Protein Requirements for Maximal Muscle Mass and Athletic Performance Are Achieved with Completely Plant-Based Diets Scaled to Meet Energy Needs: A Modeling Study in Professional American Football Players
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Energy Requirements
3.2. Protein Requirements and Levels
3.3. Leucine Levels
3.4. Other Macronutrients
3.5. Key Micronutrients
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Long, D.C.; Perry, S.A.; Lewis, U.N.; Stanek-Krogstrand, K. Personal food systems of male collegiate football players: A grounded theory investigation. J. Athl. Train. 2011, 46, 688–695. [Google Scholar] [CrossRef] [PubMed]
- Shoshan, T.; Post, E. Prevalence of protein and pre-workout supplement use among high school football players and potential product contamination. Glob. Pediatr. Health 2021, 8, 2333794x211031202. [Google Scholar] [CrossRef] [PubMed]
- Jonnalagadda, S.S.; Rosenbloom, C.A.; Skinner, R. Dietary practices, attitudes, and physiological status of collegiate freshman football players. J. Strength Cond. Res. 2001, 15, 507–513. [Google Scholar]
- Heaney, S.; O’Connor, H.; Michael, S.; Gifford, J.; Naughton, G. Nutrition knowledge in athletes: A systematic review. Int. J. Sport. Nutr. Exerc. Metab. 2011, 21, 248–261. [Google Scholar] [CrossRef] [PubMed]
- Güneşliol, B.; Baş, M. Evaluation of dietary intake and body composition of collegiate American football players. Prog. Nutr. 2021, 23, 11548. [Google Scholar]
- Cole, C.R.; Salvaterra, G.F.; Davis, J.E., Jr.; Borja, M.E.; Powell, L.M.; Dubbs, E.C.; Bordi, P.L. Evaluation of dietary practices of National Collegiate Athletic Association Division I football players. J. Strength Cond. Res. 2005, 19, 490–494. [Google Scholar] [CrossRef] [PubMed]
- Jäger, R.; Kerksick, C.M.; Campbell, B.I.; Cribb, P.J.; Wells, S.D.; Skwiat, T.M.; Purpura, M.; Ziegenfuss, T.N.; Ferrando, A.A.; Arent, S.M.; et al. International Society of Sports Nutrition Position Stand: Protein and exercise. J. Int. Soc. Sport. Nutr. 2017, 14, 20. [Google Scholar] [CrossRef] [PubMed]
- Pryor, J.L.; Huggins, R.A.; Casa, D.J.; Palmieri, G.A.; Kraemer, W.J.; Maresh, C.M. A profile of a National Football League team. J. Strength Cond. Res. 2014, 28, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Pincivero, D.M.; Bompa, T.O. A physiological review of American football. Sport. Med. 1997, 23, 247–260. [Google Scholar] [CrossRef]
- Berning, J.R. Fueling a football team. Sports Sci. Exch. 2015, 28, 1–7. [Google Scholar]
- Abbey, E.L.; Wright, C.J.; Kirkpatrick, C.M. Nutrition practices and knowledge among NCAA Division III football players. J. Int. Soc. Sport. Nutr. 2017, 14, 13. [Google Scholar] [CrossRef]
- Smarkusz, J.; Zapolska, J.; Witczak-Sawczuk, K.; Ostrowska, L. Characteristics of a diet and supplementation of American football team players: Following a fashionable trend or a balanced diet? Rocz. Panstw. Zakl. Hig. 2019, 70, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Mroczek, A.; Kaczorowska, A.; Lepsy, E. Assessment of selected body composition parameters and nutritional habits of American football players in Poland: A prospective and observational study. Pomeranian J. Life Sci. 2021, 67, 51–57. [Google Scholar]
- Nguyen, V.T.; Zafonte, R.D.; Chen, J.T.; Kponee-Shovein, K.Z.; Paganoni, S.; Pascual-Leone, A.; Speizer, F.E.; Baggish, A.L.; Taylor, H.A., Jr.; Nadler, L.M.; et al. Mortality among professional American-style football players and professional American baseball players. JAMA Netw. Open 2019, 2, e194223. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.X.; Shen, P. Associations of dietary protein intake with all-cause, cardiovascular disease, and cancer mortality: A systematic review and meta-analysis of cohort studies. Nutr. Metab. Cardiovasc. Dis. 2020, 30, 1094–1105. [Google Scholar] [CrossRef] [PubMed]
- Naghshi, S.; Sadeghi, O.; Willett, W.C.; Esmaillzadeh, A. Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: Systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 2020, 370, m2412. [Google Scholar] [CrossRef] [PubMed]
- Zhong, V.W.; Allen, N.B.; Greenland, P.; Carnethon, M.R.; Ning, H.; Wilkins, J.T.; Lloyd-Jones, D.M.; Van Horn, L. Protein foods from animal sources, incident cardiovascular disease and all-cause mortality: A substitution analysis. Int. J. Epidemiol. 2021, 50, 223–233. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Liao, L.M.; Weinstein, S.J.; Sinha, R.; Graubard, B.I.; Albanes, D. Association between plant and animal protein intake and overall and cause-specific mortality. JAMA Intern. Med. 2020, 180, 1173–1184. [Google Scholar] [CrossRef] [PubMed]
- Neuenschwander, M.; Stadelmaier, J.; Eble, J.; Grummich, K.; Szczerba, E.; Kiesswetter, E.; Schlesinger, S.; Schwingshackl, L. Substitution of animal-based with plant-based foods on cardiometabolic health and all-cause mortality: A systematic review and meta-analysis of prospective studies. BMC Med. 2023, 21, 404. [Google Scholar] [CrossRef]
- Cara, K.C.; Goldman, D.M.; Kollman, B.K.; Amato, S.S.; Tull, M.D.; Karlsen, M.C. Commonalities among dietary recommendations from 2010 to 2021 clinical practice guidelines: A meta-epidemiological study from the American College of Lifestyle Medicine. Adv. Nutr. 2023, 14, 500–515. [Google Scholar] [CrossRef]
- Hartwell, M.; Torgerson, T.; Essex, R.; Campbell, B.; Belardo, D.; Vassar, M. Public awareness of a plant-based diet following the release of “Game Changers” and “What the Health” documentaries. Am. J. Lifestyle Med. 2022, 16, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Karlsen, M.C.; Rogers, G.; Miki, A.; Lichtenstein, A.H.; Folta, S.C.; Economos, C.D.; Jacques, P.F.; Livingston, K.A.; McKeown, N.M. Theoretical food and nutrient composition of whole-food plant-based and vegan diets compared to current dietary recommendations. Nutrients 2019, 11, 625. [Google Scholar] [CrossRef] [PubMed]
- Goldman, D.M.; Warbeck, C.B.; Karlsen, M.C. Completely plant-based diets that meet energy requirements for resistance training can supply enough protein and leucine to maximize hypertrophy and strength in male bodybuilders: A modeling study. Nutrients 2024, 16, 1122. [Google Scholar] [CrossRef] [PubMed]
- Fogelholm, M. Dairy products, meat and sports performance. Sport. Med. 2003, 33, 615–631. [Google Scholar] [CrossRef] [PubMed]
- Venderley, A.M.; Campbell, W.W. Vegetarian diets: Nutritional considerations for athletes. Sport. Med. 2006, 36, 293–305. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.; Johnston, C.; Wharton, C. Plant-based diets: Considerations for environmental impact, protein quality, and exercise performance. Nutrients 2018, 10, 1841. [Google Scholar] [CrossRef]
- Gorissen, S.H.; Phillips, S.M. Branched-chain amino acids (leucine, isoleucine, and valine) and skeletal muscle. In Nutrition and Skeletal Muscle; Elsevier: Amsterdam, The Netherlands, 2019; pp. 283–298. [Google Scholar] [CrossRef]
- Mariotti, F. Vegetarian and Plant-Based Diets in Health and Disease Prevention; Academic Press: Cambridge, MA, USA, 2017. [Google Scholar]
- Hevia-Larraín, V.; Gualano, B.; Longobardi, I.; Gil, S.; Fernandes, A.L.; Costa, L.A.R.; Pereira, R.M.R.; Artioli, G.G.; Phillips, S.M.; Roschel, H. High-protein plant-based diet versus a protein-matched omnivorous diet to support resistance training adaptations: A comparison between habitual vegans and omnivores. Sport. Med. 2021, 51, 1317–1330. [Google Scholar] [CrossRef] [PubMed]
- West, S.; Monteyne, A.J.; van der Heijden, I.; Stephens, F.B.; Wall, B.T. Nutritional considerations for the vegan athlete. Adv. Nutr. 2023, 14, 774–795. [Google Scholar] [CrossRef] [PubMed]
- Clem, J.; Barthel, B. A look at plant-based diets. Mo. Med. 2021, 118, 233–238. [Google Scholar]
- Webber, D. How Can Vegan Athletes Get Enough Protein? Available online: https://www.nutritionx.co.uk/nutrition-hub/nutrition/how-can-vegan-athletes-get-enough-protein/ (accessed on 19 April 2024).
- Rizzo, N.S.; Jaceldo-Siegl, K.; Sabate, J.; Fraser, G.E. Nutrient profiles of vegetarian and nonvegetarian dietary patterns. J. Acad. Nutr. Diet. 2013, 113, 1610–1619. [Google Scholar] [CrossRef]
- Trumbo, P.; Schlicker, S.; Yates, A.A.; Poos, M. Dietary Reference Intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J. Am. Diet. Assoc. 2002, 102, 1621–1630. [Google Scholar] [CrossRef] [PubMed]
- ten Haaf, T.; Weijs, P.J. Resting energy expenditure prediction in recreational athletes of 18-35 years: Confirmation of Cunningham equation and an improved weight-based alternative. PLoS ONE 2014, 9, e108460. [Google Scholar] [CrossRef] [PubMed]
- O’Neill, J.E.R.; Corish, C.A.; Horner, K. Accuracy of resting metabolic rate prediction equations in athletes: A systematic review with meta-analysis. Sport. Med. 2023, 53, 2373–2398. [Google Scholar] [CrossRef] [PubMed]
- Karpinski, C.; Rosenbloom, C.A. Sports Nutrition: A Handbook for Professionals; Academy of Nutrition and Dietetics: Chicago, IL, USA, 2017. [Google Scholar]
- Maughan, R.J.; Burke, L.M.; Dvorak, J.; Larson-Meyer, D.E.; Peeling, P.; Phillips, S.M.; Rawson, E.S.; Walsh, N.P.; Garthe, I.; Geyer, H.; et al. IOC consensus statement: Dietary supplements and the high-performance athlete. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 104–125. [Google Scholar] [CrossRef] [PubMed]
- Kirwan, R.D.; Kordick, L.K.; McFarland, S.; Lancaster, D.; Clark, K.; Miles, M.P. Dietary, anthropometric, blood-lipid, and performance patterns of American college football players during 8 weeks of training. Int. J. Sport. Nutr. Exerc. Metab. 2012, 22, 444–451. [Google Scholar] [CrossRef] [PubMed]
- Ahangi, Z.; Shojaosadati, S.A.; Nikoopour, H. Study of mycoprotein production using Fusarium oxysporum. Pak. J. Nutr. 2008, 7, 240–243. [Google Scholar] [CrossRef]
- Tang, J.E.; Moore, D.R.; Kujbida, G.W.; Tarnopolsky, M.A.; Phillips, S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009, 107, 987–992. [Google Scholar] [CrossRef] [PubMed]
- Khattab, R.Y.; Arntfield, S.D.; Nyachoti, C.M. Nutritional quality of legume seeds as affected by some physical treatments, Part 1: Protein quality evaluation. LWT-Food Sci. Technol. 2009, 42, 1107–1112. [Google Scholar] [CrossRef]
- Callaway, J.C. Hempseed as a nutritional resource: An overview. Euphytica 2004, 140, 65–72. [Google Scholar] [CrossRef]
- Norton, L.E.; Wilson, G.J.; Layman, D.K.; Moulton, C.J.; Garlick, P.J. Leucine content of dietary proteins is a determinant of postprandial skeletal muscle protein synthesis in adult rats. Nutr. Metab. 2012, 9, 67. [Google Scholar] [CrossRef]
- Burd, N.A.; Hamer, H.M.; Pennings, B.; Pellikaan, W.F.; Senden, J.M.; Gijsen, A.P.; van Loon, L.J. Substantial differences between organ and muscle specific tracer incorporation rates in a Llctating dairy cow. PLoS ONE 2013, 8, e68109. [Google Scholar] [CrossRef] [PubMed]
- Vikøren, L.A.; Nygård, O.K.; Lied, E.; Rostrup, E.; Gudbrandsen, O.A. A randomised study on the effects of fish protein supplement on glucose tolerance, lipids and body composition in overweight adults. Br. J. Nutr. 2013, 109, 648–657. [Google Scholar] [CrossRef] [PubMed]
- Moore, D.R.; Robinson, M.J.; Fry, J.L.; Tang, J.E.; Glover, E.I.; Wilkinson, S.B.; Prior, T.; Tarnopolsky, M.A.; Phillips, S.M. Ingested protein dose response of muscle and albumin protein synthesis after resistance exercise in young men. Am. J. Clin. Nutr. 2009, 89, 161–168. [Google Scholar] [CrossRef]
- FAO. Amino Acid Content of Foods and Biological Data on Proteins; Food and Agriculture Organization of the United Nations Nutrition Division, Food Polocy and Food Science Service: Rome, Italy, 1981. [Google Scholar]
- USDA. National Nutrient Database for Standard Reference. Available online: http://www.ars.usda.gov/ba/bhnrc/ndl (accessed on 24 September 2023).
- van Vliet, S.; Burd, N.A.; van Loon, L.J. The skeletal muscle anabolic response to plant-versus animal-based protein consumption. J. Nutr. 2015, 145, 1981–1991. [Google Scholar] [CrossRef] [PubMed]
- Gorissen, S.H.M.; Witard, O.C. Characterising the muscle anabolic potential of dairy, meat and plant-based protein sources in older adults. Proc. Nutr. Soc. 2018, 77, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Berrazaga, I.; Micard, V.; Gueugneau, M.; Walrand, S. The role of the anabolic properties of plant- versus animal-based protein sources in supporting muscle mass maintenance: A critical review. Nutrients 2019, 11, 1825. [Google Scholar] [CrossRef] [PubMed]
- U.S. Department of Agriculture; U.S. Department of Health and Human Services. Dietary Guidelines for Americans, 2020–2025, 9th ed.; U.S. Department of Agriculture: Washington, DC, USA, 2020.
- Institute of Medicine. Dietary Reference Intakes for Thiamin, Riboflavin, Niacin, Vitamin B6, Folate, Vitamin B12, Pantothenic Acid, Biotin, and Choline; National Academy Press: Washington, DC, USA, 1998. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2002. [Google Scholar]
- Institute of Medicine. Dietary Reference Intakes for Calcium and Vitamin D; Ross, A.C., Taylor, C.L., Yaktine, A.L., Del Valle, H.B., Eds.; National Academy Press: Washington, DC, USA, 2011. [Google Scholar] [CrossRef]
- Institute of Medicine. Dietary Reference Intakes for Calcium, Phosphorus, Magnesium, Vitamin D, and Fluoride; National Academy Press: Washington, DC, USA, 1997. [Google Scholar]
- Blaner, W.S. Vitamin A and provitamin A carotenoids. In Present Knowledge in Nutrition; Marriott, B.P., Birt, D.F., Stallings, V.A., Yates, A.A., Eds.; Elsevier: London, UK, 2020; Volume 1, pp. 73–91. [Google Scholar]
- Karlsen, M.C.; American College of Lifestyle Medicine, Chesterfield, MO, USA; University of New England, Biddeford, ME, USA; Goldman, D.M.; Metabite, Inc., New York, NY, USA. Personal communication with Fraser, G.E., 2023.
- Melina, V.; Craig, W.; Levin, S. Position of the Academy of Nutrition and Dietetics: Vegetarian diets. J. Acad. Nutr. Diet. 2016, 116, 1970–1980. [Google Scholar] [CrossRef] [PubMed]
- Reidy, P.T.; Rasmussen, B.B. Role of ingested amino acids and protein in the promotion of resistance exercise-induced muscle protein anabolism. J. Nutr. 2016, 146, 155–183. [Google Scholar] [CrossRef] [PubMed]
- Lynch, H.M.; Buman, M.P.; Dickinson, J.M.; Ransdell, L.B.; Johnston, C.S.; Wharton, C.M. No significant differences in muscle growth and strength development when consuming soy and whey protein supplements matched for leucine following a 12 week resistance training program in men and women: A randomized trial. Int. J. Environ. Res. Public. Health 2020, 17, 3871. [Google Scholar] [CrossRef]
- Olaniyan, E.T.; O’Halloran, F.; McCarthy, A.L. Dietary protein considerations for muscle protein synthesis and muscle mass preservation in older adults. Nutr. Res. Rev. 2021, 34, 147–157. [Google Scholar] [CrossRef]
- Martinho, D.V.; Naughton, R.J.; Faria, A.; Rebelo, A.; Sarmento, H. Predicting resting energy expenditure among athletes: A systematic review. Biol. Sport. 2023, 40, 787–804. [Google Scholar] [CrossRef] [PubMed]
- Kraemer, W.J.; Torine, J.C.; Silvestre, R.; French, D.N.; Ratamess, N.A.; Spiering, B.A.; Hatfield, D.L.; Vingren, J.L.; Volek, J.S. Body size and composition of National Football League players. J. Strength Cond. Res. 2005, 19, 485–489. [Google Scholar] [CrossRef] [PubMed]
- López García, R.; Lagunes Carrasco, J.O.; Carranza García, L.E.; Navarro Orocio, R. Relationship between body composition and bone mineral density in American football players. Atena J. Sport. Sci. 2021, 3, 1–14. [Google Scholar]
- Severo-Silveira, L.; Fritsch, C.G.; Marques, V.B.; Dornelles, M.P.; Baroni, B.M. Isokinetic performance of knee flexor and extensor muscles in American Football players from Brazil. Rev. Bras. Cineantropometria Desempenho Hum. 2017, 19, 426–435. [Google Scholar]
- Vitale, J.A.; Caumo, A.; Roveda, E.; Montaruli, A.; La Torre, A.; Battaglini, C.L.; Carandente, F. Physical attributes and NFL combine performance tests between Italian National League and American football players: A comparative study. J. Strength Cond. Res. 2016, 30, 2802–2808. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, D.; Asakura, M.; Ito, Y.; Yamada, S.; Yamada, Y. Physical characteristics and performance of Japanese top-level American football players. J. Strength Cond. Res. 2017, 31, 2455–2461. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, J.R. The Science of American Football; Routledge: London, UK, 2020. [Google Scholar] [CrossRef]
- Thomas, D.T.; Erdman, K.A.; Burke, L.M. Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and athletic performance. J. Acad. Nutr. Diet. 2016, 116, 501–528. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.A.; Zello, G.A.; Rodgers, C.D.; Warkentin, T.D.; Baerwald, A.R.; Chilibeck, P.D. Benefits of a plant-based diet and considerations for the athlete. Eur. J. Appl. Physiol. 2022, 122, 1163–1178. [Google Scholar] [CrossRef]
- Capling, L.; Beck, K.L.; Gifford, J.A.; Slater, G.; Flood, V.M.; O’Connor, H. Validity of dietary assessment in athletes: A systematic review. Nutrients 2017, 9, 1313. [Google Scholar] [CrossRef]
- Cunningham, J.J. A reanalysis of the factors influencing basal metabolic rate in normal adults. Am. J. Clin. Nutr. 1980, 33, 2372–2374. [Google Scholar] [CrossRef]
- Iraki, J.; Fitschen, P.; Espinar, S.; Helms, E. Nutrition recommendations for bodybuilders in the off-season: A narrative review. Sports 2019, 7, 154. [Google Scholar] [CrossRef]
- Morton, R.W.; Murphy, K.T.; McKellar, S.R.; Schoenfeld, B.J.; Henselmans, M.; Helms, E.; Aragon, A.A.; Devries, M.C.; Banfield, L.; Krieger, J.W.; et al. A systematic review, meta-analysis and meta-regression of the effect of protein supplementation on resistance training-induced gains in muscle mass and strength in healthy adults. Br. J. Sport. Med. 2018, 52, 376–384. [Google Scholar] [CrossRef]
- Gutierrez-Mariscal, F.M.; Alcalá-Diaz, J.F.; Quintana-Navarro, G.M.; de la Cruz-Ares, S.; Torres-Peña, J.D.; Cardelo, M.P.; Arenas-Larriva, A.P.; Malagón, M.M.; Romero-Cabrera, J.L.; Ordovás, J.M.; et al. Changes in quantity plant-based protein intake on type 2 diabetes remission in coronary heart disease patients: From the CORDIOPREV study. Eur. J. Nutr. 2023, 62, 1903–1913. [Google Scholar] [CrossRef] [PubMed]
- Carlson, J.J.; Eisenmann, J.C.; Norman, G.J.; Ortiz, K.A.; Young, P.C. Dietary fiber and nutrient density are inversely associated with the metabolic syndrome in US adolescents. J. Am. Diet. Assoc. 2011, 111, 1688–1695. [Google Scholar] [CrossRef]
- Becherer, B. Associations between Dietary Plant Protein and Animal Protein with Other Nutrient Intakes. Master’s Thesis, Saint Louis University, St. Louis, MO, USA, 2021. [Google Scholar]
- Owora, A.H.; Kmush, B.L.; Walia, B.; Sanders, S. A systematic review of etiological risk factors associated with early mortality among National Football League players. Orthop. J. Sport. Med. 2018, 6, 2325967118813312. [Google Scholar] [CrossRef]
- Helzberg, J.H.; Camilo, J.; Waeckerle, J.F.; O’Keefe, J.H. Review of cardiometabolic risk factors among current professional football and professional baseball players. Phys. Sport. 2010, 38, 77–83. [Google Scholar] [CrossRef]
- Baron, S.L.; Hein, M.J.; Lehman, E.; Gersic, C.M. Body mass index, playing position, race, and the cardiovascular mortality of retired professional football players. Am. J. Cardiol. 2012, 109, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Van Vliet, S.V.; Beals, J.W.; Martinez, I.G.; Skinner, S.K.; Burd, N.A. Achieving optimal post-exercise muscle protein remodeling in physically active adults through whole food consumption. Nutrients 2018, 10, 224. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, J.A.; Rinaldi, S.; Scalbert, A.; Ferrari, P.; Achaintre, D.; Gunter, M.J.; Appleby, P.N.; Key, T.J.; Travis, R.C. Plasma concentrations and intakes of amino acids in male meat-eaters, fish-eaters, vegetarians and vegans: A cross-sectional analysis in the EPIC-Oxford cohort. Eur. J. Clin. Nutr. 2016, 70, 306–312. [Google Scholar] [CrossRef]
- Aguiar, A.F.; Grala, A.P.; da Silva, R.A.; Soares-Caldeira, L.F.; Pacagnelli, F.L.; Ribeiro, A.S.; da Silva, D.K.; de Andrade, W.B.; Balvedi, M.C.W. Free leucine supplementation during an 8-week resistance training program does not increase muscle mass and strength in untrained young adult subjects. Amino Acids 2017, 49, 1255–1262. [Google Scholar] [CrossRef]
- De Andrade, I.; Gualano, B.; Hevia-Larraín, V.; Neves-Junior, J.; Cajueiro, M.; Jardim, F.; Gomes, R.L.; Artioli, G.G.; Phillips, S.M.; Campos-Ferraz, P.; et al. Leucine supplementation has no further effect on training-induced muscle adaptations. Med. Sci. Sport. Exerc. 2020, 52, 1809–1814. [Google Scholar] [CrossRef] [PubMed]
- Pinckaers, P.J.M.; Kouw, I.W.K.; Hendriks, F.K.; van Kranenburg, J.M.X.; de Groot, L.; Verdijk, L.B.; Snijders, T.; van Loon, L.J.C. No differences in muscle protein synthesis rates following ingestion of wheat protein, milk protein, and their protein blend in healthy, young males. Br. J. Nutr. 2021, 126, 1832–1842. [Google Scholar] [CrossRef] [PubMed]
- Mariotti, F.; Gardner, C.D. Dietary protein and amino acids in vegetarian diets—A review. Nutrients 2019, 11, 2661. [Google Scholar] [CrossRef] [PubMed]
- Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2020, 396, 1204–1222. [CrossRef] [PubMed]
- Muleya, M.; Bailey, E.F.; Bailey, E.H. A comparison of the bioaccessible calcium supplies of various plant-based products relative to bovine milk. Food Res. Int. 2024, 175, 113795. [Google Scholar] [CrossRef] [PubMed]
- Kunstel, K. Calcium requirements for the athlete. Curr. Sport. Med. Rep. 2005, 4, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Wagner, C.A. The basics of phosphate metabolism. Nephrol. Dial. Transpl. 2024, 39, 190–201. [Google Scholar] [CrossRef]
- National Institutes of Health, Office of Dietary Supplements. Phosphorus: Fact Sheet for Health Professionals. Available online: https://ods.od.nih.gov/factsheets/Phosphorus-HealthProfessional/ (accessed on 29 May 2023).
- McLean, R.M.; Farmer, V.L.; Nettleton, A.; Cameron, C.M.; Cook, N.R.; Campbell, N.R.C. Assessment of dietary sodium intake using a food frequency questionnaire and 24-hour urinary sodium excretion: A systematic literature review. J. Clin. Hypertens. 2017, 19, 1214–1230. [Google Scholar] [CrossRef] [PubMed]
- McDermott, B.P.; Anderson, S.A.; Armstrong, L.E.; Casa, D.J.; Cheuvront, S.N.; Cooper, L.; Kenney, W.L.; O’Connor, F.G.; Roberts, W.O. National Athletic Trainers’ Association position statement: Fluid replacement for the physically active. J. Athl. Train. 2017, 52, 877–895. [Google Scholar] [CrossRef] [PubMed]
- Godek, S.F.; Peduzzi, C.; Burkholder, R.; Condon, S.; Dorshimer, G.; Bartolozzi, A.R. Sweat rates, sweat sodium concentrations, and sodium losses in 3 groups of professional football players. J. Athl. Train. 2010, 45, 364–371. [Google Scholar] [CrossRef]
- Wang, Y.J.; Yeh, T.L.; Shih, M.C.; Tu, Y.K.; Chien, K.L. Dietary sodium intake and risk of cardiovascular disease: A systematic review and dose-response meta-analysis. Nutrients 2020, 12, 2934. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.; Martin, N.; Jimoh, O.F.; Kirk, C.; Foster, E.; Abdelhamid, A.S. Reduction in saturated fat intake for cardiovascular disease. Cochrane Database Syst. Rev. 2020, 5, Cd011737. [Google Scholar] [CrossRef] [PubMed]
- Kim, Y.; Je, Y.; Giovannucci, E.L. Association between dietary fat intake and mortality from all-causes, cardiovascular disease, and cancer: A systematic review and meta-analysis of prospective cohort studies. Clin. Nutr. 2021, 40, 1060–1070. [Google Scholar] [CrossRef] [PubMed]
- Maughan, R.J. Nutrition in Sport; John Wiley & Sons: Hoboken, NJ, USA, 2008; Volume 7. [Google Scholar]
- Rogerson, D. Vegan diets: Practical advice for athletes and exercisers. J. Int. Soc. Sport. Nutr. 2017, 14, 36. [Google Scholar] [CrossRef] [PubMed]
- Wolinsky, I. Nutrition in Exercise and Sport; CRC Press: Boca Raton, FL, USA, 1997; Volume 13. [Google Scholar]
- Jeukendrup, A.E. Training the gut for athletes. Sport. Med. 2017, 47, 101–110. [Google Scholar] [CrossRef] [PubMed]
- Sports Dietitians Australia. Fact Sheet: Eating and Drinking before Sport; Sports Dietitians Australia: South Melbourne, Australia, 2009; pp. 1–2. [Google Scholar]
- Lim, M.T.; Pan, B.J.; Toh, D.W.K.; Sutanto, C.N.; Kim, J.E. Animal protein versus plant protein in supporting lean mass and muscle strength: A systematic review and meta-analysis of randomized controlled trials. Nutrients 2021, 13, 661. [Google Scholar] [CrossRef] [PubMed]
- Messina, M.; Lynch, H.; Dickinson, J.M.; Reed, K.E. No difference between the effects of supplementing with soy protein versus animal protein on gains in muscle mass and strength in response to resistance exercise. Int. J. Sport. Nutr. Exerc. Metab. 2018, 28, 674–685. [Google Scholar] [CrossRef] [PubMed]
- Monteyne, A.J.; Coelho, M.O.C.; Murton, A.J.; Abdelrahman, D.R.; Blackwell, J.R.; Koscien, C.P.; Knapp, K.M.; Fulford, J.; Finnigan, T.J.A.; Dirks, M.L.; et al. Vegan and omnivorous high protein diets support comparable daily myofibrillar protein synthesis rates and skeletal muscle hypertrophy in young adults. J. Nutr. 2023, 153, 1680–1695. [Google Scholar] [CrossRef]
- Trommelen, J.; Betz, M.W.; van Loon, L.J.C. The muscle protein synthetic response to meal ingestion following resistance-type exercise. Sport. Med. 2019, 49, 185–197. [Google Scholar] [CrossRef]
- Burd, N.A.; Beals, J.W.; Martinez, I.G.; Salvador, A.F.; Skinner, S.K. Food-first approach to enhance the regulation of post-exercise skeletal muscle protein synthesis and remodeling. Sport. Med. 2019, 49, 59–68. [Google Scholar] [CrossRef]
- Craddock, J.C.; Genoni, A.; Strutt, E.F.; Goldman, D.M. Limitations with the Digestible Indispensable Amino Acid Score (DIAAS) with special attention to plant-based diets: A review. Curr. Nutr. Rep. 2021, 10, 93–98. [Google Scholar] [CrossRef]
- Zaromskyte, G.; Prokopidis, K.; Ioannidis, T.; Tipton, K.D.; Witard, O.C. Evaluating the leucine trigger hypothesis to explain the post-prandial regulation of muscle protein synthesis in young and older adults: A systematic review. Front. Nutr. 2021, 8, 685165. [Google Scholar] [CrossRef] [PubMed]
- Shomrat, A.; Weinstein, Y.; Katz, A. Effect of creatine feeding on maximal exercise performance in vegetarians. Eur. J. Appl. Physiol. 2000, 82, 321–325. [Google Scholar] [CrossRef]
- Barr, S.I.; Rideout, C.A. Nutritional considerations for vegetarian athletes. Nutrition 2004, 20, 696–703. [Google Scholar] [CrossRef]
- Baguet, A.; Everaert, I.; De Naeyer, H.; Reyngoudt, H.; Stegen, S.; Beeckman, S.; Achten, E.; Vanhee, L.; Volkaert, A.; Petrovic, M.; et al. Effects of sprint training combined with vegetarian or mixed diet on muscle carnosine content and buffering capacity. Eur. J. Appl. Physiol. 2011, 111, 2571–2580. [Google Scholar] [CrossRef] [PubMed]
- Blancquaert, L.; Baguet, A.; Bex, T.; Volkaert, A.; Everaert, I.; Delanghe, J.; Petrovic, M.; Vervaet, C.; De Henauw, S.; Constantin-Teodosiu, D.; et al. Changing to a vegetarian diet reduces the body creatine pool in omnivorous women, but appears not to affect carnitine and carnosine homeostasis: A randomised trial. Br. J. Nutr. 2018, 119, 759–770. [Google Scholar] [CrossRef]
- Rodríguez-Gandullo, J.A.; Barbosa, F.A. Efectos del entrenamiento de fuerza y suplementación en personas vegetarianas: Revisión sistemática. Retos 2018, 34, 247–251. [Google Scholar] [CrossRef]
- Neufingerl, N.; Eilander, A. Nutrient intake and status in adults consuming plant-based diets compared to meat-eaters: A systematic review. Nutrients 2021, 14, 29. [Google Scholar] [CrossRef] [PubMed]
- Delpino, F.M.; Figueiredo, L.M.; Forbes, S.C.; Candow, D.G.; Santos, H.O. Influence of age, sex, and type of exercise on the efficacy of creatine supplementation on lean body mass: A systematic review and meta-analysis of randomized clinical trials. Nutrition 2022, 103–104, 111791. [Google Scholar] [CrossRef]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.X.; Dutheil, F. Creatine supplementation and upper limb strength performance: A systematic review and meta-analysis. Sport. Med. 2017, 47, 163–173. [Google Scholar] [CrossRef]
- Lanhers, C.; Pereira, B.; Naughton, G.; Trousselard, M.; Lesage, F.X.; Dutheil, F. Creatine supplementation and lower limb strength performance: A systematic review and meta-analyses. Sport. Med. 2015, 45, 1285–1294. [Google Scholar] [CrossRef] [PubMed]
- Kaviani, M.; Shaw, K.; Chilibeck, P.D. Benefits of creatine supplementation for vegetarians compared to omnivorous athletes: A systematic review. Int. J. Environ. Res. Public Health 2020, 17, 3041. [Google Scholar] [CrossRef] [PubMed]
- Goldman, D.M.; Stiegmann, R.A.; Craddock, J.C. Supplemental creatine, not dietary creatine, appears to improve exercise performance in individuals following omnivorous or meat-free diets: A narrative review. Int. J. Dis. Rev. Prev. 2022, 4, 15. [Google Scholar] [CrossRef]
- Pasin, F.; Caroli, B.; Spigoni, V.; Dei Cas, A.; Volpi, R.; Galli, C.; Passeri, G. Performance and anthropometric characteristics of elite rugby players. Acta Biomed. 2017, 88, 172–177. [Google Scholar] [CrossRef]
- Vaz, L.; Kraak, W.; Batista, M.; Honório, S.; Miguel Fernandes, H. Using anthropometric data and physical fitness scores to predict selection in a national U19 rugby union team. Int. J. Environ. Res. Public Health 2021, 18, 1499. [Google Scholar] [CrossRef]
Position | Body Mass (kg) [8,9] | Energy Requirements (kcal/Day) [10] | Absolute Protein Requirements (g/Day) [38] | Absolute Protein Levels (g/Day) | Relative Protein Levels (g/kg/Day) | Absolute Leucine Levels (g/Day) [52] | Leucine Levels per Meal (g) |
---|---|---|---|---|---|---|---|
Defensive Lineman | 134.7 | 6250 | 216 | 227 | 1.7 | 16.1 | 4.0 |
Offensive Lineman | 144.0 | 6350 | 230 | 230 | 1.6 | 16.3 | 4.1 |
Running Back | 110.5 | 5850 | 177 | 212 | 1.9 | 15.1 | 3.8 |
Tight End | 123.3 | 6150 | 197 | 223 | 1.8 | 15.8 | 4.0 |
Linebacker | 108.1 | 6050 | 173 | 223 | 2.1 | 15.8 | 4.0 |
Quarterback | 100.9 | 5300 | 161 | 219 | 2.2 | 15.5 | 3.9 |
AHS-2 Strict Vegetarian ‡ | Defensive Lineman | Offensive Lineman | Running Back | Tight End | Linebacker | Quarterback | Nutrient UL | Nutrient Target | Recommendation | Target Met? | |
---|---|---|---|---|---|---|---|---|---|---|---|
Calorie intake (kcal) | 2000 | 6250 | 6350 | 5850 | 6150 | 6050 | 5300 | - | - | - | N/A |
Saturated fat (% kcal) | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 5.2 | 10 | <10 | DGA | ✓ |
Total omega-3 (g) | 2 | 6.3 | 6.4 | 5.9 | 6.2 | 6.1 | 5.3 | ND | 1.6 | AI | ✓ |
Linoleic acid (g) | 20 | 61 | 62 | 57 | 60 | 59 | 52 | ND | 17 | AI | ✓ |
Fiber (g) | 47 | 146 | 148 | 137 | 144 | 141 | 124 | ND | 74–89 † | DGA | ✓ |
Vitamin A (RAE *) | 1108 | 3463 | 3518 | 3241 | 3407 | 3352 | 2936 | ND ** | 900 | RDA | ✓ |
Vitamin B6 (mg) | 14.4 | 45 | 45.7 | 42.1 | 44.3 | 43.6 | 38.2 | 100 | 1.3 | RDA | ✓ |
Folate (mcg) | 888 | 2775 | 2819 | 2597 | 2731 | 2686 | 2353 | 1000 | 400 | RDA | ✓ |
Vitamin B12 (mcg) | 23.3 | 72.8 | 74 | 68.2 | 71.6 | 70.5 | 61.7 | ND | 2.4 | RDA | ✓ |
Vitamin C (mg) | 531 | 1659 | 1686 | 1553 | 1633 | 1606 | 1407 | 2000 | 90 | RDA | ✓ |
Vitamin D (IU) | 252 | 788 | 800 | 737 | 775 | 762 | 668 | 4000 | 600 IU | RDA | ✓ |
Vitamin E (mg) | 101 | 316 | 321 | 295 | 311 | 306 | 268 | 1000 | 15 | RDA | ✓ |
Calcium (mg) | 1156 | 3613 | 3670 | 3381 | 3555 | 3497 | 3063 | 2500 | 1000 | RDA | ✓ |
Iron (mg) | 32 | 99 | 100 | 92 | 97 | 96 | 84 | 45 | 8 | RDA | ✓ |
Magnesium (mg) | 652 | 2038 | 2070 | 1907 | 2005 | 1972 | 1728 | 350 | 400 | RDA | ✓ |
Phosphorus (mg) | 1371 | 4284 | 4353 | 4010 | 4216 | 4147 | 3633 | 4000 | 700 | RDA | ✓ |
Potassium (mg) | 4234 | 13,231 | 13,443 | 12,384 | 13,020 | 12,808 | 11,220 | ND | 3400 | AI | ✓ |
Sodium (mg) | 3531 | 11,034 | 11,211 | 10,328 | 10,858 | 10,681 | 9357 | ND | 2300 | CDRR | ✗ |
Zinc (mg) | 16 | 51 | 52 | 48 | 50 | 49 | 43 | 40 | 11 | RDA | ✓ |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Goldman, D.M.; Warbeck, C.B.; Karlsen, M.C. Protein Requirements for Maximal Muscle Mass and Athletic Performance Are Achieved with Completely Plant-Based Diets Scaled to Meet Energy Needs: A Modeling Study in Professional American Football Players. Nutrients 2024, 16, 1903. https://doi.org/10.3390/nu16121903
Goldman DM, Warbeck CB, Karlsen MC. Protein Requirements for Maximal Muscle Mass and Athletic Performance Are Achieved with Completely Plant-Based Diets Scaled to Meet Energy Needs: A Modeling Study in Professional American Football Players. Nutrients. 2024; 16(12):1903. https://doi.org/10.3390/nu16121903
Chicago/Turabian StyleGoldman, David M., Cassandra B. Warbeck, and Micaela C. Karlsen. 2024. "Protein Requirements for Maximal Muscle Mass and Athletic Performance Are Achieved with Completely Plant-Based Diets Scaled to Meet Energy Needs: A Modeling Study in Professional American Football Players" Nutrients 16, no. 12: 1903. https://doi.org/10.3390/nu16121903
APA StyleGoldman, D. M., Warbeck, C. B., & Karlsen, M. C. (2024). Protein Requirements for Maximal Muscle Mass and Athletic Performance Are Achieved with Completely Plant-Based Diets Scaled to Meet Energy Needs: A Modeling Study in Professional American Football Players. Nutrients, 16(12), 1903. https://doi.org/10.3390/nu16121903