Effect of Postbiotics Derived from Lactobacillus rhamnosus PB01 (DSM 14870) on Sperm Quality: A Prospective In Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethical Approval
2.2. Study Population
2.3. Preparation of Postbiotics
2.4. Semen Collection and Experimental Protocols
2.4.1. Motility and Kinematic Parameters
2.4.2. Sperm DNA Fragmentation Index (DFI)
2.4.3. Morphology
2.5. Statistical Analysis
3. Results
3.1. Seminal Parameters in Donor Samples
3.2. The Effect of Different Postbiotic Doses on Sperm Motility
3.3. The Effect of Different Postbiotic Doses on Kinematic Parameters
3.4. The Effect of Different Postbiotic Doses on Sperm DNA Fragmentation Index
3.5. The Effect of Different Postbiotic Doses on Sperm Morphology
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Petrova, M.I.; Lievens, E.; Malik, S.; Imholz, N.; Lebeer, S. Lactobacillus Species as Biomarkers and Agents That Can Promote Various Aspects of Vaginal Health. Front. Physiol. 2015, 6, 129628. [Google Scholar] [CrossRef] [PubMed]
- Ravel, J.; Gajer, P.; Abdo, Z.; Schneider, G.M.; Koenig, S.S.K.; McCulle, S.L.; Karlebach, S.; Gorle, R.; Russell, J.; Tacket, C.O.; et al. Vaginal Microbiome of Reproductive-Age Women. Proc. Natl. Acad. Sci. USA 2011, 108, 4680–4687. [Google Scholar] [CrossRef] [PubMed]
- Gajer, P.; Brotman, R.M.; Bai, G.; Sakamoto, J.; Schütte, U.M.E.; Zhong, X.; Koenig, S.S.K.; Fu, L.; Ma, Z.; Zhou, X.; et al. Temporal Dynamics of the Human Vaginal Microbiota. Sci. Transl. Med. 2012, 4, 132ra52. [Google Scholar] [CrossRef] [PubMed]
- Barrientos-Durán, A.; Fuentes-López, A.; de Salazar, A.; Plaza-Díaz, J.; García, F. Reviewing the Composition of Vaginal Microbiota: Inclusion of Nutrition and Probiotic Factors in the Maintenance of Eubiosis. Nutrients 2020, 12, 419. [Google Scholar] [CrossRef] [PubMed]
- Donders, G.G.G.; Bosmans, E.; Dekeersmaeckerb, A.; Vereecken, A.; Van Bulck, B.; Spitz, B. Pathogenesis of Abnormal Vaginal Bacterial Flora. Am. J. Obs. Gynecol. 2000, 182, 872–878. [Google Scholar] [CrossRef]
- Wiesenfeld, H.C.; Hillier, S.L.; Krohn, M.A.; Landers, D.V.; Sweet, R.L. Bacterial Vaginosis Is a Strong Predictor of Neisseria gonorrhoeae and Chlamydia trachomatis Infection. Clin. Infect. Dis. 2003, 36, 663–668. [Google Scholar] [CrossRef] [PubMed]
- Younes, J.A.; Lievens, E.; Hummelen, R.; van der Westen, R.; Reid, G.; Petrova, M.I. Women and Their Microbes: The Unexpected Friendship. Trends Microbiol. 2018, 26, 16–32. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Lv, J.; Pan, L.; Zhang, Y. Roles and Applications of Probiotic Lactobacillus Strains. Appl. Microbiol. Biotechnol. 2018, 102, 8135–8143. [Google Scholar] [CrossRef] [PubMed]
- Valenti, P.; Rosa, L.; Capobianco, D.; Lepanto, M.S.; Schiavi, E.; Cutone, A.; Paesano, R.; Mastromarino, P. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front. Immunol. 2018, 9, 338405. [Google Scholar] [CrossRef]
- Aroutcheva, A.; Gariti, D.; Simon, M.; Shott, S.; Faro, J.; Simoes, J.A.; Gurguis, A.; Faro, S. Defense Factors of Vaginal Lactobacilli. Am. J. Obs. Gynecol. 2001, 185, 375–379. [Google Scholar] [CrossRef]
- Delgado-Diaz, D.J.; Jesaveluk, B.; Hayward, J.A.; Tyssen, D.; Alisoltani, A.; Potgieter, M.; Bell, L.; Ross, E.; Iranzadeh, A.; Allali, I.; et al. Lactic Acid from Vaginal Microbiota Enhances Cervicovaginal Epithelial Barrier Integrity by Promoting Tight Junction Protein Expression. Microbiome 2022, 10, 141. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.; Tsui, K.; Chiu, Y.; Wang, L. Adverse Effect of Lactobacilli-depauperate Cervicovaginal Microbiota on Pregnancy Outcomes in Women Undergoing Frozen–Thawed Embryo Transfer. Reprod. Med. Biol. 2023, 22, e12495. [Google Scholar] [CrossRef] [PubMed]
- Fettweis, J.M.; Serrano, M.G.; Brooks, J.P.; Edwards, D.J.; Girerd, P.H.; Parikh, H.I.; Huang, B.; Arodz, T.J.; Edupuganti, L.; Glascock, A.L.; et al. The Vaginal Microbiome and Preterm Birth. Nat. Med. 2019, 25, 1012–1021. [Google Scholar] [CrossRef] [PubMed]
- Aslam, B.; Khurshid, M.; Arshad, M.I.; Muzammil, S.; Rasool, M.; Yasmeen, N.; Shah, T.; Chaudhry, T.H.; Rasool, M.H.; Shahid, A.; et al. Antibiotic Resistance: One Health One World Outlook. Front. Cell Infect. Microbiol. 2021, 11, 771510. [Google Scholar] [CrossRef] [PubMed]
- Nataraj, B.H.; Mallappa, R.H. Antibiotic Resistance Crisis: An Update on Antagonistic Interactions between Probiotics and Methicillin-Resistant Staphylococcus Aureus (MRSA). Curr. Microbiol. 2021, 78, 2194–2211. [Google Scholar] [CrossRef] [PubMed]
- Elshaghabee, F.M.F.; Rokana, N. Mitigation of Antibiotic Resistance Using Probiotics, Prebiotics and Synbiotics. A Review. Env. Chem. Lett. 2022, 20, 1295–1308. [Google Scholar] [CrossRef]
- Kesmodel, U.S.; Dardmeh, F.; Alipour, H. Probiotics in Obstetrics and Gynecology—Where Is the Future? Acta Obs. Gynecol. Scand. 2021, 100, 1547–1548. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Zhang, W.; Feng, C.; Kwok, L.-Y.; He, Q.; Sun, Z. Stronger Gut Microbiome Modulatory Effects by Postbiotics than Probiotics in a Mouse Colitis Model. NPJ Sci. Food 2022, 6, 53. [Google Scholar] [CrossRef] [PubMed]
- Suez, J.; Zmora, N.; Segal, E.; Elinav, E. The Pros, Cons, and Many Unknowns of Probiotics. Nat. Med. 2019, 25, 716–729. [Google Scholar] [CrossRef]
- Salminen, S.; Collado, M.C.; Endo, A.; Hill, C.; Lebeer, S.; Quigley, E.M.M.; Sanders, M.E.; Shamir, R.; Swann, J.R.; Szajewska, H.; et al. The International Scientific Association of Probiotics and Prebiotics (ISAPP) Consensus Statement on the Definition and Scope of Postbiotics. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 649–667. [Google Scholar] [CrossRef]
- Nataraj, B.H.; Ali, S.A.; Behare, P.V.; Yadav, H. Postbiotics-Parabiotics: The New Horizons in Microbial Biotherapy and Functional Foods. Microb. Cell Fact. 2020, 19, 168. [Google Scholar] [CrossRef] [PubMed]
- Żółkiewicz, J.; Marzec, A.; Ruszczyński, M.; Feleszko, W. Postbiotics—A Step Beyond Pre- and Probiotics. Nutrients 2020, 12, 2189. [Google Scholar] [CrossRef]
- Tachedjian, G.; Aldunate, M.; Bradshaw, C.S.; Cone, R.A. The Role of Lactic Acid Production by Probiotic Lactobacillus Species in Vaginal Health. Res. Microbiol. 2017, 168, 782–792. [Google Scholar] [CrossRef]
- Abbasi, A.; Aghebati-Maleki, L.; Homayouni-Rad, A. The Promising Biological Role of Postbiotics Derived from Probiotic Lactobacillus Species in Reproductive Health. Crit. Rev. Food Sci. Nutr. 2022, 62, 8829–8841. [Google Scholar] [CrossRef] [PubMed]
- Abramov, V.; Khlebnikov, V.; Kosarev, I.; Bairamova, G.; Vasilenko, R.; Suzina, N.; Machulin, A.; Sakulin, V.; Kulikova, N.; Vasilenko, N.; et al. Probiotic Properties of Lactobacillus Crispatus 2029: Homeostatic Interaction with Cervicovaginal Epithelial Cells and Antagonistic Activity to Genitourinary Pathogens. Probiotics Antimicrob. Proteins 2014, 6, 165–176. [Google Scholar] [CrossRef]
- Croatti, V.; Parolin, C.; Giordani, B.; Foschi, C.; Fedi, S.; Vitali, B. Lactobacilli Extracellular Vesicles: Potential Postbiotics to Support the Vaginal Microbiota Homeostasis. Microb. Cell Fact. 2022, 21, 237. [Google Scholar] [CrossRef]
- Shen, X.; Xu, L.; Zhang, Z.; Yang, Y.; Li, P.; Ma, T.; Guo, S.; Kwok, L.-Y.; Sun, Z. Postbiotic Gel Relieves Clinical Symptoms of Bacterial Vaginitis by Regulating the Vaginal Microbiota. Front. Cell Infect. Microbiol. 2023, 13, 1114364. [Google Scholar] [CrossRef]
- Romero, R.; Hassan, S.S.; Gajer, P.; Tarca, A.L.; Fadrosh, D.W.; Nikita, L.; Galuppi, M.; Lamont, R.F.; Chaemsaithong, P.; Miranda, J.; et al. The Composition and Stability of the Vaginal Microbiota of Normal Pregnant Women Is Different from That of Non-Pregnant Women. Microbiome 2014, 2, 4. [Google Scholar] [CrossRef] [PubMed]
- Sellami, H.; Znazen, A.; Sellami, A.; Mnif, H.; Louati, N.; Ben Zarrouk, S.; Keskes, L.; Rebai, T.; Gdoura, R.; Hammami, A. Molecular Detection of Chlamydia Trachomatis and Other Sexually Transmitted Bacteria in Semen of Male Partners of Infertile Couples in Tunisia: The Effect on Semen Parameters and Spermatozoa Apoptosis Markers. PLoS ONE 2014, 9, e98903. [Google Scholar] [CrossRef]
- Wang, H.; Chen, T.; Chen, Y.; Luo, T.; Tan, B.; Chen, H.; Xin, H. Evaluation of the Inhibitory Effects of Vaginal Microorganisms on Sperm Motility in Vitro. Exp. Ther. Med. 2019, 19, 535–544. [Google Scholar] [CrossRef]
- Suarez, S.S.; Pacey, A.A. Sperm Transport in the Female Reproductive Tract. Hum. Reprod. Update 2006, 12, 23–37. [Google Scholar] [CrossRef] [PubMed]
- Zhang, F.; Dai, J.; Chen, T. Role of Lactobacillus in Female Infertility Via Modulating Sperm Agglutination and Immobilization. Front. Cell Infect. Microbiol. 2021, 10, 620529. [Google Scholar] [CrossRef]
- Barbăroșie, C.; Agarwal, A.; Henkel, R. Diagnostic Value of Advanced Semen Analysis in Evaluation of Male Infertility. Andrologia 2021, 53, e13625. [Google Scholar] [CrossRef]
- Agarwal, A.; Bui, A.D. Oxidation-Reduction Potential as a New Marker for Oxidative Stress: Correlation to Male Infertility. Investig. Clin. Urol. 2017, 58, 385. [Google Scholar] [CrossRef]
- Hamada, A.; Esteves, S.C.; Agarwal, A. Unexplained Male Infertility. Hum. Androl. 2011, 1, 2–16. [Google Scholar] [CrossRef]
- Rasmussen, J.M.K.; Dalgaard, M.I.R.; Alipour, H.; Dardmeh, F.; Christiansen, O.B. Seminal Oxidative Stress and Sperm DNA Fragmentation in Men from Couples with Infertility or Unexplained Recurrent Pregnancy Loss. J. Clin. Med. 2024, 13, 833. [Google Scholar] [CrossRef]
- Zheng, W.-W.; Song, G.; Wang, Q.-L.; Liu, S.-W.; Zhu, X.-L.; Deng, S.-M.; Zhong, A.; Tan, Y.-M.; Tan, Y. Sperm DNA Damage Has a Negative Effect on Early Embryonic Development Following in Vitro Fertilization. Asian J. Androl. 2018, 20, 75. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.E.M.; Aitken, R.J. DNA Damage to Spermatozoa Has Impacts on Fertilization and Pregnancy. Cell Tissue Res. 2005, 322, 33–41. [Google Scholar] [CrossRef]
- Lu, J.C.; Jing, J.; Chen, L.; Ge, Y.F.; Feng, R.X.; Liang, Y.J.; Yao, B. Analysis of Human Sperm DNA Fragmentation Index (DFI) Related Factors: A Report of 1010 Subfertile Men in China. Reprod. Biol. Endocrinol. 2018, 16, 23. [Google Scholar] [CrossRef]
- Yang, H.; Li, G.; Jin, H.; Guo, Y.; Sun, Y. The Effect of Sperm DNA Fragmentation Index on Assisted Reproductive Technology Outcomes and Its Relationship with Semen Parameters and Lifestyle. Transl. Androl. Urol. 2019, 8, 356–365. [Google Scholar] [CrossRef] [PubMed]
- Okubo, T.; Onda, N.; Hayashi, T.; Kobayashi, T.; Omi, K.; Segawa, T. Performing a Sperm DNA Fragmentation Test in Addition to Semen Examination Based on the WHO Criteria Can Be a More Accurate Diagnosis of IVF Outcomes. BMC Urol. 2023, 23, 78. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 5th ed.; World Health Organization: Geneva, Switzerland, 2010; ISBN 9789241547789.
- Dardmeh, F.; Alipour, H.; Nielsen, H.I.; Rasmussen, S.; Gazerani, P. Effects of Chronic Musculoskeletal Pain on Fertility Potential in Lean and Overweight Male Patients. Pain. Res. Manag. 2017, 2017, 4628627. [Google Scholar] [CrossRef]
- Dardmeh, F.; Heidari, M.; Alipour, H. Comparison of Commercially Available Chamber Slides for Computer-Aided Analysis of Human Sperm. Syst. Biol. Reprod. Med. 2021, 67, 168–175. [Google Scholar] [CrossRef] [PubMed]
- Alipour, H.; Van Der Horst, G.; Christiansen, O.B.; Dardmeh, F.; Jørgensen, N.; Nielsen, H.I.; Hnida, C. Improved Sperm Kinematics in Semen Samples Collected after 2 h versus 4–7 Days of Ejaculation Abstinence. Hum. Reprod. 2017, 32, 1364–1372. [Google Scholar] [CrossRef]
- Fernández, J.L.; Muriel, L.; Goyanes, V.; Segrelles, E.; Gosálvez, J.; Enciso, M.; LaFromboise, M.; De Jonge, C. Simple Determination of Human Sperm DNA Fragmentation with an Improved Sperm Chromatin Dispersion Test. Fertil. Steril. 2005, 84, 833–842. [Google Scholar] [CrossRef]
- Van Der Horst, G.; Maree, L. SpermBlue®: A New Universal Stain for Human and Animal Sperm Which Is Also Amenable to Automated Sperm Morphology Analysis. Biotech. Histochem. 2010, 84, 299–308. [Google Scholar] [CrossRef]
- Cuevas-González, P.F.; Liceaga, A.M.; Aguilar-Toalá, J.E. Postbiotics and Paraprobiotics: From Concepts to Applications. Food Res. Int. 2020, 136, 109502. [Google Scholar] [CrossRef]
- Godley, M.J. Quantitation of Vaginal Discharge in Healthy Volunteers. BJOG 1985, 92, 739–742. [Google Scholar] [CrossRef]
- Bourebaba, Y.; Marycz, K.; Mularczyk, M.; Bourebaba, L. Postbiotics as Potential New Therapeutic Agents for Metabolic Disorders Management. Biomed. Pharmacother. 2022, 153, 113138. [Google Scholar] [CrossRef]
- Aguilar-Toalá, J.E.; Garcia-Varela, R.; Garcia, H.S.; Mata-Haro, V.; González-Córdova, A.F.; Vallejo-Cordoba, B.; Hernández-Mendoza, A. Postbiotics: An Evolving Term within the Functional Foods Field. Trends Food Sci. Technol. 2018, 75, 105–114. [Google Scholar] [CrossRef]
- Fernández-López, P.; Garriga, J.; Casas, I.; Yeste, M.; Bartumeus, F. Predicting Fertility from Sperm Motility Landscapes. Commun. Biol. 2022, 5, 1027. [Google Scholar] [CrossRef]
- World Health Organization. WHO Laboratory Manual for the Examination and Processing of Human Semen, 6th ed.; World Health Organization, Department of Reproductive Health and Research: Geneva, Switzerland, 2021.
- Simon, L.; Lewis, S.E.M. Sperm DNA Damage or Progressive Motility: Which One Is the Better Predictor of Fertilization in Vitro? Syst. Biol. Reprod. Med. 2011, 57, 133–138. [Google Scholar] [CrossRef] [PubMed]
- Vogiatzi, P.; Pouliakis, A.; Sakellariou, M.; Athanasiou, A.; Athanasiou, A.; Colaghis, A.; Finelli, R.; Loutradis, D.; Henkel, R.; Agarwal, A. Male Age and Progressive Sperm Motility Are Critical Factors Affecting Embryological and Clinical Outcomes in Oocyte Donor ICSI Cycles. Reprod. Sci. 2022, 29, 883–895. [Google Scholar] [CrossRef]
- Brannigan, R.E.; Lipshultz, L.I. Sperm Transport and Capacitation. Glob. Libr. Women’s Med. 2008. [Google Scholar] [CrossRef]
- Answal, M.; Prabha, V. Escherichia Coli Recombinant Sperm Immobilizing Factor RecX as a Potential Vaginal Contraceptive. Reprod. Biol. Endocrinol. 2018, 16, 88. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Wei, K.; He, X.; Zhang, L.; Liu, Z.; Wei, J.; Chen, X.; Wei, H.; Chen, T. Vaginal Probiotic Lactobacillus Crispatus Seems to Inhibit Sperm Activity and Subsequently Reduces Pregnancies in Rat. Front. Cell Dev. Biol. 2021, 9, 705690. [Google Scholar] [CrossRef]
- Finkelstein, M.; Etkovitz, N.; Breitbart, H. Ca2+ Signaling in Mammalian Spermatozoa. Mol. Cell Endocrinol. 2020, 516, 110953. [Google Scholar] [CrossRef] [PubMed]
- Quill, T.A.; Sugden, S.A.; Rossi, K.L.; Doolittle, L.K.; Hammer, R.E.; Garbers, D.L. Hyperactivated Sperm Motility Driven by CatSper2 Is Required for Fertilization. Proc. Natl. Acad. Sci. USA 2003, 100, 14869–14874. [Google Scholar] [CrossRef]
- Fujita, Y.; Mihara, T.; Okazaki, T.; Shitanaka, M.; Kushino, R.; Ikeda, C.; Negishi, H.; Liu, Z.; Richards, J.S.; Shimada, M. Toll-like Receptors (TLR) 2 and 4 on Human Sperm Recognize Bacterial Endotoxins and Mediate Apoptosis. Hum. Reprod. 2011, 26, 2799–2806. [Google Scholar] [CrossRef]
- Chapot-Chartier, M.-P.; Kulakauskas, S. Cell Wall Structure and Function in Lactic Acid Bacteria. Microb. Cell Fact. 2014, 13, S9. [Google Scholar] [CrossRef]
- Borges, S.; Silva, J.; Teixeira, P. The Role of Lactobacilli and Probiotics in Maintaining Vaginal Health. Arch. Gynecol. Obs. 2014, 289, 479–489. [Google Scholar] [CrossRef] [PubMed]
- Dardmeh, F.; Alipour, H.; Gazerani, P.; van der Horst, G.; Brandsborg, E.; Nielsen, H.I. Lactobacillus Rhamnosus PB01 (DSM 14870) Supplementation Affects Markers of Sperm Kinematic Parameters in a Diet-Induced Obesity Mice Model. PLoS ONE 2017, 12, e0185964. [Google Scholar] [CrossRef] [PubMed]
- Rahimiyan-Heravan, M.; Roshangar, L.; Karimi, P.; Sefidgari-Abrasi, S.; Morshedi, M.; Saghafi-Asl, M.; Bavafa-Valenlia, K. The Potential Therapeutic Effects of Lactobacillus Plantarum and Inulin on Serum and Testicular Reproductive Markers in Diabetic Male Rats. Diabetol. Metab. Syndr. 2020, 12, 53. [Google Scholar] [CrossRef] [PubMed]
- Helli, B.; Kavianpour, M.; Ghaedi, E.; Dadfar, M.; Haghighian, H.K. Probiotic Effects on Sperm Parameters, Oxidative Stress Index, Inflammatory Factors and Sex Hormones in Infertile Men. Hum. Fertil. 2022, 25, 499–507. [Google Scholar] [CrossRef] [PubMed]
- Akram, M.; Ali, S.A.; Kaul, G. Probiotic and Prebiotic Supplementation Ameliorates Chronic Restraint Stress-Induced Male Reproductive Dysfunction. Food Funct. 2023, 14, 8558–8574. [Google Scholar] [CrossRef]
- Díaz Cano, J.V.; Argente, M.-J.; García, M.-L. Effect of Postbiotic Based on Lactic Acid Bacteria on Semen Quality and Health of Male Rabbits. Animals 2021, 11, 1007. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Li, W.; Challis, J.R.G.; Reid, G.; Kim, S.O.; Bocking, A.D. Probiotic Lactobacillus Rhamnosus GR-1 Supernatant Prevents Lipopolysaccharide-Induced Preterm Birth and Reduces Inflammation in Pregnant CD-1 Mice. Am. J. Obs. Gynecol. 2014, 211, 44.e1–44.e12. [Google Scholar] [CrossRef] [PubMed]
- Hanson, L.; VandeVusse, L.; Jermé, M.; Abad, C.L.; Safdar, N. Probiotics for Treatment and Prevention of Urogenital Infections in Women: A Systematic Review. J. Midwifery Womens Health 2016, 61, 339–355. [Google Scholar] [CrossRef] [PubMed]
- González-Marín, C.; Gosálvez, J.; Roy, R. Types, Causes, Detection and Repair of DNA Fragmentation in Animal and Human Sperm Cells. Int. J. Mol. Sci. 2012, 13, 14026–14052. [Google Scholar] [CrossRef]
- Har-Vardi, I.; Mali, R.; Breietman, M.; Sonin, Y.; Albotiano, S.; Levitas, E.; Potashnik, G.; Priel, E. DNA Topoisomerases I and II in Human Mature Sperm Cells: Characterization and Unique Properties. Hum. Reprod. 2007, 22, 2183–2189. [Google Scholar] [CrossRef]
- Tvrdá, E.; Arroyo, F.; Gosálvez, J. Dynamic Assessment of Human Sperm DNA Damage I: The Effect of Seminal Plasma-Sperm Co-Incubation after Ejaculation. Int. Urol. Nephrol. 2018, 50, 1381–1388. [Google Scholar] [CrossRef]
- Bungum, M. Sperm DNA Integrity Assessment: A New Tool in Diagnosis and Treatment of Fertility. Obs. Gynecol. Int. 2012, 2012, 531042. [Google Scholar] [CrossRef] [PubMed]
- Ribas-Maynou, J.; Novo, S.; Torres, M.; Salas-Huetos, A.; Rovira, S.; Antich, M.; Yeste, M. Sperm DNA Integrity Does Play a Crucial Role for Embryo Development after ICSI, Notably When Good-Quality Oocytes from Young Donors Are Used. Biol. Res. 2022, 55, 41. [Google Scholar] [CrossRef]
- Sabbaghian, M.; Hosseinifar, H.; Rafaee, A.; Gilani, M.S. Assessment of the Impact Induced by Different Incubation Time, Storage Time, Storage Medium and Thawing Methods on Sperm DNA Fragmentation Assay: A before–after Study. J. Hum. Reprod. Sci. 2022, 15, 377. [Google Scholar] [CrossRef] [PubMed]
- Corbett, G.; Crosby, D.; McAuliffe, F. Probiotic Therapy in Couples with Infertility: A Systematic Review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2021, 256, 95–100. [Google Scholar] [CrossRef]
- Valcarce, D.G.; Genovés, S.; Riesco, M.F.; Martorell, P.; Herráez, M.P.; Ramón, D.; Robles, V. Probiotic Administration Improves Sperm Quality in Asthenozoospermic Human Donors. Benef. Microbes 2017, 8, 193–206. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Agarwal, A. Spermatogenesis: An Overview. In Sperm Chromatin; Springer: New York, NY, USA, 2011; pp. 19–44. [Google Scholar]
- Ramu, S.; Jeyendran, R.S. The Hypo-Osmotic Swelling Test for Evaluation of Sperm Membrane Integrity. Spermatogenesis Methods Protoc. 2013, 927, 21–25. [Google Scholar]
- Feng, T.; Liu, Y. Microorganisms in the Reproductive System and Probiotic’s Regulatory Effects on Reproductive Health. Comput. Struct. Biotechnol. J. 2022, 20, 1541–1553. [Google Scholar] [CrossRef]
Parameter/Unit | Description of the Parameter |
---|---|
Motility categories | |
PR (%) | Spermatozoa move actively, linearly or in a large circle, regardless of speed |
NP (%) | All other patterns of motility with an absence of progression |
IM (%) | No movement |
Kinematic parameters | |
VCL (μm/s) | Curvilinear velocity along the actual swimming path |
VSL (μm/s) | Straight-line velocity along shortest path from start to end point |
VAP (μm/s) | Average path velocity based on every 11th frame of VCL path |
LIN (%) | Linearity of a curvilinear path expressed as VSL/VCL |
STR (%) | Straightness expressed as VSL/VAP |
WOB (%) | Oscillation index expressed as VSL/VAP |
ALH (μm) | Amplitude of lateral head displacement |
BCF (Hz) | Beat cross-frequency based on VCL crossing VAP per second |
Hyperactivated (%) | 150 < VCL (μm/s) < 500; Lin (%) < 50%; ALH (μm) > 3.5 * |
Parameter | Median (25–75 Percentiles) |
---|---|
Seminal characteristics | |
Volume (mL) | 3.47 (2.57–5.05) |
Concentration (M/mL) | 50.8 (32.1–62.31) |
Motile sperm (%) | f80.72 (62.25–89.23) |
Motility categorization (WHO 5 criteria) | |
PR % | 58.63 (40.62–66.68) |
NP % | 20.39 (18.17–26.1) |
IM % | 19.28 (10.77–37.75) |
Kinematic details | |
VCL | 40.38 (34.36–46.55) |
VAP | 25.22 (21.74–28.57) |
VSL | 15.86 (14.99–19.48) |
STR | 63.43 (60.32–66.45) |
LIN | 40.65 (35.74–43.13) |
WOB | 62.66 (58.88–63.68) |
ALH | 1.97 (1.82–2.33) |
BCF | 6.18 (5.51–6.86) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, S.; Alipour, H.; Zachar, V.; Kesmodel, U.S.; Dardmeh, F. Effect of Postbiotics Derived from Lactobacillus rhamnosus PB01 (DSM 14870) on Sperm Quality: A Prospective In Vitro Study. Nutrients 2024, 16, 1781. https://doi.org/10.3390/nu16111781
Liu S, Alipour H, Zachar V, Kesmodel US, Dardmeh F. Effect of Postbiotics Derived from Lactobacillus rhamnosus PB01 (DSM 14870) on Sperm Quality: A Prospective In Vitro Study. Nutrients. 2024; 16(11):1781. https://doi.org/10.3390/nu16111781
Chicago/Turabian StyleLiu, Sihan, Hiva Alipour, Vladimir Zachar, Ulrik Schiøler Kesmodel, and Fereshteh Dardmeh. 2024. "Effect of Postbiotics Derived from Lactobacillus rhamnosus PB01 (DSM 14870) on Sperm Quality: A Prospective In Vitro Study" Nutrients 16, no. 11: 1781. https://doi.org/10.3390/nu16111781
APA StyleLiu, S., Alipour, H., Zachar, V., Kesmodel, U. S., & Dardmeh, F. (2024). Effect of Postbiotics Derived from Lactobacillus rhamnosus PB01 (DSM 14870) on Sperm Quality: A Prospective In Vitro Study. Nutrients, 16(11), 1781. https://doi.org/10.3390/nu16111781