Association between Urine Specific Gravity as a Measure of Hydration Status and Risk of Type 2 Diabetes: The Kailuan Prospective Cohort Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Assessment of Hydration Status
2.3. Definition of T2D and Follow-Up
2.4. Covariates
2.5. Statistical Analysis
3. Results
3.1. Baseline Characteristics of the Study Population
3.2. Prospective Association between Hydration Status and T2D
3.3. Subgroup Analysis
3.4. Sensitivity Analyses
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, J.; Bai, R.; Chai, Z.; Cooper, M.E.; Zimmet, P.Z.; Zhang, L. Low- and middle-income countries demonstrate rapid growth of type 2 diabetes: An analysis based on Global Burden of Disease 1990–2019 data. Diabetologia 2022, 65, 1339–1352. [Google Scholar] [CrossRef] [PubMed]
- Collaborators GBDD. Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: A systematic analysis for the Global Burden of Disease Study 2021. Lancet 2023, 402, 203–234. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Saeedi, P.; Karuranga, S.; Pinkepank, M.; Ogurtsova, K.; Duncan, B.B.; Stein, C.; Basit, A.; Chan, J.C.N.; Mbanya, J.C.; et al. IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Res. Clin. Pract. 2022, 183, 109119. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Peng, W.; Zhao, Z.; Zhang, M.; Shi, Z.; Song, Z.; Zhang, X.; Li, C.; Huang, Z.; Sun, X.; et al. Prevalence and Treatment of Diabetes in China, 2013–2018. JAMA 2021, 326, 2498–2506. [Google Scholar] [CrossRef] [PubMed]
- Einarson, T.R.; Acs, A.; Ludwig, C.; Panton, U.H. Prevalence of cardiovascular disease in type 2 diabetes: A systematic literature review of scientific evidence from across the world in 2007–2017. Cardiovasc. Diabetol. 2018, 17, 83. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Suarez, A. Burden of cancer attributable to obesity, type 2 diabetes and associated risk factors. Metabolism 2019, 92, 136–146. [Google Scholar] [CrossRef]
- Zhang, Y.; Niu, J.; Choi, H.K. Excess Mortality among Persons with Type 2 Diabetes. N. Engl. J. Med. 2016, 374, 788. [Google Scholar] [CrossRef] [PubMed]
- Janbozorgi, N.; Allipour, R.; Djafarian, K.; Shab-Bidar, S.; Badeli, M.; Safabakhsh, M. Water intake and risk of type 2 diabetes: A systematic review and meta-analysis of observational studies. Diabetes Metab. Syndr. 2021, 15, 102156. [Google Scholar] [CrossRef] [PubMed]
- Pan, A.; Malik, V.S.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Plain-water intake and risk of type 2 diabetes in young and middle-aged women. Am. J. Clin. Nutr. 2012, 95, 1454–1460. [Google Scholar] [CrossRef] [PubMed]
- Neuenschwander, M.; Ballon, A.; Weber, K.S.; Norat, T.; Aune, D.; Schwingshackl, L.; Schlesinger, S. Role of diet in type 2 diabetes incidence: Umbrella review of meta-analyses of prospective observational studies. BMJ 2019, 366, l2368. [Google Scholar] [CrossRef]
- Johnson, E.C.; Adams, W.M. Water Intake, Body Water Regulation and Health. Nutrients 2020, 12, 702. [Google Scholar] [CrossRef] [PubMed]
- Jequier, E.; Constant, F. Water as an essential nutrient: The physiological basis of hydration. Eur. J. Clin. Nutr. 2010, 64, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Dmitrieva, N.I.; Boehm, M.; Yancey, P.H.; Enhorning, S. Long-term health outcomes associated with hydration status. Nat. Rev. Nephrol. 2024, 20, 275–294. [Google Scholar] [CrossRef] [PubMed]
- Dmitrieva, N.I.; Gagarin, A.; Liu, D.; Wu, C.O.; Boehm, M. Middle-age high normal serum sodium as a risk factor for accelerated biological aging, chronic diseases, and premature mortality. eBioMedicine 2023, 87, 104404. [Google Scholar] [CrossRef] [PubMed]
- Stookey, J.D.; Kavouras, S.; Suh, H.; Lang, F. Underhydration Is Associated with Obesity, Chronic Diseases, and Death within 3 to 6 Years in the U.S. Population Aged 51–70 Years. Nutrients 2020, 12, 905. [Google Scholar] [CrossRef] [PubMed]
- Amaerjiang, N.; Li, M.; Xiao, H.; Zunong, J.; Li, Z.; Huang, D.; Vermund, S.H.; Perez-Escamilla, R.; Jiang, X.; Hu, Y. Dehydration Status Aggravates Early Renal Impairment in Children: A Longitudinal Study. Nutrients 2022, 14, 335. [Google Scholar] [CrossRef] [PubMed]
- Nishi, S.K.; Babio, N.; Paz-Graniel, I.; Serra-Majem, L.; Vioque, J.; Fito, M.; Corella, D.; Pinto, X.; Bueno-Cavanillas, A.; Tur, J.A.; et al. Water intake, hydration status and 2-year changes in cognitive performance: A prospective cohort study. BMC Med. 2023, 21, 82. [Google Scholar] [CrossRef] [PubMed]
- Dmitrieva, N.I.; Liu, D.; Wu, C.O.; Boehm, M. Middle age serum sodium levels in the upper part of normal range and risk of heart failure. Eur. Heart J. 2022, 43, 3335–3348. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Zhao, D.; Yang, T.; Deng, B.; Sun, J.; Gu, L.; Wang, H.; Wang, L. Association of serum osmolality with all-cause and cardiovascular mortality in US adults: A prospective cohort study. Nutr. Metab. Cardiovasc. Dis. 2023, 33, 844–852. [Google Scholar] [CrossRef]
- Gandy, J. Water intake: Validity of population assessment and recommendations. Eur. J. Nutr. 2015, 54 (Suppl. 2), 11–16. [Google Scholar] [CrossRef]
- Ekingen, T.; Sob, C.; Hartmann, C.; Ruhli, F.J.; Matthes, K.L.; Staub, K.; Bender, N. Associations between hydration status, body composition, sociodemographic and lifestyle factors in the general population: A cross-sectional study. BMC Public Health 2022, 22, 900. [Google Scholar] [CrossRef]
- Johnson, E.C.; Bardis, C.N.; Jansen, L.T.; Adams, J.D.; Kirkland, T.W.; Kavouras, S.A. Reduced water intake deteriorates glucose regulation in patients with type 2 diabetes. Nutr. Res. 2017, 43, 25–32. [Google Scholar] [CrossRef]
- Johnson, R.J.; Garcia-Arroyo, F.E.; Gonzaga-Sanchez, G.; Velez-Orozco, K.A.; Alvarez-Alvarez, Y.Q.; Aparicio-Trejo, O.E.; Tapia, E.; Osorio-Alonso, H.; Andres-Hernando, A.; Nakagawa, T.; et al. Current Hydration Habits: The Disregarded Factor for the Development of Renal and Cardiometabolic Diseases. Nutrients 2022, 14, 2070. [Google Scholar] [CrossRef]
- Enhorning, S.; Wang, T.J.; Nilsson, P.M.; Almgren, P.; Hedblad, B.; Berglund, G.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Lindholm, E.; et al. Plasma copeptin and the risk of diabetes mellitus. Circulation 2010, 121, 2102–2108. [Google Scholar] [CrossRef]
- Enhorning, S.; Bankir, L.; Bouby, N.; Struck, J.; Hedblad, B.; Persson, M.; Morgenthaler, N.G.; Nilsson, P.M.; Melander, O. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: The prospective Malmo Diet and Cancer Study cardiovascular cohort. Int. J. Obes. 2013, 37, 598–603. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Welsh, P.; Papacosta, O.; Lennon, L.; Whincup, P.H.; Sattar, N. Copeptin, Insulin Resistance, and Risk of Incident Diabetes in Older Men. J. Clin. Endocrinol. Metab. 2015, 100, 3332–3339. [Google Scholar] [CrossRef]
- Abbasi, A.; Corpeleijn, E.; Meijer, E.; Postmus, D.; Gansevoort, R.T.; Gans, R.O.B.; Struck, J.; Hillege, H.L.; Stolk, R.P.; Navis, G.; et al. Correction to: Sex differences in the association between plasma copeptin and incident type 2 diabetes: The Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 2019, 62, 1518–1519. [Google Scholar] [CrossRef] [PubMed]
- Baron, S.; Courbebaisse, M.; Lepicard, E.M.; Friedlander, G. Assessment of hydration status in a large population. Br. J. Nutr. 2015, 113, 147–158. [Google Scholar] [CrossRef] [PubMed]
- Cohen, J.B.; Yang, W.; Li, L.; Zhang, X.; Zheng, Z.; Orlandi, P.; Bansal, N.; Deo, R.; Lash, J.P.; Rahman, M.; et al. Time-Updated Changes in Estimated GFR and Proteinuria and Major Adverse Cardiac Events: Findings from the Chronic Renal Insufficiency Cohort (CRIC) Study. Am. J. Kidney Dis. 2022, 79, 36–44. [Google Scholar] [CrossRef] [PubMed]
- Dekker, F.W.; de Mutsert, R.; van Dijk, P.C.; Zoccali, C.; Jager, K.J. Survival analysis: Time-dependent effects and time-varying risk factors. Kidney Int. 2008, 74, 994–997. [Google Scholar] [CrossRef]
- Zhao, M.; Song, L.; Sun, L.; Wang, M.; Wang, C.; Yao, S.; Li, Y.; Yun, C.; Zhang, S.; Sun, Y.; et al. Associations of Type 2 Diabetes Onset Age with Cardiovascular Disease and Mortality: The Kailuan Study. Diabetes Care 2021, 44, 1426–1432. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Lee, Y.; Wu, Y.; Zhang, X.; Jin, C.; Huang, Z.; Wang, Y.; Wang, Z.; Kris-Etherton, P.; Wu, S.; et al. A prospective study of waist circumference trajectories and incident cardiovascular disease in China: The Kailuan Cohort Study. Am. J. Clin. Nutr. 2021, 113, 338–347. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Fang, G.; Li, M.; Cui, S.; Geng, X.; Qu, C.; Zhao, J. Hydration monitoring and rehydration guidance system for athletes based on urine color’s L*a*b* parameters. Front. Bioeng. Biotechnol. 2022, 10, 1043028. [Google Scholar] [CrossRef] [PubMed]
- Wardenaar, F.C.; Whitenack, L.; Vento, K.A.; Seltzer, R.G.N.; Siegler, J.; Kavouras, S.A. Validity of combined hydration self-assessment measurements to estimate a low vs. high urine concentration in a small sample of (tactical) athletes. Eur. J. Nutr. 2024, 63, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Vanhaecke, T.; Dolci, A.; Fulgoni, V.L., 3rd; Lieberman, H.R. Associations between urinary hydration markers and metabolic dysfunction: A cross-sectional analysis of NHANES data, 2008–2010. Eur. J. Nutr. 2021, 60, 4229–4241. [Google Scholar] [CrossRef] [PubMed]
- Atjo, N.M.; Soraya, G.V.; Natzir, R.; Kasyim, H.; Rasyid, H.; Chana, G.; Erlichster, M.; Skafidas, E.; Hardjo, M. Point-of-Care Saliva Osmolarity Testing for the Screening of Hydration in Older Adults with Hypertension. J. Am. Med. Dir. Assoc. 2022, 23, 1984.e9–1984.e14. [Google Scholar] [CrossRef] [PubMed]
- Fox, C.S.; Golden, S.H.; Anderson, C.; Bray, G.A.; Burke, L.E.; de Boer, I.H.; Deedwania, P.; Eckel, R.H.; Ershow, A.G.; Fradkin, J.; et al. Update on Prevention of Cardiovascular Disease in Adults with Type 2 Diabetes Mellitus in Light of Recent Evidence: A Scientific Statement from the American Heart Association and the American Diabetes Association. Diabetes Care 2015, 38, 1777–1803. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Zhou, Y.; Gao, X.; Wang, C.; Zhang, S.; Wang, A.; Li, N.; Bian, L.; Wu, J.; Jia, Q.; et al. Ideal cardiovascular health metrics and the risks of ischemic and intracerebral hemorrhagic stroke. Stroke 2013, 44, 2451–2456. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Huang, Z.; Jin, C.; Xing, A.; Liu, Y.; Huangfu, C.; Lichtenstein, A.H.; Tucker, K.L.; Wu, S.; Gao, X. Longitudinal Change of Perceived Salt Intake and Stroke Risk in a Chinese Population. Stroke 2018, 49, 1332–1339. [Google Scholar] [CrossRef]
- Wu, S.; Huang, Z.; Yang, X.; Zhou, Y.; Wang, A.; Chen, L.; Zhao, H.; Ruan, C.; Wu, Y.; Xin, A.; et al. Prevalence of ideal cardiovascular health and its relationship with the 4-year cardiovascular events in a northern Chinese industrial city. Circ. Cardiovasc. Qual. Outcomes 2012, 5, 487–493. [Google Scholar] [CrossRef]
- Xu, L.; Wu, M.; Chen, S.; Yang, Y.; Wang, Y.; Wu, S.; Tian, Y. Triglyceride-glucose index associates with incident heart failure: A cohort study. Diabetes Metab. 2022, 48, 101365. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lan, Y.; Xu, Y.; Xu, S.; Huang, Y.; Balmer, L.; Maharra, G.; Xu, W.; Wang, W.; Wu, S. Association of cumulative monocyte to high-density lipoprotein ratio with the risk of type 2 diabetes: A prospective cohort study. Cardiovasc. Diabetol. 2022, 21, 268. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Zuo, Y.; Chen, S.; Zhang, Y.; Zhang, X.; Xu, Q.; Wu, S.; Wang, A. Hypertension, Arterial Stiffness, and Diabetes: A Prospective Cohort Study. Hypertension 2022, 79, 1487–1496. [Google Scholar] [CrossRef] [PubMed]
- Hou, X.; Xu, W.; Zhang, C.; Song, Z.; Zhu, M.; Guo, Q.; Wang, J. L-Shaped Association of Serum Chloride Level with All-Cause and Cause-Specific Mortality in American Adults: Population-Based Prospective Cohort Study. JMIR Public Health Surveill. 2023, 9, e49291. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Zhang, J.; Li, J.; Li, H.; Zuo, Y.; Lv, W.; Chen, S.; Li, J.; Meng, X.; Wu, S.; et al. Relationship Between Time-Dependent Proteinuria and Risk of Stroke in Population with Different Glucose Tolerance Status. J. Am. Heart Assoc. 2020, 9, e015776. [Google Scholar] [CrossRef] [PubMed]
- Cheuvront, S.N.; Ely, B.R.; Kenefick, R.W.; Sawka, M.N. Biological variation and diagnostic accuracy of dehydration assessment markers. Am. J. Clin. Nutr. 2010, 92, 565–573. [Google Scholar] [CrossRef]
- Roussel, R.; Fezeu, L.; Bouby, N.; Balkau, B.; Lantieri, O.; Alhenc-Gelas, F.; Marre, M.; Bankir, L.; D.E.S.I.R. Study Group. Low water intake and risk for new-onset hyperglycemia. Diabetes Care 2011, 34, 2551–2554. [Google Scholar] [CrossRef] [PubMed]
- Carroll, H.A.; Davis, M.G.; Papadaki, A. Higher plain water intake is associated with lower type 2 diabetes risk: A cross-sectional study in humans. Nutr. Res. 2015, 35, 865–872. [Google Scholar] [CrossRef] [PubMed]
- Andres-Hernando, A.; Jensen, T.J.; Kuwabara, M.; Orlicky, D.J.; Cicerchi, C.; Li, N.; Roncal-Jimenez, C.A.; Garcia, G.E.; Ishimoto, T.; Maclean, P.S.; et al. Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor. JCI Insight 2021, 6, e140848. [Google Scholar] [CrossRef]
- Roussel, R.; El Boustany, R.; Bouby, N.; Potier, L.; Fumeron, F.; Mohammedi, K.; Balkau, B.; Tichet, J.; Bankir, L.; Marre, M.; et al. Plasma Copeptin, AVP Gene Variants, and Incidence of Type 2 Diabetes in a Cohort from the Community. J. Clin. Endocrinol. Metab. 2016, 101, 2432–2439. [Google Scholar] [CrossRef]
- Enhorning, S.; Brunkwall, L.; Tasevska, I.; Ericson, U.; Persson Tholin, J.; Persson, M.; Lemetais, G.; Vanhaecke, T.; Dolci, A.; Perrier, E.T.; et al. Water Supplementation Reduces Copeptin and Plasma Glucose in Adults with High Copeptin: The H2O Metabolism Pilot Study. J. Clin. Endocrinol. Metab. 2019, 104, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
- Lemetais, G.; Melander, O.; Vecchio, M.; Bottin, J.H.; Enhorning, S.; Perrier, E.T. Effect of increased water intake on plasma copeptin in healthy adults. Eur. J. Nutr. 2018, 57, 1883–1890. [Google Scholar] [CrossRef] [PubMed]
- Begg, D.P. Disturbances of thirst and fluid balance associated with aging. Physiol. Behav. 2017, 178, 28–34. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Bunn, D.; Jimoh, F.O.; Fairweather-Tait, S.J. Water-loss dehydration and aging. Mech. Ageing Dev. 2014, 136–137, 50–58. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, N.; Liu, S.; Du, S.; He, H.; Ma, G. The comparison of water intake patterns and hydration biomarkers among young adults with different hydration statuses in Hebei, China. Nutr. Metab. 2021, 18, 2. [Google Scholar] [CrossRef]
Characteristics | Total Population | Categories of Hydration Status Index (Urine Specific Gravity, USG) | p Value | ||||
---|---|---|---|---|---|---|---|
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | |||
1.000 ≤ USG < 1.010 | 1.010 ≤ USG < 1.015 | 1.015 ≤ USG < 1.020 | 1.020 ≤ USG < 1.030 | USG ≥ 1.030 | |||
(n = 71,526) | (n = 695) | (n = 3508) | (n = 8801) | (n = 38,320) | (n = 20,202) | ||
Age, mean (SD), years | 51.8 ± 12.6 | 52.0 ± 13.7 | 54.7 ± 13.9 | 54.9 ± 13.1 | 52.1 ± 12.3 | 49.2 ± 12.1 | <0.001 |
Sex, N (%) | <0.001 | ||||||
Female | 15,090 (21.1) | 207 (29.8) | 1032 (29.4) | 2332 (26.5) | 7603 (19.8) | 3916 (19.4) | |
Male | 56,436 (78.9) | 488 (70.2) | 2476 (70.6) | 6469 (73.5) | 30,717 (80.2) | 16,286 (80.6) | |
Education, N (%) | <0.001 | ||||||
Below high school | 57,197 (80.0) | 540 (77.7) | 2729 (77.8) | 7024 (79.8) | 31,240 (81.5) | 15,664 (77.5) | |
High school and above | 14,329 (20.0) | 155 (22.3) | 779 (22.2) | 1777 (20.2) | 7080 (18.5) | 4538 (22.5) | |
Smoking, N (%) | <0.001 | ||||||
No | 43,493 (60.8) | 531 (76.4) | 2546 (72.6) | 6064 (68.9) | 23,012 (60.1) | 11,340 (56.1) | |
Yes | 28,033 (39.2) | 164 (23.6) | 962 (27.4) | 2737 (31.1) | 15,308 (39.9) | 8862 (43.9) | |
Drinking, N (%) | <0.001 | ||||||
No | 42,881 (60.0) | 522 (75.1) | 2432 (69 3) | 5874 (66.7) | 22,751 (59.4) | 11,302 (55.9) | |
Yes | 28,645 (40.0) | 173 (24.9) | 1076 (30.7) | 2927 (33.3) | 15,569 (40.6) | 8900 (44.1) | |
Physical activity, N (%) | <0.001 | ||||||
No | 5497 (7.7) | 20 (2.9) | 190 (5.4) | 541 (6.1) | 3253 (8.5) | 1493 (7.4) | |
Yes | 66,029 (92.3) | 675 (97.1) | 3318 (94.6) | 8260 (93.9) | 35,067 (91.5) | 18,709 (92.6) | |
Salt intake, N (%) | <0.001 | ||||||
Low | 6377 (8.9) | 50 (7.2) | 334 (9.5) | 808 (9.2) | 3453 (9.0) | 1732 (8.6) | |
Medium | 57,717 (80.7) | 602 (86.6) | 2893 (82.5) | 7171 (81.5) | 30,760 (80.3) | 16,291 (80.6) | |
High | 7432 (10.4) | 43 (6.2) | 281 (8.0) | 822 (9.3) | 4107 (10.7) | 2179 (10.8) | |
Anti-hypertensives, N (%) | 7186 (10.0) | 39 (5.6) | 354 (10.1) | 1000 (11.4) | 3962 (10.3) | 1831 (9.1) | <0.001 |
Hypertension, N (%) | 30,185 (42.2) | 251 (36.1) | 1500 (42.8) | 3838 (43.6) | 16,299 (42.5) | 8297 (41.1) | <0.001 |
BMI, mean ± SD, kg/m2 | 25.0 ± 3.4 | 24.2 ± 3.4 | 24.3 ± 3.4 | 24.6 ± 3.4 | 25.0 ± 3.4 | 25.2 ± 3.5 | <0.001 |
eGFR, median (IQR), mL/min/1.73 m2 | 80.7 (68.3–94.5) | 82.1 (68.4–97.6) | 80.3 (67.0–94.9) | 81.2 (68.3–94.3) | 82.5 (69.3–96.3) | 77.7 (66.7–90.4) | <0.001 |
Creatinine, mean ± SD, μmol/L | 90.7 ± 20.0 | 86.3 ± 19.8 | 88.2 ± 20.9 | 88.3 ± 21.9 | 89.1 ± 19.3 | 95.3 ± 19.5 | <0.001 |
SUA, median (IQR), μmol/L | 285.0 (234.0–342.0) | 286.0 (240.0–334.0) | 289.0 (236.0–347.0) | 288.0 (233.0–345.0) | 283.9 (233.0–341.0) | 286.0 (235.0–343.0) | <0.001 |
BUN, mean ± SD, mmol/L | 5.7 ± 1.5 | 5.4 ± 1.5 | 5.4 ± 1.5 | 5.4 ± 1.6 | 5.7 ± 1.5 | 5.9 ± 1.4 | <0.001 |
TC, mean ± SD, mmol/L | 5.0 ± 1.0 | 5.0 ± 1.0 | 5.0 ± 1.0 | 5.0 ± 1.0 | 5.0 ± 1.0 | 5.0 ± 1.0 | <0.001 |
TG, median (IQR), mmol/L | 1.2 (0.9–1.8) | 1.3 (0.9–1.9) | 1.2 (0.9–1.8) | 1.2 (0.9–1.8) | 1.2 (0.9–1.8) | 1.2 (0.9–1.8) | 0.61 |
HDL-C, mean ± SD, mmol/L | 1.6 ± 0.4 | 1.6 ± 0.4 | 1.6 ± 0.4 | 1.6 ± 0.4 | 1.5 ± 0.4 | 1.6 ± 0.4 | <0.001 |
LDL-C, mean ± SD, mmol/L | 2.3 ± 0.9 | 2.3 ± 0.8 | 2.3 ± 0.8 | 2.2 ± 0.9 | 2.3 ± 0.9 | 2.3 ± 0.9 | <0.001 |
hs-CRP, median (IQR), mg/L | 0.8 (0.3–2.2) | 0.7 (0.2–1.6) | 0.9 (0.3–2.3) | 0.8 (0.3–2.3) | 0.8 (0.3–2.1) | 0.8 (0.3–2.4) | <0.001 |
Hematocrit (%), mean ± SD, L/L | 44.1 ± 4.8 | 43.4 ± 5.0 | 43.1 ± 4.8 | 43.0 ± 4.7 | 43.8 ± 4.6 | 45.2 ± 5.0 | <0.001 |
FBG, mean ± SD, mmol/L | 5.1 ± 0.7 | 5.0 ± 0.7 | 5.0 ± 0.7 | 5.0 ± 0.7 | 5.1 ± 0.7 | 5.0 ± 0.7 | <0.001 |
SBP, mean ± SD, mmHg | 130.3 ± 20.8 | 126.8 ± 19.0 | 129.9 ± 20.9 | 131.0 ± 21.3 | 130.6 ± 20.7 | 129.6 ± 20.8 | <0.001 |
DBP, mean ± SD, mmHg | 83.2 ± 11.7 | 81.0 ± 10.8 | 82.1 ± 11.6 | 82.9 ± 11.6 | 83.4 ± 11.7 | 83.3 ± 11.8 | <0.001 |
Group 1 | Group 2 | Group 3 | Group 4 | Group 5 | p for Trend | |
---|---|---|---|---|---|---|
Baseline | ||||||
Individuals | 695 | 3508 | 8801 | 38320 | 20202 | |
Cases, n (%) | 78 (11.22) | 451 (12.86) | 1174 (13.34) | 5951 (15.53) | 3430 (16.98) | |
Incidence rate, per 1000 person years | 9.13 | 10.59 | 10.96 | 12.71 | 13.85 | |
Model 1 | Reference | 1.16 (0.91–1.48) | 1.20 (0.95–1.52) | 1.39 (1.11–1.74) | 1.57 (1.21–1.90) | <0.001 |
Model 2 | Reference | 1.18 (0.93–1.50) | 1.20 (0.95–1.50) | 1.34 (1.07–1.67) | 1.37 (1.10–1.72) | <0.001 |
Model 3 | Reference | 1.16 (0.91–1.48) | 1.17 (0.92–1.47) | 1.30 (1.04–1.63) | 1.38 (1.10–1.74) | <0.001 |
Time-varying | ||||||
Model 1 | Reference | 1.09 (0.99–1.21) | 1.19 (1.08–1.31) | 1.32 (1.20–1.45) | 1.41 (1.28–1.55) | <0.001 |
Model 2 | Reference | 1.08 (0.97–1.20) | 1.15 (1.04–1.27) | 1.26 (1.14–1.38) | 1.36 (1.24–1.50) | <0.001 |
Model 3 | Reference | 1.09 (0.98–1.21) | 1.16 (1.05–1.28) | 1.26 (1.14–1.38) | 1.33 (1.21–1.47) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Chen, S.; Yu, Y.; Li, W.; Xu, Z.; Du, J.; Huang, S.; Wu, S.; Cai, Y. Association between Urine Specific Gravity as a Measure of Hydration Status and Risk of Type 2 Diabetes: The Kailuan Prospective Cohort Study. Nutrients 2024, 16, 1643. https://doi.org/10.3390/nu16111643
Dong Y, Chen S, Yu Y, Li W, Xu Z, Du J, Huang S, Wu S, Cai Y. Association between Urine Specific Gravity as a Measure of Hydration Status and Risk of Type 2 Diabetes: The Kailuan Prospective Cohort Study. Nutrients. 2024; 16(11):1643. https://doi.org/10.3390/nu16111643
Chicago/Turabian StyleDong, Yinqiao, Shuohua Chen, Yaohui Yu, Wenjuan Li, Zhongqing Xu, Juan Du, Shan Huang, Shouling Wu, and Yong Cai. 2024. "Association between Urine Specific Gravity as a Measure of Hydration Status and Risk of Type 2 Diabetes: The Kailuan Prospective Cohort Study" Nutrients 16, no. 11: 1643. https://doi.org/10.3390/nu16111643
APA StyleDong, Y., Chen, S., Yu, Y., Li, W., Xu, Z., Du, J., Huang, S., Wu, S., & Cai, Y. (2024). Association between Urine Specific Gravity as a Measure of Hydration Status and Risk of Type 2 Diabetes: The Kailuan Prospective Cohort Study. Nutrients, 16(11), 1643. https://doi.org/10.3390/nu16111643