Dietary Pattern Scores | p for Trend | |||||
---|---|---|---|---|---|---|
Q1 (Low) | Q2 | Q3 | Q4 | Q5 (High) | ||
DASH pattern | ||||||
Cases | 162 | 166 | 212 | 169 | 166 | |
Incidence rate (/1000 person/year) | 2.46 | 2.52 | 3.22 | 2.57 | 2.52 | |
a Model 1 | 1.00 (Reference) | 0.86 (0.69, 1.06) | 0.90 (0.74, 1, 11) | 0.73 (0.59, 0.91) * | 0.67 (0.54, 0.84) *** | <0.001 |
b Model 2 | 1.00 (Reference) | 0.88 (0.71, 1.09) | 0.94 (0.77, 1.16) | 0.77 (0.61, 0.96) * | 0.71 (0.56, 0.90) ** | 0.002 |
c Model 3 | 1.00 (Reference) | 0.89 (0.72, 1.11) | 0.96 (0.78, 1.19) | 0.78 (0.62, 0.97) * | 0.72 (0.57, 0.91) ** | 0.003 |
d Model 4 | 1.00 (Reference) | 0.92 (0.73, 1.14) | 0.93 (0.75, 1.15) | 0.80 (0.64, 1.00) | 0.71 (0.40, 0.56) ** | 0.004 |
Alcohol-wheat products pattern | ||||||
Cases | 152 | 135 | 163 | 207 | 218 | |
Incidence rate (/1000 person/year) | 2.31 | 2.05 | 2.48 | 3.15 | 3.31 | |
a Model 1 | 1.00 (Reference) | 0.92 (0.73, 1.17) | 1.10 (0.88, 1.38) | 1.33 (1.08, 1.65) *** | 1.41 (1.14, 1.75) *** | <0.001 |
b Model 2 | 1.00 (Reference) | 0.96 (0.76, 1.21) | 1.16 (0.93, 1.46) | 1.43 (1.16, 1.78) ** | 1.43 (1.15, 1.77) ** | <0.001 |
c Model 3 | 1.00 (Reference) | 0.98 (0.78, 1.24) | 1.20 (0.95, 1.50) | 1.45 (1.17, 1.79) ** | 1.34 (1.06, 1.68) * | 0.003 |
d Model 4 | 1.00 (Reference) | 0.98 (0.77, 1.25) | 1.17 (0.93, 1.48) | 1.50 (1.20, 1.86) *** | 1.32 (1.04, 1.66) * | 0.003 |
Meat pattern | ||||||
Cases | 185 | 160 | 171 | 166 | 193 | |
Incidence rate (/1000 person/year) | 2.81 | 2.43 | 2.60 | 2.52 | 2.93 | |
a Model 1 | 1.00 (Reference) | 0.89 (0.72, 1.11) | 0.91 (0.74, 1.13) | 0.87 (0.70, 1.08) | 1.05 (0.85, 1.29) | 0.792 |
b Model 2 | 1.00 (Reference) | 0.93 (0.75, 1.15) | 0.95 (0.77, 1.17) | 0.91 (0.73, 1.13) | 1.09 (0.89, 1.35) | 0.519 |
c Model 3 | 1.00 (Reference) | 0.92 (0.75, 1.14) | 0.94 (0.76, 1.16) | 0.90 (0.72, 1.11) | 1.04 (0.82, 1.31) | 0.983 |
d Model 4 | 1.00 (Reference) | 0.92 (0.74, 1.15) | 0.93 (0.75, 1.15) | 0.94 (0.75, 1.18) | 1.02 (0.81, 1.30) | 0.917 |
Dairy products-eggs pattern | ||||||
Cases | 199 | 170 | 177 | 162 | 167 | |
Incidence rate (/1000 person/year) | 3.03 | 2.58 | 2.69 | 2.46 | 2.54 | |
a Model 1 | 1.00 (Reference) | 0.89 (0.72, 1.09) | 0.94 (0.77, 1.15) | 0.86 (0.70, 1.07) | 0.86 (0.70, 1.07) | 0.179 |
b Model 2 | 1.00 (Reference) | 0.93 (0.75, 1.14) | 0.98 (0.80, 1.21) | 0.91 (0.73, 1.12) | 0.94 (0.75, 1.17) | 0.538 |
c Model 3 | 1.00 (Reference) | 0.92 (0.75, 1.14) | 0.98 (0.80, 1.21) | 0.89 (0.72, 1.11) | 0.91 (0.72, 1.13) | 0.355 |
d Model 4 | 1.00 (Reference) | 0.945 (0.77, 1.17) | 0.943 (0.76, 1.17) | 0.96 (0.77, 1.19) | 0.91 (0.72, 1.14) | 0.478 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Ding, X.; Chen, L.; Luo, Y.; Liu, X.; Tang, X. Dietary Patterns and New-Onset Diabetes Mellitus in Southwest China: A Prospective Cohort Study in the China Multi-Ethnic Cohort (CMEC). Nutrients 2024, 16, 1636. https://doi.org/10.3390/nu16111636
Hu Y, Ding X, Chen L, Luo Y, Liu X, Tang X. Dietary Patterns and New-Onset Diabetes Mellitus in Southwest China: A Prospective Cohort Study in the China Multi-Ethnic Cohort (CMEC). Nutrients. 2024; 16(11):1636. https://doi.org/10.3390/nu16111636
Chicago/Turabian StyleHu, Yanqi, Xianbin Ding, Liling Chen, Youxing Luo, Xin Liu, and Xiaojun Tang. 2024. "Dietary Patterns and New-Onset Diabetes Mellitus in Southwest China: A Prospective Cohort Study in the China Multi-Ethnic Cohort (CMEC)" Nutrients 16, no. 11: 1636. https://doi.org/10.3390/nu16111636
APA StyleHu, Y., Ding, X., Chen, L., Luo, Y., Liu, X., & Tang, X. (2024). Dietary Patterns and New-Onset Diabetes Mellitus in Southwest China: A Prospective Cohort Study in the China Multi-Ethnic Cohort (CMEC). Nutrients, 16(11), 1636. https://doi.org/10.3390/nu16111636