The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease—A State-of-the-Art Review
Abstract
:1. Introduction
2. Research Strategy Employed in the Review of Available Literature
2.1. Literature Research
2.2. Selection and Data Extraction
3. An Explanation of the Diet for the Kidney Stone Disease
3.1. Dietary Guidelines for Managing Kidney Stone Disease
3.1.1. Macronutrients
3.1.2. Oxalate
3.1.3. Calcium
3.1.4. Sodium Chloride
3.2. Microbiota Involvement in Kidney Stone Disease
4. Modifiable Lifestyle Factors and Habits
4.1. Alcohol Intake
4.2. Consumption of Coffee and Tea
4.3. Smoking
4.4. Vitamins Supplementation
4.5. Physical Activity
5. Disease Influenced by Lifestyle Related to Kidney Stone Disease
5.1. Obesity
5.2. Diabetes Mellitus and Metabolic Syndrome
5.3. Management of Kidney Stone in Relation to Obesity, Diabetes Mellitus, and Metabolic Syndrome
6. Primary Hyperparathyroidism and Risk of Calcium Stone Disease
7. Summary of Multidisciplinary Evidence-Based Protective Strategies for KSD
Author Contributions
Funding
Conflicts of Interest
References
- Yuan, T.; Xia, Y.; Li, B.; Yu, W.; Rao, T.; Ye, Z.; Yan, X.; Song, B.; Li, L.; Lin, F.; et al. Gut microbiota in patients with kidney stones: A systematic review and meta-analysis. BMC Microbiol. 2023, 23, 143. [Google Scholar] [CrossRef]
- Tundo, G.; Vollstedt, A.; Meeks, W.; Pais, V. Beyond Prevalence: Annual Cumulative Incidence of Kidney Stones in the United States. J. Urol. 2021, 205, 1704–1709. [Google Scholar] [CrossRef]
- Hill, A.J.; Basourakos, S.P.; Lewicki, P.; Wu, X.; Arenas-Gallo, C.; Chuang, D.; Bodner, D.; Jaeger, I.; Nevo, A.; Zell, M.; et al. Incidence of Kidney Stones in the United States: The Continuous National Health and Nutrition Examination Survey. J. Urol. 2022, 207, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Gambaro, G.; Croppi, E.; Bushinsky, D.; Jaeger, P.; Cupisti, A.; Ticinesi, A.; Mazzaferro, S.; D’Addessi, A.; Ferraro, P.M. The Risk of Chronic Kidney Disease Associated with Urolithiasis and its Urological Treatments: A Review. J. Urol. 2017, 198, 268–273. [Google Scholar] [CrossRef] [PubMed]
- Lucato, P.; Trevisan, C.; Stubbs, B.; Zanforlini, B.M.; Solmi, M.; Luchini, C.; Girotti, G.; Pizzato, S.; Manzato, E.; Sergi, G.; et al. Nephrolithiasis, bone mineral density, osteoporosis, and fractures: A systematic review and comparative meta-analysis. Osteoporos. Int. 2016, 27, 3155–3164. [Google Scholar] [CrossRef] [PubMed]
- Penniston, K.L.; Antonelli, J.A.; Viprakasit, D.P.; Averch, T.D.; Sivalingam, S.; Sur, R.L.; Pais, V.M.; Chew, B.H.; Bird, V.G.; Nakada, S.Y. Validation and Reliability of the Wisconsin Stone Quality of Life Questionnaire. J. Urol. 2017, 197, 1280–1288. [Google Scholar] [CrossRef]
- Lien, C.S.; Huang, C.P.; Chung, C.J.; Lin, C.L.; Chang, C.H. Increased risk of anxiety among patients with urolithiasis: A nationwide population-based cohort study. Int. J. Urol. 2015, 22, 937–942. [Google Scholar] [CrossRef]
- Strohmaier, W.L. Course of calcium stone disease without treatment. What can we expect? Eur. Urol. 2000, 37, 339–344. [Google Scholar] [CrossRef]
- Moe, O.W. Kidney stones: Pathophysiology and medical management. Lancet 2006, 367, 333–344. [Google Scholar] [CrossRef]
- Chung, M.J. Urolithiasis and nephrolithiasis. J. Am. Acad. Physician Assist. 2017, 30, 49–50. [Google Scholar] [CrossRef]
- Cheungpasitporn, W.; Thongprayoon, C.; O’Corragain, O.A.; Edmonds, P.J.; Ungprasert, P.; Kittanamongkolchai, W.; Erickson, S.B. The risk of kidney cancer in patients with kidney stones: A systematic review and meta-analysis. QJM 2015, 108, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Antonelli, J.A.; Maalouf, N.M.; Pearle, M.S.; Lotan, Y. Use of the National Health and Nutrition Examination Survey to calculate the impact of obesity and diabetes on cost and prevalence of urolithiasis in 2030. Eur. Urol. 2014, 66, 724–729. [Google Scholar] [CrossRef]
- Saigal, C.S.; Joyce, G.; Timilsina, A.R.; Urologic Diseases in America Project. Direct and indirect costs of nephrolithiasis in an employed population: Opportunity for disease management? Kidney Int. 2005, 68, 1808–1814. [Google Scholar] [CrossRef]
- Geraghty, R.M.; Cook, P.; Walker, V.; Somani, B.K. Evaluation of the economic burden of kidney stone disease in the UK: A retrospective cohort study with a mean follow-up of 19 years. BJU Int. 2020, 125, 586–594. [Google Scholar] [CrossRef]
- Barilla, D.E.; Townsend, J.; Pak, C.Y. An exaggerated augmentation of renal calcium excretion after oral glucose ingestion in patients with renal hypercalciuria. Investig. Urol. 1978, 15, 486–488. [Google Scholar]
- Taylor, E.N.; Curhan, G.C. Diet and fluid prescription in stone disease. Kidney Int. 2006, 70, 835–839. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.N.; Fung, T.T.; Curhan, G.C. DASH-style diet associates with reduced risk for kidney stones. J. Am. Soc. Nephrol. 2009, 20, 2253–2259. [Google Scholar] [CrossRef]
- Maddahi, N.; Aghamir, S.M.K.; Moddaresi, S.S.; Mirzaei, K.; Alizadeh, S.; Yekaninejad, M.S. The association of Dietary Approaches to Stop Hypertension-style diet with urinary risk factors of kidney stones formation in men with nephrolithiasis. Clin. Nutr. ESPEN 2020, 39, 173–179. [Google Scholar] [CrossRef]
- Borghi, L.; Schianchi, T.; Meschi, T.; Guerra, A.; Allegri, F.; Maggiore, U.; Novarini, A. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 2002, 346, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Hesse, A. Fluid intake and epidemiology of urolithiasis. Eur. J. Clin. Nutr. 2003, 57 (Suppl. S2), S47–S51. [Google Scholar] [CrossRef]
- Malieckal, D.A.; Goldfarb, D.S. Occupational kidney stones. Curr. Opin. Nephrol. Hypertens. 2020, 29, 232–236. [Google Scholar] [CrossRef]
- Linder, B.J.; Rangel, L.J.; Krambeck, A.E. The effect of work location on urolithiasis in health care professionals. Urolithiasis 2013, 41, 327–331. [Google Scholar] [CrossRef]
- Fink, H.A.; Wilt, T.J.; Eidman, K.E.; Garimella, P.S.; MacDonald, R.; Rutks, I.R.; Brasure, M.; Kane, R.L.; Ouellette, J.; Monga, M. Medical management to prevent recurrent nephrolithiasis in adults: A systematic review for an American College of Physicians Clinical Guideline. Ann. Intern. Med. 2013, 158, 535–543. [Google Scholar] [CrossRef]
- Qaseem, A.; Dallas, P.; Forciea, M.A.; Starkey, M.; Denberg, T.D.; Clinical Guidelines Committee of the American College of Physicians. Dietary and pharmacologic management to prevent recurrent nephrolithiasis in adults: A clinical practice guideline from the American College of Physicians. Ann. Intern. Med. 2014, 161, 659–667. [Google Scholar] [CrossRef]
- Lin, B.B.; Lin, M.E.; Huang, R.H.; Hong, Y.K.; Lin, B.L.; He, X.J. Dietary and lifestyle factors for primary prevention of nephrolithiasis: A systematic review and meta-analysis. BMC Nephrol. 2020, 21, 267. [Google Scholar] [CrossRef]
- Pearle, M.S.; Goldfarb, D.S.; Assimos, D.G.; Curhan, G.; Denu-Ciocca, C.J.; Matlaga, B.R.; Monga, M.; Penniston, K.L.; Preminger, G.M.; Turk, T.M.; et al. Medical management of kidney stones: AUA guideline. J. Urol. 2014, 192, 316–324. [Google Scholar] [CrossRef]
- Barbey, F.; Joly, D.; Rieu, P.; Méjean, A.; Daudon, M.; Jungers, P. Medical treatment of cystinuria: Critical reappraisal of long-term results. J. Urol. 2000, 163, 1419–1423. [Google Scholar] [CrossRef]
- Willis, S.; Goldfarb, D.S.; Thomas, K.; Bultitude, M. Water to prevent kidney stones: Tap vs bottled; soft vs hard—does it matter? BJU Int. 2019, 124, 905–906. [Google Scholar] [CrossRef]
- Leurs, L.J.; Schouten, L.J.; Mons, M.N.; Goldbohm, R.A.; van den Brandt, P.A. Relationship between tap water hardness, magnesium, and calcium concentration and mortality due to ischemic heart disease or stroke in The Netherlands. Environ. Health Perspect. 2010, 118, 414–420. [Google Scholar] [CrossRef]
- Siener, R. Can the manipulation of urinary pH by beverages assist with the prevention of stone recurrence? Urolithiasis 2016, 44, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Kessler, T.H.A. Cross-over study of the influence of bicarbonate-rich mineral water on urinary composition in comparison with sodium potassium citrate in healthy male subjects. Br. J. Nutr. 2000, 84, 865–871. [Google Scholar] [CrossRef]
- Cheraghian, B.; Meysam, A.; Hashemi, S.J.; Hosseini, S.A.; Malehi, A.S.; Khazaeli, D.; Rahimi, Z. Kidney stones and dietary intake in adults: A population-based study in southwest Iran. BMC Public Health 2024, 24, 955. [Google Scholar] [CrossRef]
- Karagülle, O.; Smorag, U.; Candir, F.; Gundermann, G.; Jonas, U.; Becker, A.J.; Gehrke, A.; Gutenbrunner, C. Clinical study on the effect of mineral waters containing bicarbonate on the risk of urinary stone formation in patients with multiple episodes of CaOx-urolithiasis. World J. Urol. 2007, 25, 315–323. [Google Scholar] [CrossRef]
- Wasserfurth, P.; Schneider, I.; Ströhle, A.; Nebl, J.; Bitterlich, N.; Hahn, A. Effects of mineral waters on acid-base status in healthy adults: Results of a randomized trial. Food Nutr. Res. 2019, 63, 1–11. [Google Scholar] [CrossRef]
- Stoots, S.J.M.; Geraghty, R.; Kamphuis, G.M.; Jamnadass, E.; Henderickx, M.M.E.L.; Ventimiglia, E.; Traxer, O.; Keller, E.X.; DeConinck, V.; Talso, M.; et al. Variations in the Mineral Content of Bottled "Still" Water Across Europe: Comparison of 182 Brands Across 10 Countries. J. Endourol. 2021, 35, 206–214. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. Soda and other beverages and the risk of kidney stones. Clin. J. Am. Soc. Nephrol. 2013, 8, 1389–1395. [Google Scholar] [CrossRef]
- Barghouthy, Y.; Somani, B.K. Role of Citrus Fruit Juices in Prevention of Kidney Stone Disease (KSD): A Narrative Review. Nutrients 2021, 13, 4117. [Google Scholar] [CrossRef]
- Large, T.; Williams, J.; Asplin, J.R.; Krambeck, A. Using Low-Calorie Orange Juice as a Dietary Alternative to Alkali Therapy. J. Endourol. 2020, 34, 1082–1087. [Google Scholar] [CrossRef]
- Wagner, C.A. The basics of phosphate metabolism. Nephrol. Dial. Transplant. 2024, 39, 190–201. [Google Scholar] [CrossRef] [PubMed]
- Dasgupta, D.; Wee, M.J.; Reyes, M.; Li, Y.; Simm, P.J.; Sharma, A.; Schlingmann, K.P.; Janner, M.; Biggin, A.; Lazier, J.; et al. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. J. Am. Soc. Nephrol. 2014, 25, 2366–2375. [Google Scholar] [CrossRef] [PubMed]
- Reddy, S.T.; Wang, C.Y.; Sakhaee, K.; Brinkley, L.; Pak, C.Y. Effect of low-carbohydrate high-protein diets on acid-base balance, stone-forming propensity, and calcium metabolism. Am. J. Kidney Dis. 2002, 40, 265–274. [Google Scholar] [CrossRef]
- Ferraro, P.M.; Mandel, E.I.; Curhan, G.C.; Gambaro, G.; Taylor, E.N. Dietary Protein and Potassium, Diet-Dependent Net Acid Load, and Risk of Incident Kidney Stones. Clin. J. Am. Soc. Nephrol. 2016, 11, 1834–1844. [Google Scholar] [CrossRef]
- Remer, T.; Kalotai, N.; Amini, A.M.; Lehmann, A.; Schmidt, A.; Bischoff-Ferrari, H.A.; Egert, S.; Ellinger, S.; Kroke, A.; Kühn, T.; et al. Protein intake and risk of urolithiasis and kidney diseases: An umbrella review of systematic reviews for the evidence-based guideline of the German Nutrition Society. Eur. J. Nutr. 2023, 62, 1957–1975. [Google Scholar] [CrossRef]
- Al Zahrani, H.; Norman, R.W.; Thompson, C.; Weerasinghe, S. The dietary habits of idiopathic calcium stone-formers and normal control subjects. BJU Int. 2000, 85, 616–620. [Google Scholar] [CrossRef]
- Siener, R.; Jansen, B.; Watzer, B.; Hesse, A. Effect of n-3 fatty acid supplementation on urinary risk factors for calcium oxalate stone formation. J. Urol. 2011, 185, 719–724. [Google Scholar] [CrossRef]
- Rodgers, A.L.; Siener, R. The Efficacy of Polyunsaturated Fatty Acids as Protectors against Calcium Oxalate Renal Stone Formation: A Review. Nutrients 2020, 12, 1069. [Google Scholar] [CrossRef]
- Curhan, G.C.; Willett, W.C.; Knight, E.L.; Stampfer, M.J. Dietary factors and the risk of incident kidney stones in younger women: Nurses’ Health Study II. Arch. Intern. Med. 2004, 164, 885–891. [Google Scholar] [CrossRef]
- Taylor, E.N.; Stampfer, M.J.; Curhan, G.C. Dietary factors and the risk of incident kidney stones in men: New insights after 14 years of follow-up. J. Am. Soc. Nephrol. 2004, 15, 3225–3232. [Google Scholar] [CrossRef]
- Yoon, V.; Adams-Huet, B.; Sakhaee, K.; Maalouf, N.M. Hyperinsulinemia and urinary calcium excretion in calcium stone formers with idiopathic hypercalciuria. J. Clin. Endocrinol. Metab. 2013, 98, 2589–2594. [Google Scholar] [CrossRef]
- Johnson, R.J.; Perez-Pozo, S.E.; Lillo, J.L.; Grases, F.; Schold, J.D.; Kuwabara, M.; Sato, Y.; Hernando, A.A.; Garcia, G.; Jensen, T.; et al. Fructose increases risk for kidney stones: Potential role in metabolic syndrome and heat stress. BMC Nephrol. 2018, 19, 315. [Google Scholar] [CrossRef]
- Pak, C.Y.; Adams-Huet, B.; Poindexter, J.R.; Pearle, M.S.; Peterson, R.D.; Moe, O.W. Rapid Communication: Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int. 2004, 66, 2032–2037. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Glatz, S.; Nicolay, C.; Hesse, A. Prospective study on the efficacy of a selective treatment and risk factors for relapse in recurrent calcium oxalate stone patients. Eur. Urol. 2003, 44, 467–474. [Google Scholar] [CrossRef]
- Siener, R.; Bade, D.J.; Hesse, A.; Hoppe, B. Dietary hyperoxaluria is not reduced by treatment with lactic acid bacteria. J. Transl. Med. 2013, 11, 306. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.N.; Curhan, G.C. Oxalate intake and the risk for nephrolithiasis. J. Am. Soc. Nephrol. 2007, 18, 2198–2204. [Google Scholar] [CrossRef] [PubMed]
- Taylor, E.N.; Curhan, G.C. Dietary calcium from dairy and nondairy sources, and risk of symptomatic kidney stones. J. Urol. 2013, 190, 1255–1259. [Google Scholar] [CrossRef] [PubMed]
- Sorensen, M.D. Calcium intake and urinary stone disease. Transl. Androl. Urol. 2014, 3, 235–240. [Google Scholar] [CrossRef] [PubMed]
- Siener, R. Nutrition and Kidney Stone Disease. Nutrients 2021, 13, 1917. [Google Scholar] [CrossRef] [PubMed]
- Bedford, J.L.; Barr, S.I. Higher urinary sodium, a proxy for intake, is associated with increased calcium excretion and lower hip bone density in healthy young women with lower calcium intakes. Nutrients 2011, 3, 951–961. [Google Scholar] [CrossRef] [PubMed]
- Nouvenne, A.; Meschi, T.; Prati, B.; Guerra, A.; Allegri, F.; Vezzoli, G.; Soldati, L.; Gambaro, G.; Maggiore, U.; Borghi, L. Effects of a low-salt diet on idiopathic hypercalciuria in calcium-oxalate stone formers: A 3-mo randomized controlled trial. Am. J. Clin. Nutr. 2010, 91, 565–570. [Google Scholar] [CrossRef]
- Jiang, J.; Knight, J.; Easter, L.H.; Neiberg, R.; Holmes, R.P.; Assimos, D.G. Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary oxalate excretion. J. Urol. 2011, 186, 135–139. [Google Scholar] [CrossRef]
- Tavasoli, S.; Alebouyeh, M.; Naji, M.; Shakiba Majd, G.; Shabani Nashtaei, M.; Broumandnia, N.; Basiri, A. Association of intestinal oxalate-degrading bacteria with recurrent calcium kidney stone formation and hyperoxaluria: A case-control study. BJU Int. 2020, 125, 133–143. [Google Scholar] [CrossRef]
- Hatch, M.; Cornelius, J.; Allison, M.; Sidhu, H.; Peck, A.; Freel, R.W. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006, 69, 691–698. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Huang, Z.; Ai, G.; Guo, X.; Zeng, G.; Zhu, W. Association between alcohol consumption and kidney stones in American adults: 2007–2016 NHANES. Front. Public. Health 2023, 11, 1156097. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Tan, W.; Wei, B.; Gu, C.; Li, S.; Wang, S. Association between alcohol and urolithiasis: A mendelian randomization study. Urolithiasis 2023, 51, 103. [Google Scholar] [CrossRef]
- Kim, S.Y.; Yoo, D.M.; Bang, W.J.; Choi, H.G. Obesity Is Positively Associated and Alcohol Intake Is Negatively Associated with Nephrolithiasis. Nutrients 2022, 14, 4122. [Google Scholar] [CrossRef]
- Wang, H.; Fan, J.; Yu, C.; Guo, Y.; Pei, P.; Yang, L.; Chen, Y.; Du, H.; Meng, F.; Chen, J.; et al. Consumption of Tea, Alcohol, and Fruits and Risk of Kidney Stones: A Prospective Cohort Study in 0.5 Million Chinese Adults. Nutrients 2021, 13, 1119. [Google Scholar] [CrossRef] [PubMed]
- Turney, B.W.; Appleby, P.N.; Reynard, J.M.; Noble, J.G.; Key, T.J.; Allen, N.E. Diet and risk of kidney stones in the Oxford cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC). Eur. J. Epidemiol. 2014, 29, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Xu, X.; Wu, J.; Zhu, Y.; Lin, Y.; Zheng, X.; Xie, L. Systematic review and meta-analysis of the effect of alcohol intake on the risk of urolithiasis including dose-response relationship. Urol. Int. 2015, 94, 194–204. [Google Scholar] [CrossRef]
- Massey, L.K.; Sutton, R.A. Acute caffeine effects on urine composition and calcium kidney stone risk in calcium stone formers. J. Urol. 2004, 172, 555–558. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, D.; Zhou, Q. Caffeine intake and the risk of recurrent kidney stones in adults, an analysis of 2007-2014 National Health and Nutrition Examination Surveys. Eur. J. Nutr. 2020, 59, 2683–2692. [Google Scholar] [CrossRef] [PubMed]
- Zhong, V.W.; Kuang, A.; Danning, R.D.; Kraft, P.; van Dam, R.M.; Chasman, D.I.; Cornelis, M.C. A genome-wide association study of bitter and sweet beverage consumption. Hum. Mol. Genet. 2019, 28, 2449–2457. [Google Scholar] [CrossRef]
- Yuan, S.; Larsson, S.C. Coffee and Caffeine Consumption and Risk of Kidney Stones: A Mendelian Randomization Study. Am. J. Kidney Dis. 2022, 79, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Huang, Y.; Yu, X. Caffeine intake and the risk of incident kidney stones: A systematic review and meta-analysis. Int. Urol. Nephrol. 2022, 54, 2457–2466. [Google Scholar] [CrossRef] [PubMed]
- Peerapen, P.; Thongboonkerd, V. Caffeine prevents kidney stone formation by translocation of apical surface annexin A1 crystal-binding protein into cytoplasm: In vitro evidence. Sci. Rep. 2016, 6, 38536. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Taylor, E.N.; Gambaro, G.; Curhan, G.C. Caffeine intake and the risk of kidney stones. Am. J. Clin. Nutr. 2014, 100, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Arai, K.; Terashima, H.; Aizawa, S.; Taga, A.; Yamamoto, A.; Tsutsumiuchi, K.; Kodama, S. Simultaneous Determination of Trigonelline, Caffeine, Chlorogenic Acid and Their Related Compounds in Instant Coffee Samples by HPLC Using an Acidic Mobile Phase Containing Octanesulfonate. Anal. Sci. 2015, 31, 831–835. [Google Scholar] [CrossRef] [PubMed]
- Barghouthy, Y.; Corrales, M.; Doizi, S.; Somani, B.K.; Traxer, O. Tea and coffee consumption and pathophysiology related to kidney stone formation: A systematic review. World J. Urol. 2021, 39, 2417–2426. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Wang, J.; Chen, Y.; Liu, F.; Deng, Y.; Wang, M. Tea intake and risk of kidney stones: A mendelian randomization study. Nutrition 2023, 107, 111919. [Google Scholar] [CrossRef] [PubMed]
- Lambert, J.D.; Sang, S.; Yang, C.S. Biotransformation of green tea polyphenols and the biological activities of those metabolites. Mol. Pharm. 2007, 4, 819–825. [Google Scholar] [CrossRef]
- Kanlaya, R.; Singhto, N.; Thongboonkerd, V. EGCG decreases binding of calcium oxalate monohydrate crystals onto renal tubular cells via decreased surface expression of alpha-enolase. J. Biol. Inorg. Chem. 2016, 21, 339–346. [Google Scholar] [CrossRef]
- Shu, X.; Cai, H.; Xiang, Y.B.; Li, H.; Lipworth, L.; Miller, N.L.; Zheng, W.; Shu, X.O.; Hsi, R.S. Green tea intake and risk of incident kidney stones: Prospective cohort studies in middle-aged and elderly Chinese individuals. Int. J. Urol. 2019, 26, 241–246. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, H.; Xu, C.; Zhou, F.; Su, H.; Zhang, Y. Associations between smoke exposure and kidney stones: Results from the NHANES (2007–2018) and Mendelian randomization analysis. Front. Med. 2023, 10, 1218051. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.H.; Lee, J.I.; Shen, J.T.; Wu, Y.H.; Tsao, Y.H.; Jhan, J.H.; Wang, H.S.; Lee, Y.C.; Huang, S.P.; Chen, S.C.; et al. The impact of secondhand smoke on the development of kidney stone disease is not inferior to that of smoking: A longitudinal cohort study. BMC Public Health 2023, 23, 1189. [Google Scholar] [CrossRef]
- Thomas, L.D.; Elinder, C.G.; Tiselius, H.G.; Wolk, A.; Akesson, A. Ascorbic acid supplements and kidney stone incidence among men: A prospective study. JAMA Intern. Med. 2013, 173, 386–388. [Google Scholar] [CrossRef]
- Liu Kot, K.; Labagnara, K.; Kim, J.I.; Loloi, J.; Gupta, K.; Agalliu, I.; Small, A.C. Evaluating the American Urologic Association (AUA) dietary recommendations for kidney stone management using the National Health And Nutritional Examination Survey (NHANES). Urolithiasis 2023, 51, 60. [Google Scholar] [CrossRef]
- Zeng, H.; Liu, Z.; He, Y.; Chen, H.; He, J.; Liu, M.; Wu, S.; He, H.; Huang, C.; Xu, R. Multivitamins co-intake can reduce the prevalence of kidney stones: A large-scale cross-sectional study. Int. Urol. Nephrol. 2024, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Jaturakan, O.; Dissayabutra, T.; Chaiyabutr, N.; Kijtawornrat, A.; Tosukhowong, P.; Rungsipipat, A.; Nhujak, T.; Buranakarl, C. Combination of vitamin E and vitamin C alleviates renal function in hyperoxaluric rats via antioxidant activity. J. Vet. Med. Sci. 2017, 79, 896–903. [Google Scholar] [CrossRef] [PubMed]
- Robitaille, L.; Mamer, O.A.; Miller, W.H.; Levine, M.; Assouline, S.; Melnychuk, D.; Rousseau, C.; Hoffer, L.J. Oxalic acid excretion after intravenous ascorbic acid administration. Metabolism 2009, 58, 263–269. [Google Scholar] [CrossRef]
- Thamilselvan, V.; Menon, M.; Thamilselvan, S. Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: Effect of α-tocopherol and ascorbic acid. BJU Int. 2014, 114, 140–150. [Google Scholar] [CrossRef]
- Manzoor, M.A.P.; Duwal, S.R.; Mujeeburahiman, M.; Rekha, P.D. Vitamin C inhibits crystallization of struvite from artificial urine in the presence of Pseudomonas aeruginosa. Int. Braz. J. Urol. 2018, 44, 1234–1242. [Google Scholar] [CrossRef]
- Sorensen, M.D.; Chi, T.; Shara, N.M.; Wang, H.; Hsi, R.S.; Orchard, T.; Kahn, A.J.; Jackson, R.D.; Miller, J.; Reiner, A.P.; et al. Activity, energy intake, obesity, and the risk of incident kidney stones in postmenopausal women: A report from the Women’s Health Initiative. J. Am. Soc. Nephrol. 2014, 25, 362–369. [Google Scholar] [CrossRef] [PubMed]
- Ferraro, P.M.; Curhan, G.C.; Sorensen, M.D.; Gambaro, G.; Taylor, E.N. Physical activity, energy intake and the risk of incident kidney stones. J. Urol. 2015, 193, 864–868. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Wu, W.; Zhao, F.; Xu, F.; Han, D.; Guo, X.; Lyu, J. Association between physical activity and kidney stones based on dose-response analyses using restricted cubic splines. Eur. J. Public Health 2020, 30, 1206–1211. [Google Scholar] [CrossRef] [PubMed]
- Aune, D.; Mahamat-Saleh, Y.; Norat, T.; Riboli, E. Body fatness, diabetes, physical activity and risk of kidney stones: A systematic review and meta-analysis of cohort studies. Eur. J. Epidemiol. 2018, 33, 1033–1047. [Google Scholar] [CrossRef] [PubMed]
- Stamatelou, K.; Goldfarb, D.S. Epidemiology of Kidney Stones. Healthcare 2023, 11, 424. [Google Scholar] [CrossRef] [PubMed]
- Khan, S.R.; Pearle, M.S.; Robertson, W.G.; Gambaro, G.; Canales, B.K.; Doizi, S.; Traxer, O.; Tiselius, H.G. Kidney stones. Nat. Rev. Dis. Primers. 2016, 2, 16008. [Google Scholar] [CrossRef] [PubMed]
- Khanna, D.; Peltzer, C.; Kahar, P.; Par, M.S. Body Mass Index (BMI): A Screening Tool Analysis. Cureus 2022, 14, e22119. [Google Scholar] [CrossRef] [PubMed]
- Haase, C.L.; Eriksen, K.T.; Lopes, S.; Satylganova, A.; Schnecke, V.; McEwan, P. Body mass index and risk of obesity-related conditions in a cohort of 2.9 million people: Evidence from a UK primary care database. Obes. Sci. Pract. 2021, 7, 137–147. [Google Scholar] [CrossRef]
- Bhaskaran, K.; Dos-Santos-Silva, I.; Leon, D.A.; Douglas, I.J.; Smeeth, L. Association of BMI with overall and cause-specific mortality: A population-based cohort study of 3·6 million adults in the UK. Lancet Diabetes Endocrinol. 2018, 6, 944–953. [Google Scholar] [CrossRef]
- Asplin, J.R. Obesity and urolithiasis. Adv. Chronic Kidney Dis. 2009, 16, 11–20. [Google Scholar] [CrossRef]
- Li, W.M.; Chou, Y.H.; Li, C.C.; Liu, C.C.; Huang, S.P.; Wu, W.J.; Chen, C.W.; Su, C.Y.; Lee, M.H.; Wei, Y.C.; et al. Association of body mass index and urine pH in patients with urolithiasis. Urol. Res. 2009, 37, 193–196. [Google Scholar] [CrossRef] [PubMed]
- Eisner, B.H.; Eisenberg, M.L.; Stoller, M.L. Relationship between body mass index and quantitative 24-hour urine chemistries in patients with nephrolithiasis. Urology 2010, 75, 1289–1293. [Google Scholar] [CrossRef]
- Carbone, A.; Al Salhi, Y.; Tasca, A.; Palleschi, G.; Fuschi, A.; De Nunzio, C.; Bozzini, G.; Mazzaferro, S.; Pastore, A.L. Obesity and kidney stone disease: A systematic review. Minerva Urol. Nefrol. 2018, 70, 393–400. [Google Scholar] [CrossRef] [PubMed]
- Emami, E.; Heidari-Soureshjani, S.; Oroojeni Mohammadjavad, A.; Sherwin, C.M. Obesity and the Risk of Developing Kidney Stones: A Systematic Review and Meta-analysis. Iran. J. Kidney Dis. 2023, 1, 63–72. [Google Scholar] [PubMed]
- Wang, D.; Tan, J.; Geng, E.; Wan, C.; Xu, J.; Yang, B.; Zhou, Y.; Zhou, G.; Ye, Z.; Li, J.; et al. Impact of body mass index on size and composition of urinary stones: A systematic review and meta-analysis. Int. Braz. J. Urol. 2023, 49, 281–298. [Google Scholar] [CrossRef] [PubMed]
- Taheri, F.; Djafarian, K.; Clark, C.; Taheri, M.; Djafari, F.; Honarkar Shafie, E.; Aghasi, M.; Shab Bidar, S. The association of body mass index and quantitative 24 h urine metabolites in patients with Nephrolithiasis: A systematic review and dose response meta analysis. Obes. Med. 2020, 20, 100262. [Google Scholar] [CrossRef]
- Shavit, L.; Ferraro, P.M.; Johri, N.; Robertson, W.; Walsh, S.B.; Moochhala, S.; Unwin, R. Effect of being overweight on urinary metabolic risk factors for kidney stone formation. Nephrol. Dial. Transplant. 2015, 30, 607–613. [Google Scholar] [CrossRef] [PubMed]
- Abate, N.; Chandalia, M.; Cabo-Chan, A.V.; Moe, O.W.; Sakhaee, K. The metabolic syndrome and uric acid nephrolithiasis: Novel features of renal manifestation of insulin resistance. Kidney Int. 2004, 65, 386–392. [Google Scholar] [CrossRef]
- Liu, L.H.; Kang, R.; He, J.; Zhao, S.K.; Li, F.T.; Zhao, Z.G. Diabetes mellitus and the risk of urolithiasis: A meta-analysis of observational studies. Urolithiasis 2015, 43, 293–301. [Google Scholar] [CrossRef]
- Wong, Y.; Cook, P.; Roderick, P.; Somani, B.K. Metabolic Syndrome and Kidney Stone Disease: A Systematic Review of Literature. J. Endourol. 2016, 30, 246–253. [Google Scholar] [CrossRef]
- Saeedi, P.; Petersohn, I.; Salpea, P.; Malanda, B.; Karuranga, S.; Unwin, N.; Colagiuri, S.; Guariguata, L.; Motala, A.A.; Ogurtsova, K.; et al. Global and regional diabetes prevalence estimates for 2019 and projections for 2030 and 2045: Results from the International Diabetes Federation Diabetes Atlas, 9. Diabetes Res. Clin. Pract. 2019, 157, 107843. [Google Scholar] [CrossRef] [PubMed]
- Saklayen, M.G. The Global Epidemic of the Metabolic Syndrome. Curr. Hypertens. Rep. 2018, 20, 12. [Google Scholar] [CrossRef] [PubMed]
- Sorokin, I.; Mamoulakis, C.; Miyazawa, K.; Rodgers, A.; Talati, J.; Lotan, Y. Epidemiology of stone disease across the world. World J. Urol. 2017, 35, 1301–1320. [Google Scholar] [CrossRef]
- Grundy, S.M.; Brewer, H.B.; Cleeman, J.I.; Smith, S.C.; Lenfant, C.; Association, A.H.; National Heart, Lung, and Blood Institute. Definition of metabolic syndrome: Report of the National Heart, Lung, and Blood Institute/American Heart Association conference on scientific issues related to definition. Circulation 2004, 109, 433–438. [Google Scholar] [CrossRef] [PubMed]
- Daudon, M.; Traxer, O.; Conort, P.; Lacour, B.; Jungers, P. Type 2 diabetes increases the risk for uric acid stones. J. Am. Soc. Nephrol. 2006, 17, 2026–2033. [Google Scholar] [CrossRef]
- Banday, M.Z.; Sameer, A.S.; Nissar, S. Pathophysiology of diabetes: An overview. Avicenna J. Med. 2020, 10, 174–188. [Google Scholar] [CrossRef] [PubMed]
- Tomic, D.; Shaw, J.E.; Magliano, D.J. The burden and risks of emerging complications of diabetes mellitus. Nat. Rev. Endocrinol. 2022, 18, 525–539. [Google Scholar] [CrossRef]
- Efe, O.; Verma, A.; Waikar, S.S. Urinary oxalate as a potential mediator of kidney disease in diabetes mellitus and obesity. Curr. Opin. Nephrol. Hypertens. 2019, 28, 316–320. [Google Scholar] [CrossRef] [PubMed]
- Geraghty, R.; Abdi, A.; Somani, B.; Cook, P.; Roderick, P. Does chronic hyperglycaemia increase the risk of kidney stone disease? results from a systematic review and meta-analysis. BMJ Open. 2020, 10, e032094. [Google Scholar] [CrossRef]
- Rahman, I.A.; Nusaly, I.F.; Syahrir, S.; Nusaly, H.; Mansyur, M.A. Association between metabolic syndrome components and the risk of developing nephrolithiasis: A systematic review and bayesian meta-analysis. F1000Research 2021, 10, 104. [Google Scholar] [CrossRef]
- Yuan, S.; Larsson, S.C. Assessing causal associations of obesity and diabetes with kidney stones using Mendelian randomization analysis. Mol. Genet. Metab. 2021, 134, 212–215. [Google Scholar] [CrossRef] [PubMed]
- DiBianco, J.M.; Jarrett, T.W.; Mufarrij, P. Metabolic Syndrome and Nephrolithiasis Risk: Should the Medical Management of Nephrolithiasis Include the Treatment of Metabolic Syndrome? Rev. Urol. 2015, 17, 117–128. [Google Scholar] [PubMed]
- Zhou, T.; Watts, K.; Agalliu, I.; DiVito, J.; Hoenig, D.M. Effects of visceral fat area and other metabolic parameters on stone composition in patients undergoing percutaneous nephrolithotomy. J. Urol. 2013, 190, 1416–1420. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, Y.; Kohjimoto, Y.; Iba, A.; Matsumura, N.; Hara, I. Weight loss intervention reduces the risk of kidney stone formation in a rat model of metabolic syndrome. Int. J. Urol. 2015, 22, 404–409. [Google Scholar] [CrossRef] [PubMed]
- Taguchi, K.; Cho, S.Y.; Ng, A.C.; Usawachintachit, M.; Tan, Y.K.; Deng, Y.L.; Shen, C.H.; Gyawali, P.; Alenezi, H.; Basiri, A.; et al. The Urological Association of Asia clinical guideline for urinary stone disease. Int. J. Urol. 2019, 26, 688–709. [Google Scholar] [CrossRef] [PubMed]
- Siener, R.; Glatz, S.; Nicolay, C.; Hesse, A. The role of overweight and obesity in calcium oxalate stone formation. Obes. Res. 2004, 12, 106–113. [Google Scholar] [CrossRef] [PubMed]
- Cong, X.; Shen, L.; Gu, X. Current opinions on nephrolithiasis associated with primary hyperparathyroidism. Urolithiasis. 2018, 46, 453–457. [Google Scholar] [CrossRef] [PubMed]
- Suh, J.M.; Cronan, J.J.; Monchik, J.M. Primary hyperparathyroidism: Is there an increased prevalence of renal stone disease? AJR Am. J. Roentgenol. 2008, 191, 908–911. [Google Scholar] [CrossRef]
- Kochman, M. Primary hyperparathyroidism: Clinical manifestations, diagnosis and evaluation according to the Fifth International Workshop guidelines. Reumatologia. 2023, 61, 256–263. [Google Scholar] [CrossRef]
- Rejnmark, L.; Vestergaard, P.; Mosekilde, L. Nephrolithiasis and renal calcifications in primary hyperparathyroidism. J. Clin. Endocrinol. Metab. 2011, 96, 2377–2385. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Sturgeon, C.; Yeh, M.W. Diagnosis and Management of Primary Hyperparathyroidism. JAMA 2020, 323, 1186–1187. [Google Scholar] [CrossRef] [PubMed]
- Bilezikian, J.P. Primary Hyperparathyroidism. J. Clin. Endocrinol. Metab. 2018, 103, 3993–4004. [Google Scholar] [CrossRef] [PubMed]
- Tay, Y.D.; Liu, M.; Bandeira, L.; Bucovsky, M.; Lee, J.A.; Silverberg, S.J.; Walker, M.D. Occult urolithiasis in asymptomatic primary hyperparathyroidism. Endocr. Res. 2018, 43, 106–115. [Google Scholar] [CrossRef] [PubMed]
- Stephen, A.E.; Mannstadt, M.; Hodin, R.A. Indications for Surgical Management of Hyperparathyroidism: A Review. JAMA Surg. 2017, 152, 878–882. [Google Scholar] [CrossRef] [PubMed]
- Anderson, S.M.; Kapp, B.B.; Angell, J.M.; Abd, T.T.; Thompson, N.J.; Ritenour, C.W.; Issa, M.M. Remote monitoring and supervision of urology residents utilizing integrated endourology suites-a prospective study of patients’ opinions. J. Endourol. 2013, 27, 96–100. [Google Scholar] [CrossRef]
- Bilezikian, J.P.; Khan, A.A.; Silverberg, S.J.; Fuleihan, G.E.; Marcocci, C.; Minisola, S.; Perrier, N.; Sitges-Serra, A.; Thakker, R.V.; Guyatt, G.; et al. Evaluation and Management of Primary Hyperparathyroidism: Summary Statement and Guidelines from the Fifth International Workshop. J. Bone Miner. Res. 2022, 37, 2293–2314. [Google Scholar] [CrossRef]
- Zanocco, K.A.; Wu, J.X.; Yeh, M.W. Parathyroidectomy for asymptomatic primary hyperparathyroidism: A revised cost-effectiveness analysis incorporating fracture risk reduction. Surgery 2017, 161, 16–24. [Google Scholar] [CrossRef]
- Mollerup, C.L.; Vestergaard, P.; Frøkjaer, V.G.; Mosekilde, L.; Christiansen, P.; Blichert-Toft, M. Risk of renal stone events in primary hyperparathyroidism before and after parathyroid surgery: Controlled retrospective follow up study. BMJ 2002, 325, 807. [Google Scholar] [CrossRef]
- Lundstam, K.; Heck, A.; Godang, K.; Mollerup, C.; Baranowski, M.; Pernow, Y.; Aas, T.; Hessman, O.; Rosén, T.; Nordenström, J.; et al. Effect of Surgery Versus Observation: Skeletal 5-Year Outcomes in a Randomized Trial of Patients With Primary HPT (the SIPH Study). J. Bone Miner. Res. 2017, 32, 1907–1914. [Google Scholar] [CrossRef]
- Verdelli, C.; Corbetta, S. Mechanisms in Endocrinology: Kidney involvement in patients with primary hyperparathyroidism: An update on clinical and molecular aspects. Eur. J. Endocrinol. 2017, 176, R39–R52. [Google Scholar] [CrossRef]
The Role of the Registered Dietitian | Modifications in Lifestyle and Habits | Additional Recommendations for Individuals with Disease Influenced by Lifestyle |
---|---|---|
Correcting urinary risk factors for kidney stone formation can be achieved through diet modification, particularly in the case of the most common stone type, calcium oxalate. | Current research indicates that guidance on alcohol intake for kidney stone prevention should be personalized, considering individual risk factors and consumption patterns. | Current evidence fails to conclusively determine if targeted interventions can effectively lower the risk of nephrolithiasis in individuals with hypertension, obesity, diabetes mellitus, and metabolic syndrome. Nevertheless, initial findings from basic research models suggest a potential beneficial impact. |
To ensure successful dietary therapy for stone-forming patients, dietary therapy should be individualized based on each patient’s unique biochemical and dietary risk profile. | Analysis of up-to-date studies mostly reveals that tea consumption tends to have protective effects against the development of urolithiasis. | Management of nephrolithiasis emphasizes lifestyle modifications to mitigate recurrence risks, alongside rapid recovery, and identification of predisposing systemic conditions. It is recommended to emphasize lifestyle changes even in the absence of clear-cut data on their effects on kidney stone prevention. |
A comprehensive nutritional assessment is a crucial aspect of the evaluation and a prerequisite for effective dietary therapy in stone-forming patients. | Recent research has suggested a potential association between tobacco use, including secondhand smoke exposure, and a heightened risk of developing kidney stone disease. | |
Habits in dietary intake can be accurately gauged through 7-day dietary records, which are considered the most precise method for evaluating dietary intake. | The relationship between common vitamins and the prevalence of kidney stones remains unresolved according to current research findings. | |
The risk of kidney stone formation can be reduced by adjusting the urinary risk profile through different dietary factors. These factors include fluid intake, dietary protein, carbohydrates, oxalate, calcium, and sodium chloride. | Given the mixed evidence and the influence of confounding variables in the existing studies, the actual effect of physical activity on kidney stone disease risk continues to be a subject of debate. | |
Personalized interventions, including microbial supplements, probiotics, synbiotics, and customized dietary changes tailored to an individual’s unique gut microbiota, could enhance the prevention of stone formation and its recurrence. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balawender, K.; Łuszczki, E.; Mazur, A.; Wyszyńska, J. The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease—A State-of-the-Art Review. Nutrients 2024, 16, 1932. https://doi.org/10.3390/nu16121932
Balawender K, Łuszczki E, Mazur A, Wyszyńska J. The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease—A State-of-the-Art Review. Nutrients. 2024; 16(12):1932. https://doi.org/10.3390/nu16121932
Chicago/Turabian StyleBalawender, Krzysztof, Edyta Łuszczki, Artur Mazur, and Justyna Wyszyńska. 2024. "The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease—A State-of-the-Art Review" Nutrients 16, no. 12: 1932. https://doi.org/10.3390/nu16121932
APA StyleBalawender, K., Łuszczki, E., Mazur, A., & Wyszyńska, J. (2024). The Multidisciplinary Approach in the Management of Patients with Kidney Stone Disease—A State-of-the-Art Review. Nutrients, 16(12), 1932. https://doi.org/10.3390/nu16121932