Low Protein Diet Reduces Proteinuria and Decline in Glomerular Filtration Rate in Advanced, Heavy Proteinuric Diabetic Kidney Disease
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design
2.2. Selection Criteria
2.3. Intervention
2.4. Parameters and Measurements
2.5. Statistical Analysis
2.6. Ethics
3. Results
3.1. Efficacy Parameters
3.1.1. Estimated Glomerular Filtration Rate
Demographic Characteristics | |
---|---|
Age (years) | 61 (58 to 67) |
Sex (male%) | 66% |
Efficacy parameters | |
Proteinuria (g/g creatinine) | 4.8(4.6 to 5.2) |
eGFR (mL/min) | 11.7 (11.2 to 12.2) |
Mean arterial pressure (mmHg) | 98 (93–102) |
Mean arterial pressure <97 mmHg (%) | 47 |
Nitrogen balance | |
Urea (mg/dL) | 127 (116 to 134) |
Uric acid (mg/dL) | 6.3 (6.2 to 6.4) |
Safety parameters | |
Body mass index (kg/m2) | 27.3 (26.6 to 28.4) |
Subjective global assessment A (%) | 100 |
Serum albumin (g/dL) | 3.9 (3.9 to 4.0) |
C-reactive protein (mg/L) | 13 (12 to 14) |
Glycated hemoglobin (%) | 8.5 (8.4 to 8.7) |
Adherence the diet | |
Estimated protein intake (g/kg/day) | 0.89 (0.85 to 0.95) |
Adherence to protein restriction (%) | 5% |
Therapy | |
RAASi (%) | 85% |
Furosemide (%) | 52% |
Baseline (n = 92) | End of Study (n = 92) | End of Study—Baseline Difference | Sig. | |
---|---|---|---|---|
Efficacy Parameters | ||||
Proteinuria (g/g creatinine) | 5.2 (5.0 to 5.2) | 1.6 (1.5 to 1.7) | −3.5 (−3.7 to −3.7) | <0.0001 |
Slope of proteinuria (g/g per mo.) | −0.3 (−0.32 to −0.28) | |||
eGFR (mL/min) | 12.6 (11.7 to 13.1) | 11 (10.3 to 11.5) | −1.5 (−1.7 to −1.2) | <0.0001 |
Slope of eGFR (mL/min per month) | −0.11 (−0.14 to −0.1) | |||
Mean arterial pressure (mmHg) | 99 (90–109) | 88 (85–88) | −11 (−17 to −7) | 0.0002 |
Mean arterial pressure < 97 mmHg | 47% | 84% | 6.0 (3.1 to 5.3) * | 0.000 |
Safety parameters | ||||
Body mass index (kg/m2) | 27.1 (26.3 to 28.0) | 26.0 (25.1 to 26.8) | −1.2 (−1.6 to −0.7) | 0.004 |
Subjective global assessment A (%) | 100% | 100% | 1(1 to 1) * | 1 |
Serum albumin (g/dL) | 3.9 (3.9 to 4.0) | 4.1 (4.1 to 4.2) | 0.2 (0.1 to 0.3) | <0.0001 |
C-reactive protein (mg/L) | 14 (13 to 14) | 9 (8 to 9) | −4.0 (−6.0 to −4.0) | <0.0001 |
Glycated hemoglobin (%) | 8.1 (8.0 to 8.3) | 8.1 (7.9 to 8.3) | −0.2 (−056 to −0.01) | 0.04 |
Nitrogen balance | ||||
Urea (mg/dL) | 127 (116 to 134) | 145 (133 to 149) | 12 (12 to 15) | <0.0001 |
Uric acid (mg/dL) | 4.4 (4.2 to 4.4) | 4.4 (4.0 to 5.1) | −0.2 (−0.5 to 0.3) | 0.47 |
Mineral-bone disease parameters | ||||
Phosphate (mg/dL) | 7.6 (7.3 to 8.1) | 4.1 (3.6 to 4.6) | −4.1 (−4.6 to −3.6) | <0.0001 |
iPTH (pg/mL) | 548 (537 to 553) | 182 (174 to 195) | −370 (−370 to −370) | <0.0001 |
Adherence the diet | ||||
Estimated protein intake (g/kg/day) | 0.68 (0.67 to 0.69) | 0.64 (0.63 to 0.63) | −0.03 (−0.05 to—0.01) | <0.0001 |
Slope of estimated protein intake (g/kg/day per month) | −0.03 (−0.05 to −0.01) | |||
Adherence to protein restriction (%) | 39% | 64% | 2.9 (1.6 to 3.6) * | <0.0001 |
Estimated energy intake (kcal/kg/day) | 31.3 (30.3 to 32.3) | 30.5 (29.5 to 31.8) | −0.3 (−1.7 to 0.7) | 0.23 |
Adherence to energy intake (%) | 63% | 65% | 1.1 (0.6 to 1.9) * | 0.8 |
Therapy | ||||
RAASi (% patients) | 100% | 75% | 0.01 (0.00 to 0.25) * | 0.003 |
Furosemide (% patients) | 62% | 87% | 4.1 (2.0 to 8.3) * | 0.000 |
3.1.2. Proteinuria
B | SE | Beta | 95% CI | Sig. | ||
---|---|---|---|---|---|---|
(Constant) | 0.00 | 0.04 | −0.09 | 0.09 | 1.000 | |
Mean arterial pressure transformed | 0.20 | 0.05 | 0.20 | 0.11 | 0.29 | 0.000 |
Estimated glomerular filtration rate | 0.19 | 0.04 | 0.19 | 0.10 | 0.28 | 0.000 |
Estimated protein intake | 0.18 | 0.05 | 0.18 | 0.09 | 0.26 | 0.000 |
3.1.3. Nitrogen Balance
3.2. Safety Parameters
3.3. Compliance to the Dietary Intervention
Slope Bs—EOS | Adherence | Median | 95% CI | Difference 95% CI | Sig. | |||
---|---|---|---|---|---|---|---|---|
Proteinuria (g/g-mo) | No | −0.29 | −0.32 | to −0.27 | −0.02 | −0.06 | to 0.02 | 0.30 |
Yes | −0.31 | −0.37 | to −0.27 | |||||
eGFR (mL/min-mo) | No | −0.11 | −0.14 | −0.09 | 0.01 | −0.04 | to 0.06 | 0.55 |
Yes | −0.11 | −0.21 | −0.04 |
4. Discussions
4.1. Efficacy Parameters
4.1.1. Estimated Glomerular Filtration Rate
4.1.2. Proteinuria
4.2. Safety Parameters
4.3. Compliance with the Dietary Intervention
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parving, H.H.; Lewis, J.B.; Ravid, M.; Remuzzi, G.; Hunsicker, L.G. Prevalence and risk factors for microalbuminuria in a referred cohort of type II diabetic patients: A global perspective. Kidney Int. 2006, 69, 2057–2063. [Google Scholar] [CrossRef] [PubMed]
- de Boer, I.H. Temporal Trends in the Prevalence of Diabetic Kidney Disease in the United States. JAMA 2011, 305, 2532. [Google Scholar] [CrossRef] [PubMed]
- Chen, J. Diabetic Nephropathy: Scope of the Problem. In Diabetes and Kidney Disease; Lerma, E.V., Batuman, V., Eds.; Springer: New York, NY, USA, 2014; pp. 9–14. [Google Scholar] [CrossRef]
- Joseph, J.J.; Deedwania, P.; Acharya, T.; Aguilar, D.; Bhatt, D.L.; Chyun, D.A.; Di Palo, K.E.; Golden, S.H.; Sperling, L.S.; American Heart Association Diabetes Committee of the Council on Lifestyle and Cardiometabolic Health; et al. Comprehensive Management of Cardiovascular Risk Factors for Adults with Type 2 Diabetes: A Scientific Statement from the American Heart Association. Circulation 2022, 145, e722–e759. [Google Scholar] [CrossRef]
- Rossing, P.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Khunti, K.; Liew, A.; Michos, E.D.; Navaneethan, S.D.; Olowu, W.A.; et al. KDIGO 2022 Clinical Practice Guideline for Diabetes Management in Chronic Kidney Disease. Kidney Int. 2022, 102, S1–S127. [Google Scholar] [CrossRef] [PubMed]
- Navaneethan, S.D.; Zoungas, S.; Caramori, M.L.; Chan, J.C.; Heerspink, H.J.; Hurst, C.; Liew, A.; Michos, E.D.; Olowu, W.A.; Sadusky, T.; et al. Diabetes Management in Chronic Kidney Disease: Synopsis of the KDIGO 2022 Clinical Practice Guideline Update. Ann. Intern. Med. 2023, 176, 381–387. [Google Scholar] [CrossRef] [PubMed]
- Ikizler, T.A.; Burrowes, J.D.; Byham-Gray, L.D.; Campbell, K.L.; Carrero, J.J.; Chan, W.; Fouque, D.; Friedman, A.N.; Ghaddar, S.; Goldstein-Fuchs, D.J.; et al. KDOQI Clinical Practice Guideline for Nutrition in CKD: 2020 Update. Am. J. Kidney Dis. 2020, 76, S1–S107. [Google Scholar] [CrossRef] [PubMed]
- Yan, B.; Su, X.; Xu, B.; Qiao, X.; Wang, L. Effect of diet protein restriction on progression of chronic kidney disease: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0206134. [Google Scholar] [CrossRef] [PubMed]
- Hahn, D.; Hodson, E.M.; Fouque, D. Low protein diets for non-diabetic adults with chronic kidney disease. Cochrane Database Syst. Rev. 2020, 10, CD001892. [Google Scholar] [CrossRef] [PubMed]
- Ariyanopparut, S.; Metta, K.; Avihingsanon, Y.; Eiam-Ong, S.; Kittiskulnam, P. The role of a low protein diet supplemented with ketoanalogues on kidney progression in pre-dialysis chronic kidney disease patients. Sci. Rep. 2023, 13, 15459. [Google Scholar] [CrossRef]
- Aparicio, M.; Chauveau, P.; Précigout, V.D.; Bouchet, J.L.; Lasseur, C.; Combe, C. Nutrition and Outcome on Renal Replacement Therapy of Patients with Chronic Renal Failure Treated by a Supplemented Very Low Protein Diet. JASN 2000, 11, 708–716. [Google Scholar] [CrossRef]
- Ismail-Beigi, F.; Craven, T.; Banerji, M.A.; Basile, J.; Calles, J.; Cohen, R.M.; Cuddihy, R.; Cushman, W.C.; Genuth, S.; Grimm, R.H.; et al. Effect of intensive treatment of hyperglycaemia on microvascular outcomes in type 2 diabetes: An analysis of the ACCORD randomised trial. Lancet 2010, 376, 419–430. [Google Scholar] [CrossRef] [PubMed]
- Nezu, U.; Kamiyama, H.; Kondo, Y.; Sakuma, M.; Morimoto, T.; Ueda, S. Effect of low-protein diet on kidney function in diabetic nephropathy: Meta-analysis of randomised controlled trials. BMJ Open. 2013, 3, e002934. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Signoriello, S.; Minutolo, R.; Di Iorio, B.; Nazzaro, P.; Garofalo, C.; Calella, P.; Chiodini, P.; De Nicola, L. No additional benefit of prescribing a very low-protein diet in patients with advanced chronic kidney disease under regular nephrology care: A pragmatic, randomized, controlled trial. Am. J. Clin. Nutr. 2022, 115, 1404–1417. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Garofalo, C.; Ferrara, C.; Calella, P. Ketoanalogue Supplementation in Patients with Non-Dialysis Diabetic Kidney Disease: A Systematic Review and Meta-Analysis. Nutrients 2022, 14, 441. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Cupisti, A.; Locatelli, F.; Bolasco, P.; Brunori, G.; Cancarini, G.; Caria, S.; De Nicola, L.; Di Iorio, B.R.; Di Micco, L.; et al. Low-protein diets for chronic kidney disease patients: The Italian experience. BMC Nephrol. 2016, 17, 77. [Google Scholar] [CrossRef] [PubMed]
- Mihalache, A.; Garneata, L.; Mocanu, C.A.; Simionescu, T.P.; Mircescu, G. Low-salt low-protein diet and blood pressure control in patients with advanced diabetic kidney disease and heavy proteinuria. Int. Urol. Nephrol. 2021, 53, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- KDIGO CKD Work Group. KDIGO 2012 Clinical Practice Guideline for the Evaluation and Management of Chronic Kidney Disease. Kidney Int. 2013, 3, 1. [Google Scholar]
- Froissart, M.; Rossert, J.; Jacquot, C.; Paillard, M.; Houillier, P. Predictive Performance of the Modification of Diet in Renal Disease and Cockcroft-Gault Equations for Estimating Renal Function. JASN 2005, 16, 763–773. [Google Scholar] [CrossRef]
- Fontes, D.; Generoso S de, V.; Toulson Davisson Correia, M.I. Subjective global assessment: A reliable nutritional assessment tool to predict outcomes in critically ill patients. Clin. Nutr. 2014, 33, 291–295. [Google Scholar] [CrossRef]
- Mancia, G.; Fagard, R.; Narkiewicz, K.; Redon, J.; Zanchetti, A.; Böhm, M.; Christiaens, T.; Cifkova, R.; De Backer, G.; Dominiczak, A.; et al. 2013 ESH/ESC Guidelines for the management of arterial hypertension: The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). Eur. Heart J. 2013, 34, 2159–2219. [Google Scholar] [CrossRef]
- Maroni, B.J.; Steinman, T.I.; Mitch, W.E. A method for estimating nitrogen intake of patients with chronic renal failure. Kidney Int. 1985, 27, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Garneata, L.; Stancu, A.; Dragomir, D.; Stefan, G.; Mircescu, G. Ketoanalogue-Supplemented Vegetarian Very Low–Protein Diet and CKD Progression. JASN 2016, 27, 2164–2176. [Google Scholar] [CrossRef] [PubMed]
- Menon, V.; Kopple, J.D.; Wang, X.; Beck, G.J.; Collins, A.J.; Kusek, J.W.; Greene, T.; Levey, A.S.; Sarnak, M.J. Effect of a very low-protein diet on outcomes: Long-term follow-up of the Modification of Diet in Renal Disease (MDRD) Study. Am. J. Kidney Dis. 2009, 53, 208–217. [Google Scholar] [CrossRef] [PubMed]
- Giordano, M.; Ciarambino, T.; Castellino, P.; Cataliotti, A.; Malatino, L.; Ferrara, N.; Politi, C.; Paolisso, G. Long-term effects of moderate protein diet on renal function and low-grade inflammation in older adults with type 2 diabetes and chronic kidney disease. Nutrition 2014, 30, 1045–1049. [Google Scholar] [CrossRef] [PubMed]
- Hansen, H.P.; Tauber-Lassen, E.; Jensen, B.R.; Parving, H.H. Effect of dietary protein restriction on prognosis in patients with diabetic nephropathy. Kidney Int. 2002, 62, 220–228. [Google Scholar] [CrossRef] [PubMed]
- Nojima, J.; Meguro, S.; Ohkawa, N.; Furukoshi, M.; Kawai, T.; Itoh, H. One-year eGFR decline rate is a good predictor of prognosis of renal failure in patients with type 2 diabetes. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 2017, 93, 746–754. [Google Scholar] [CrossRef] [PubMed]
- Hoshino, J.; Tsunoda, R.; Nagai, K.; Kai, H.; Saito, C.; Ito, Y.; Asahi, K.; Kondo, M.; Iseki, K.; Iseki, C.; et al. Comparison of annual eGFR decline among primary kidney diseases in patients with CKD G3b-5: Results from a REACH-J CKD cohort study. Clin. Exp. Nephrol. 2021, 25, 902–910. [Google Scholar] [CrossRef] [PubMed]
- Chauveau, P.; Combe, C.; Rigalleau, V.; Vendrely, B.; Aparicio, M. Restricted Protein Diet Is Associated With Decrease in Proteinuria: Consequences on the Progression of Renal Failure. J. Ren. Nutr. 2007, 17, 250–257. [Google Scholar] [CrossRef] [PubMed]
- Heyman, S.N.; Raz, I.; Dwyer, J.P.; Weinberg Sibony, R.; Lewis, J.B.; Abassi, Z. Diabetic Proteinuria Revisited: Updated Physiologic Perspectives. Cells 2022, 11, 2917. [Google Scholar] [CrossRef]
- Barsotti, G. Dietary treatment of diabetic nephropathy with chronic renal failure. Nephrol. Dial. Transplant. 1998, 13, 49–52. [Google Scholar] [CrossRef]
- Li, Q.; Wen, F.; Wang, Y.; Li, S.; Lin, S.; Qi, C.; Chen, Z.; Qiu, X.; Zhang, Y.; Zhang, S.; et al. Diabetic Kidney Disease Benefits from Intensive Low-Protein Diet: Updated Systematic Review and Meta-analysis. Diabetes Ther. 2021, 12, 21–36. [Google Scholar] [CrossRef] [PubMed]
- Kontessis, P.; Jones, S.; Dodds, R.; Trevisan, R.; Nosadini, R.; Fioretto, P.; Borsato, M.; Sacerdoti, D.; Viberti, G. Renal, metabolic and hormonal responses to ingestion of animal and vegetable proteins. Kidney Int. 1990, 38, 136–144. [Google Scholar] [CrossRef] [PubMed]
- Bellizzi, V.; Calella, P.; Hernández, J.N.; González, V.F.; Lira, S.M.; Torraca, S.; Arronte, R.U.; Cirillo, P.; Minutolo, R.; Montúfar Cárdenas, R.A. Safety and effectiveness of low-protein diet supplemented with ketoacids in diabetic patients with chronic kidney disease. BMC Nephrol. 2018, 19, 110. [Google Scholar] [CrossRef] [PubMed]
- Hsu, H.J.; Yen, C.H.; Wu, I.W.; Liu, M.H.; Cheng, H.Y.; Lin, Y.T.; Lee, C.C.; Hsu, K.H.; Sun, C.Y.; Chen, C.Y. The association between low protein diet and body composition, muscle function, inflammation, and amino acid-based metabolic profile in chronic kidney disease stage 3-5 patients. Clin. Nutr. ESPEN 2021, 46, 405–415. [Google Scholar] [CrossRef] [PubMed]
- Piccoli, G.B.; Cederholm, T.; Avesani, C.M.; Bakker, S.J.; Bellizzi, V.; Cuerda, C.; Cupisti, A.; Sabatino, A.; Schneider, S.; Torreggiani, M.; et al. Nutritional status and the risk of malnutrition in older adults with chronic kidney disease-implications for low protein intake and nutritional care: A critical review endorsed by ERN-ERA and ESPEN. Clin. Nutr. 2023, 42, 443–457. [Google Scholar] [CrossRef] [PubMed]
- Khor, B.H.; Tallman, D.A.; Karupaiah, T.; Khosla, P.; Chan, M.; Kopple, J.D. Nutritional Adequacy of Animal-Based and Plant-Based Asian Diets for Chronic Kidney Disease Patients: A Modeling Study. Nutrients 2021, 13, 3341. [Google Scholar] [CrossRef] [PubMed]
- Burstad, K.M.; Cladis, D.P.; Wiese, G.N.; Butler, M.; Hill Gallant, K.M. Effects of Plant-Based Protein Consumption on Kidney Function and Mineral Bone Disorder Outcomes in Adults With Stage 3-5 Chronic Kidney Disease: A Systematic Review. J. Ren. Nutr. 2023, 33, 717–730. [Google Scholar] [CrossRef]
- Istudor, N.; Ion, R.A.; Sponte, M.; Petrescu, I.E. Food Security in Romania—A Modern Approach for Developing Sustainable Agriculture. Sustainability 2014, 6, 8796–8807. [Google Scholar] [CrossRef]
- Ikizler, T.A.; Greene, J.H.; Wingard, R.L.; Parker, R.A.; Hakim, R.M. Spontaneous dietary protein intake during progression of chronic renal failure. JASN 1995, 6, 1386–1391. [Google Scholar] [CrossRef]
- Moore, L.W.; Byham-Gray, L.D.; Parrott, J.S.; Rigassio-Radler, D.; Mandayam, S.; Jones, S.L.; Mitch, W.E.; Gaber, A.O. The mean dietary protein intake at different stages of chronic kidney disease is higher than current guidelines. Kidney Int. 2013, 83, 724–732. [Google Scholar] [CrossRef]
- Koya, D.; Haneda, M.; Inomata, S.; Suzuki, Y.; Suzuki, D.; Makino, H.; Shikata, K.; Murakami, Y.; Tomino, Y.; Yamada, K.; et al. Long-term effect of modification of dietary protein intake on the progression of diabetic nephropathy: A randomised controlled trial. Diabetologia 2009, 52, 2037–2045. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garneata, L.; Mocanu, C.-A.; Simionescu, T.P.; Mocanu, A.E.; Dragomir, D.R.; Mircescu, G. Low Protein Diet Reduces Proteinuria and Decline in Glomerular Filtration Rate in Advanced, Heavy Proteinuric Diabetic Kidney Disease. Nutrients 2024, 16, 1687. https://doi.org/10.3390/nu16111687
Garneata L, Mocanu C-A, Simionescu TP, Mocanu AE, Dragomir DR, Mircescu G. Low Protein Diet Reduces Proteinuria and Decline in Glomerular Filtration Rate in Advanced, Heavy Proteinuric Diabetic Kidney Disease. Nutrients. 2024; 16(11):1687. https://doi.org/10.3390/nu16111687
Chicago/Turabian StyleGarneata, Liliana, Carmen-Antonia Mocanu, Tudor Petrisor Simionescu, Andreea Elena Mocanu, Diana Ramona Dragomir, and Gabriel Mircescu. 2024. "Low Protein Diet Reduces Proteinuria and Decline in Glomerular Filtration Rate in Advanced, Heavy Proteinuric Diabetic Kidney Disease" Nutrients 16, no. 11: 1687. https://doi.org/10.3390/nu16111687
APA StyleGarneata, L., Mocanu, C. -A., Simionescu, T. P., Mocanu, A. E., Dragomir, D. R., & Mircescu, G. (2024). Low Protein Diet Reduces Proteinuria and Decline in Glomerular Filtration Rate in Advanced, Heavy Proteinuric Diabetic Kidney Disease. Nutrients, 16(11), 1687. https://doi.org/10.3390/nu16111687