D-Tagatose: A Rare Sugar with Functional Properties and Antimicrobial Potential against Oral Species
Abstract
:1. Introduction
2. Biological Effects of D-Tagatose
2.1. Functional Properties of D-Tagatose and Its Role in Systemic Health
2.2. Benefits of D-Tagatose for Oral Health
Antimicrobial Potential of D-Tagatose against Oral Bacteria
3. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Mooradian, A.D.; Smith, M.; Tokuda, M. The Role of Artificial and Natural Sweeteners in Reducing the Consumption of Table Sugar: A Narrative Review. Clin. Nutr. ESPEN 2017, 18, 1–8. [Google Scholar] [CrossRef]
- Smith, A.; Avery, A.; Ford, R.; Yang, Q.; Goux, A.; Mukherjee, I.; Neville, D.C.A.; Jethwa, P. Rare Sugars: Metabolic Impacts and Mechanisms of Action: A Scoping Review. Br. J. Nutr. 2022, 128, 389–406. [Google Scholar] [CrossRef]
- Roy, S.; Chikkerur, J.; Roy, S.C.; Dhali, A.; Kolte, A.P.; Sridhar, M.; Samanta, A.K. Tagatose as a Potential Nutraceutical: Production, Properties, Biological Roles, and Applications. J. Food Sci. 2018, 83, 2699–2709. [Google Scholar] [CrossRef]
- Hirst, E.L.; Hough, L.; Jones, J.K.N. Composition of the Gum of Sterculia Setigera: Occurrence of D-Tagatose in Nature. Nature 1949, 163, 177. [Google Scholar] [CrossRef]
- Bertelsen, H.; Andersen, H.; Tvede, M. Fermentation of D-Tagatose by Human Intestinal Bacteria and Dairy Lactic Acid Bacteria. Microb. Ecol. Health Dis. 2001, 13, 87–95. [Google Scholar] [CrossRef]
- Carocho, M.; Morales, P.; Ferreira, I.C.F.R. Sweeteners as Food Additives in the XXI Century: A Review of What Is Known, and What Is to Come. Food Chem. Toxicol. 2017, 107, 302–317. [Google Scholar] [CrossRef]
- Pham, H.; Phillips, L.K.; Jones, K.L. Acute Effects of Nutritive and Non-Nutritive Sweeteners on Postprandial Blood Pressure. Nutrients 2019, 11, 1717. [Google Scholar] [CrossRef]
- Chahed, A.; Nesler, A.; Aziz, A.; Barka, E.A.; Pertot, I.; Perazzolli, M. A Review of Knowledge on the Mechanisms of Action of the Rare Sugar d-tagatose against Phytopathogenic Oomycetes. Plant Pathol. 2021, 70, 1979–1986. [Google Scholar] [CrossRef]
- Xiao, Y.; Chen, Q.; Guang, C.; Zhang, W.; Mu, W. An Overview on Biological Production of Functional Lactose Derivatives. Appl. Microbiol. Biotechnol. 2019, 103, 3683–3691. [Google Scholar] [CrossRef]
- Ahmed, A.; Khan, T.A.; Ramdath, D.D.; Kendall, C.W.C.; Sievenpiper, J.L. Rare Sugars and Their Health Effects in Humans: A Systematic Review and Narrative Synthesis of the Evidence from Human Trials. Nutr. Rev. 2022, 80, 255–270. [Google Scholar] [CrossRef]
- Police, S.B.; Harris, J.C.; Lodder, R.A.; Cassis, L.A. Effect of Diets Containing Sucrose vs. D-tagatose in Hypercholesterolemic Mice. Obesity 2009, 17, 269–275. [Google Scholar] [CrossRef]
- Oh, D.K. Tagatose: Properties, Applications, and Biotechnological Processes. Appl. Microbiol. Biotechnol. 2007, 76, 1–8. [Google Scholar] [CrossRef]
- Levin, G.; Zehner, L.; Saunders, J.; Beadle, J. Sugar Substitutes: Their Energy Values, Bulk Characteristics, and Potential Health Benefits. Am. J. Clin. Nutr. 1995, 62, 1161S–1168S. [Google Scholar] [CrossRef]
- Guerrero-Wyss, M.; Durán Agüero, S.; Angarita Dávila, L. D-Tagatose Is a Promising Sweetener to Control Glycaemia: A New Functional Food. Biomed Res. Int. 2018, 2018, 1–7. [Google Scholar] [CrossRef]
- Donner, T.W.; Wilber, J.F.; Ostrowski, D. D-Tagatose, a Novel Hexose: Acute Effects on Carbohydrate Tolerance in Subjects with and without Type 2 Diabetes. Diabetes, Obes. Metab. 1999, 1, 285–291. [Google Scholar] [CrossRef]
- Buemann, B.; Toubro, S.; Astrup, A. Human Gastrointestinal Tolerance to D-Tagatose. Regul. Toxicol. Pharmacol. 1999, 29, 71–77. [Google Scholar] [CrossRef]
- Buemann, B.; Toubro, S.; Raben, A.; Blundell, J.; Astrup, A. The Acute Effect of D-Tagatose on Food Intake in Human Subjects. Br. J. Nutr. 2000, 84, 227–231. [Google Scholar] [CrossRef]
- Kruger, C.L.; Whittaker, M.H.; Frankos, V.H. Genotoxicity Tests on D-Tagatose. Regul. Toxicol. Pharmacol. 1999, 29, 36–42. [Google Scholar] [CrossRef]
- Boesch, C.; Ith, M.; Jung, B.; Bruegger, K.; Erban, S.; Diamantis, I.; Kreis, R.; Bär, A. Effect of Oral D-Tagatose on Liver Volume and Hepatic Glycogen Accumulation in Healthy Male Volunteers. Regul. Toxicol. Pharmacol. 2001, 33, 257–267. [Google Scholar] [CrossRef]
- Lee, A.; Storey, D.M. Comparative Gastrointestinal Tolerance of Sucrose, Lactitol, or D-Tagatose in Chocolate. Regul. Toxicol. Pharmacol. 1999, 29, 78–82. [Google Scholar] [CrossRef]
- Saunders, J.P.; Donner, T.W.; Sadler, J.H.; Levin, G.V.; Makris, N.G. Effects of Acute and Repeated Oral Doses of D-Tagatose on Plasma Uric Acid in Normal and Diabetic Humans. Regul. Toxicol. Pharmacol. 1999, 29, 57–65. [Google Scholar] [CrossRef]
- Mortensen, A. Sweeteners Permitted in the European Union: Safety Aspects. Scand. J. Food Nutr. 2006, 50, 104–116. [Google Scholar] [CrossRef]
- Lu, Y.; Levin, G.V.; Donner, T.W. Tagatose, a New Antidiabetic and Obesity Control Drug. Diabetes Obes. Metab. 2008, 10, 109–134. [Google Scholar] [CrossRef]
- Grant, L.D.; Bell, L.N. Physical and Chemical Stability of Tagatose Powder. J. Food Sci. 2012, 77, 308–313. [Google Scholar] [CrossRef]
- Bell, L.N.; Luecke, K.J. Tagatose Stability in Milk and Diet Lemonade. J. Food Sci. 2012, 77, 36–39. [Google Scholar] [CrossRef]
- Mooradian, A.D.; Haas, M.J.; Onstead-Haas, L.; Tani, Y.; Iida, T.; Tokuda, M. Naturally Occurring Rare Sugars Are Free Radical Scavengers and Can Ameliorate Endoplasmic Reticulum Stress. Int. J. Vitam. Nutr. Res. 2020, 90, 210–220. [Google Scholar] [CrossRef]
- Liang, Y.X.; Wen, P.; Wang, Y.; Ouyang, D.M.; Wang, D.; Chen, Y.Z.; Song, Y.; Deng, J.; Sun, Y.M.; Wang, H. The Constipation-Relieving Property of D-Tagatose by Modulating the Composition of Gut Microbiota. Int. J. Mol. Sci. 2019, 20, 5721. [Google Scholar] [CrossRef]
- Donner, T.W.; Magder, L.S.; Zarbalian, K. Dietary Supplementation with D-Tagatose in Subjects with Type 2 Diabetes Leads to Weight Loss and Raises High-Density Lipoprotein Cholesterol. Nutr. Res. 2010, 30, 801–806. [Google Scholar] [CrossRef]
- Ensor, M.; Williams, J.; Smith, R.; Banfield, A.; Lodder, R.A. Effects of Three Low-Doses of D-Tagatose on Glycemic Control Over Six Months in Subjects with Mild Type 2 Diabetes Mellitus Under Control with Diet and Exercise. J. Endocrinol. Diabetes Obes. 2014, 2, 1057. [Google Scholar]
- Ensor, M.; Banfield, A.B.; Smith, R.R.; Williams, J.; Lodder, R.A. Safety and Efficacy of D-Tagatose in Glycemic Control in Subjects with Type 2 Diabetes. J. Endocrinol. Diabetes Obes. 2016, 3, 1–24. [Google Scholar]
- Noronha, J.C.; Braunstein, C.R.; Mejia, S.B.; Khan, T.A.; Kendall, C.W.C.; Wolever, T.M.S.; Leiter, L.A.; Sievenpiper, J.L. The Effect of Small Doses of Fructose and Its Epimers on Glycemic Control: A Systematic Review and Meta-Analysis of Controlled Feeding Trials. Nutrients 2018, 10, 1805. [Google Scholar] [CrossRef]
- Nagata, Y.; Mizuta, N.; Kanasaki, A.; Tanaka, K. Rare Sugars, d-Allulose, d-Tagatose and d-Sorbose, Differently Modulate Lipid Metabolism in Rats. J. Sci. Food Agric. 2018, 98, 2020–2026. [Google Scholar] [CrossRef]
- Williams, J. The Effect of D-Tagatose on Fructose Absorption in a Rat Model. J. Dev. Drugs 2013, 2. [Google Scholar] [CrossRef]
- Van Laar, A.D.E.; Grootaert, C.; Van Camp, J. Rare Mono- and Disaccharides as Healthy Alternative for Traditional Sugars and Sweeteners? Crit. Rev. Food Sci. Nutr. 2021, 61, 713–741. [Google Scholar] [CrossRef]
- Livesey, G.; Brown, J.C. D-Tagatose Is a Bulk Sweetener with Zero Energy Determined in Rats. J. Nutr. 1996, 126, 1601–1609. [Google Scholar] [CrossRef]
- Lu, Y.; Levin, G.V. Removal and Prevention of Dental Plaque with D-Tagatose. Int. J. Cosmet. Sci. 2002, 24, 225–234. [Google Scholar] [CrossRef]
- Sawada, D.; Ogawa, T.; Miyake, M.; Hasui, Y.; Yamaguchi, F.; Izumori, K.; Tokuda, M. Potent Inhibitory Effects of D-Tagatose on the Acid Production and Water-Insoluble Glucan Synthesis of Streptococcus Mutans GS5 in the Presence of Sucrose. Acta Med. Okayama 2015, 69, 105–111. [Google Scholar] [CrossRef]
- Hasibul, K.; Nakayama-Imaohji, H.; Hashimoto, M.; Yamasaki, H.; Ogawa, T.; Waki, J.; Tada, A.; Yoneda, S.; Tokuda, M.; Miyake, M.; et al. D-Tagatose Inhibits the Growth and Biofilm Formation of Streptococcus Mutans. Mol. Med. Rep. 2018, 17, 843–851. [Google Scholar] [CrossRef]
- Nagamine, Y.; Hasibul, K.; Ogawa, T.; Tada, A.; Kamitori, K.; Hossain, A.; Yamaguchi, F.; Tokuda, M.; Kuwahara, T.; Miyake, M. D-Tagatose Effectively Reduces the Number of Streptococcus Mutans and Oral Bacteria in Healthy Adult Subjects: A Chewing Gum Pilot Study and Randomized Clinical Trial. Acta Med. Okayama 2020, 74, 307–317. [Google Scholar] [CrossRef]
- Mayumi, S.; Kuboniwa, M.; Sakanaka, A.; Hashino, E.; Ishikawa, A.; Ijima, Y.; Amano, A. Potential of Prebiotic D-Tagatose for Prevention of Oral Disease. Front. Cell. Infect. Microbiol. 2021, 11, 1–14. [Google Scholar] [CrossRef]
- Di Tinco, R.; Bertani, G.; Pisciotta, A.; Bertoni, L.; Bertacchini, J.; Colombari, B.; Conserva, E.; Blasi, E.; Consolo, U.; Carnevale, G. Evaluation of Antimicrobial Effect of Air-Polishing Treatments and Their Influence on Human Dental Pulp Stem Cells Seeded on Titanium Disks. Int. J. Mol. Sci. 2021, 22, 865. [Google Scholar] [CrossRef]
- Vitale, M.C.; Pascadopoli, M.; Gallo, S.; Campanini, M.; Licari, A.; Marseglia, G.L.; Scribante, A. Oral findings in pediatric patients with allergic rhinitis and asthma: A cohort study of an Italian setting. J. Clin. Pediatr. Dent. 2023, 47, 51–58. [Google Scholar] [CrossRef]
- Scribante, A.; Pascadopoli, M.; Bergomi, P.; Licari, A.; Marseglia, G.L.; Bizzi, F.M.; Butera, A. Evaluation of two different remineralising toothpastes in children with drug-controlled asthma and allergic rhinitis: A randomised clinical trial. Eur. J. Paediatr. Dent. 2024, 25, 137–142. [Google Scholar] [CrossRef]
- Hancock, S.; Zinn, C.; Schofield, G. The consumption of processed sugar- and starch-containing foods, and dental caries: A systematic review. Eur. J. Oral Sci. 2020, 128, 467–475. [Google Scholar] [CrossRef]
- Cai, J.N.; Choi, H.M.; Jeon, J.G. Relationship between sucrose concentration and bacteria proportion in a multispecies biofilm: Short title: Sucrose challenges to a multispecies biofilm. J. Oral Microbiol. 2021, 13, 1910443. [Google Scholar] [CrossRef]
- Pitts, N.B.; Twetman, S.; Fisher, J.; Marsh, P.D. Understanding dental caries as a non-communicable disease. Br. Dent. J. 2021, 231, 749–753. [Google Scholar] [CrossRef]
- Butera, A.; Maiorani, C.; Morandini, A.; Simonini, M.; Morittu, S.; Trombini, J.; Scribante, A. Evaluation of Children Caries Risk Factors: A Narrative Review of Nutritional Aspects, Oral Hygiene Habits, and Bacterial Alterations. Children 2022, 9, 262. [Google Scholar] [CrossRef]
- Moores, C.J.; Kelly, S.A.M.; Moynihan, P.J. Systematic Review of the Effect on Caries of Sugars Intake: Ten-Year Update. J. Dent. Res. 2022, 101, 1034–1045. [Google Scholar] [CrossRef]
- Butera, A.; Gallo, S.; Pascadopoli, M.; Montasser, M.A.; Abd El Latief, M.H.; Modica, G.G.; Scribante, A. Home Oral Care with Biomimetic Hydroxyapatite vs. Conventional Fluoridated Toothpaste for the Remineralization and Desensitizing of White Spot Lesions: Randomized Clinical Trial. Int. J. Environ. Res. Public Health 2022, 19, 8676. [Google Scholar] [CrossRef]
References | Assay | Intervention | Main Outcomes |
---|---|---|---|
Lu and Levin (2002) [36] | In vitro | Solutions containing D-galactose, D-tagatose or D-sorbitol (143 to 750 mM) were tested to reverse the coaggregation of bacterial species related to oral biofilms. | D-galactose and D-tagatose reversed several bacterial coaggregations, while D-sorbitol had little effect. D-tagatose was efficient in completely or almost completely reversing the coaggregation of 17 (60%) of the 28 pairs of coaggregated bacteria, at a concentration of 750 mM or below. |
Sawada et al. (2015) [37] | In vitro | The effects of xylitol, D-psicose, L-psicose, D-tagatose or L-tagatose (10%) were evaluated on the growth of S. mutans (GS-5), acid production and the synthesis of insoluble glucan. | After 12 h of cultivation, the tested sugars significantly inhibited the growth of S. mutans, with D-tagatose showing the best effect, statistically differing from xylitol. The sugars significantly inhibited the decline in pH in the presence of sucrose (1%), with D-tagatose and D-psicose showing the most expressive inhibition, differing statistically from xylitol. Only xylitol and D-tagatose significantly inhibited the synthesis of insoluble glucan, in the presence of sucrose (1%). |
Hasibul et al. (2018) [38] | In vitro | The effects of xylitol, D-glucose, D-tagatose and xylitol + D-tagatose on S. mutans (GS-5) biofilm formation were compared. The dose–response effect of D-tagatose and xylitol (0; 0.5; 1; 2 and 4%) on biofilm formation was also investigated, as well as the inhibitory potential of D-tagatose on the expression of the enzyme glycosyltransferase B (gtfB) and the synthesis of insoluble glucan. | Xylitol, D-glucose, D-tagatose and xylitol + D-tagatose significantly reduced S. mutans biofilm formation in the presence of sucrose (1%). In relation to xylitol, D-tagatose showed better results, inhibiting biofilm formation in a dose-dependent manner. In addition, D-tagatose significantly reduced the expression of the enzyme glycosyltransferase (gtfB) and the synthesis of insoluble glucan in the presence of sucrose (1%). |
Nagamine et al. (2020) [39] | In vitro. Randomized clinical trial | In vitro: Oral bacteria from human saliva were cultured in (1) control medium (without xylitol or D-tagatose); (2) 5% D-tagatose; (3) 5% xylitol; (4) 2.5% D-tagatose + 2.5% xylitol. Clinical trial: Experimental groups (n = 6): (1) gum containing 1.5 g D-tagatose; (2) gum containing 1.5 g xylitol; (3) gum containing 0.75 g D-tagatose + 0.75 g xylitol. Participants consumed 2 tablets of the gum 3 times/day for 4 weeks. Stimulated saliva and dental biofilm were collected weekly. | In vitro: Xylitol, D-tagatose and xylitol + D-tagatose significantly reduced the total bacterial count and number of colony-forming units of S. mutans. D-tagatose, alone or associated with xylitol, showed a more significant reduction in bacterial counts (total bacteria and S. mutans), statistically differing from xylitol. Clinical trial: There were no significant changes in the count of total bacteria and salivary lactobacilli, as well as in the count of S. mutans in the biofilm. Only the D-tagatose + xylitol group significantly reduced the number of salivary S. mutans. |
Mayumi et al. (2021) [40] | Salivary metabolome and plaque index analysis. In vitro assays | Analysis of the metabolomic profile of human saliva and plaque index. In vitro assays: Effects of D-tagatose on cell viability (1 and 5%), biofilm formation (0.8%), planktonic growth (0.1; 0.5; 1; 5 and 10%), extracellular polysaccharide production, intracellular metabolites and gene expression (1 and 5%) of S. mutans, S. gordonii and S. oralis strains. | In total, 114 metabolites were identified, including D-tagatose. A significant negative correlation was noted between D-tagatose and the plaque index. In vitro assays: D-tagatose inhibited biofilm formation/planktonic growth and significantly reduced the viability of S. mutans and S. gordonii. D-tagatose altered the homeostasis of bacterial metabolism and the gene expression profile of the strains. In the presence of glucose, an increase in extracellular polysaccharide production by S. mutans has been reported. |
Di Tinco et al. (2021) [41] | In vitro | Effects of air-polishing using glycine or tagatose on the formation and persistence of P. aeruginosa biofilm on titanium discs. Effects of air-polishing with glycine or tagatose on titanium nanotopography and on the biological properties of human dental pulp stem cells seeded on titanium discs. | Air-polishing with glycine or tagatose significantly reduced the biofilm formed on the titanium discs. Glycine was more efficient than tagatose in reducing persistent biofilm. Air-polishing with glycine or tagatose did not cause relevant changes in the titanium nanotopography, nor did it compromise the biological properties (adhesion, proliferation, morphology, angiogenic and osteogenic potential) of the pulp stem cells. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, A.d.C.; Fideles, S.O.M.; Reis, C.H.B.; Pagani, B.T.; Bueno, L.M.M.; Moscatel, M.B.M.; Buchaim, R.L.; Buchaim, D.V. D-Tagatose: A Rare Sugar with Functional Properties and Antimicrobial Potential against Oral Species. Nutrients 2024, 16, 1943. https://doi.org/10.3390/nu16121943
Ortiz AdC, Fideles SOM, Reis CHB, Pagani BT, Bueno LMM, Moscatel MBM, Buchaim RL, Buchaim DV. D-Tagatose: A Rare Sugar with Functional Properties and Antimicrobial Potential against Oral Species. Nutrients. 2024; 16(12):1943. https://doi.org/10.3390/nu16121943
Chicago/Turabian StyleOrtiz, Adriana de Cássia, Simone Ortiz Moura Fideles, Carlos Henrique Bertoni Reis, Bruna Trazzi Pagani, Lívia Maluf Menegazzo Bueno, Matheus Bento Medeiros Moscatel, Rogerio Leone Buchaim, and Daniela Vieira Buchaim. 2024. "D-Tagatose: A Rare Sugar with Functional Properties and Antimicrobial Potential against Oral Species" Nutrients 16, no. 12: 1943. https://doi.org/10.3390/nu16121943
APA StyleOrtiz, A. d. C., Fideles, S. O. M., Reis, C. H. B., Pagani, B. T., Bueno, L. M. M., Moscatel, M. B. M., Buchaim, R. L., & Buchaim, D. V. (2024). D-Tagatose: A Rare Sugar with Functional Properties and Antimicrobial Potential against Oral Species. Nutrients, 16(12), 1943. https://doi.org/10.3390/nu16121943